Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

> Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2016

Preparation and use of DMF-stabilized Iridium Nanoclusters as methylation catalysts using methanol as the C1 source

Kei Oikawa, Satoshi Itoh, Hiroki Yano,

Hideya Kawasaki and Yasushi Obora*

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan E-mail: obora@kansai-u.ac.jp

Table of Contents

Chemicals and General experimental procedure	S2
Instrumental analysis of DMF-stabilized Ir NCs	S3-7
Experimental procedure (β -methylation and <i>N</i> -methylation)	S8
Mechanism experiment and optimisation of N-methylation	S10-12
References	
Copies of ¹ H NMR, ¹³ C NMR spectra of compounds	

General

GLC analysis was performed with a flame ionization detector using a 0.22 mm × 25 m capillary column (BP-5). All NMR spectra were measured at 400 and 100 MHz, respectively, in CDCl₃ with TMS as an internal standard. All products were characterized by ¹H NMR, ¹³C NMR and GC-MS. The products yield were estimated from the peak areas based on the internal standard technique using GC.

All starting materials were commercially available and used without any purification. Compounds **2a**¹, **2b**², **2c**³, **2d**², **2e**⁴, **2f**¹ **2g**⁵, **2h**⁶, **2i**⁵, **2j**⁷, **5a**⁸, **5b**⁸ and **5c**⁸ were reported previously. High-resolution mass spectra were performed at Global Facility Center, Hokkaido University.

Experimental

Preparation of 0.1 M IrCl3 aq. (A) : A mixture of IrCl3(0.317 g) and distilled water (10 mL) was added to a vial bottle (10 mL), and allow the bottle to stand at room temperature overnight.

Synthesis of DMF-stabilized Ir NCs : DMF (50 mL) was added to a 300 mL three-necked round bottom flask, and the solution was preheated to 140 °C (\pm 2 °C) and stirred 1300 to 1500 rpm for 5 min. Then the 0.1 M IrCl₃ solution (A) was added to the hot DMF solution, which allowed to react for 10 h on stirring (1300 rpm-1500 rpm) at 140 °C (\pm 2 °C). The resulting clear red solution was used as 1 mM Ir NCs solution in DMF for further reaction. After vacuum evaporation of the solvent, the residue was re-dissolved in selected solvents such as DMF, D₂O, MeOH for the dynamic light scattering (DLS), NMR measurement and the β -methylation reactions.

50 mL DMF $\xrightarrow{\text{pre-heating}} 0.1 \text{ M IrCl}_3 \text{ aq.} \longrightarrow 1.0 \text{ mM Ir NCs}$ 140 °C, 5 min 140 °C, 10 h **Optical spectroscopy of DMF-stabilized Ir NCs** : UV-visible absorption spectra were measured by using a JASCO V-670 spectrophotometer. Fluorescence emission spectra were measured by using JASCO FP-6200 fluorescence spectrophotometer at UV excitation of 350 nm.

Fig.S1 photoluminescent by UV lamp (350 nm)

Fig. S2 (a) UV-visible absorption spectra of DMF-stabilized Ir NCs (red), and IrCl₃ as precursor (blue). (b) Photoluminescence emission spectra of DMF-stabilized Ir NCs (red), and IrCl₃ as precursor (blue)

Fig. S3 DMF-stabilized Ir NCs size distributions by TEM image

Fig. S4 ¹H NMR of DMF-stabilized Ir NCs

Fig. S5 XRD pattern of DMF-stabilized Ir NCs

Fig. S6 XPS spectra of DMF-stabilized Ir NCs

Fig. S7 FT-IR of free DMF(blue) and DMF-stabilized Ir NCs (orange)

Fig. S8 TG-DTA for DMF-stabilized Ir NCs

A typical reaction procedure for Ir NCs catalyzed β -methylation of 1-phenylethanol 1a using methanol as C1 resource (Table 1, entry 12): A mixture of 1-phenylethanol 1a (122 mg, 1.0 mmol), cesium carbonate (675 mg, 3.0 mmol) and 1 mM Ir NCs in methanol (2.0 mL) as a catalyst was stirred at 150 °C for 24 h under Ar atmosphere. The conversions and yields of products 2a and 3a were estimated from peak areas based on an internal standard (methyl benzoate) using GC. The reaction mixture was extracted with diisopropylether (30 mL×2), dried over sodium sulfate, and evaporated under vacuum and the product was obtained in 87 % yield (130 mg) as yellow oil.

A typical reaction procedure for Ir NCs catalyzed *N*-methylation of aniline 4a using methanol as C1 resource (Table S2, entry 1): A mixture of aniline 4a (93 mg, 1.0 mmol), cesium carbonate (675 mg, 1.0 mmol) and 1 mM Ir NCs in methanol (2.0 mL) as a catalyst was stirred at 150 °C for 24 h under Ar atmosphere. The conversions and yields of product 5a were estimated from peak areas based on an internal standard (methyl benzoate) using GC and the product 5a were obtained in 87% yield. The reaction mixture was extracted with diisopropylether (30 mL×2), dried over sodium sulfate, and evaporated under vacuum and the product was obtained in 78% yield (84 mg) as yellow oil.

Mercury poisoning test for Ir catalyzed β-methylation of 1-phenylethanol 1a using methanol: A mixture of 1-phenylethanol 1a (122 mg, 1.0 mmol), cesium carbonate (325 mg, 1.0 mmol), Hg (1 g, 5.0 mmol) and Iridium catalyst (0.001 mmol) in methanol (2.0 mL) was stirred at 150 °C for 24 h under Ar atmosphere. The conversions and yields of products 2a and 3a were estimated from peak areas based on an internal standard (methyl benzoate) using GC.

Compound **2k**. Yield 54% (92 mg), colorless liquid; ¹H NMR δ 7.27-7.11(m, 4H), 3.69 (d, J = 8.0 Hz, 2H), 2.95-2.84 (m, 1H), 1.43 (s, 1H), 1.26 (d, J = 8.0 Hz, 3H); ¹³C NMR δ 145.8(C), 134.3(C), 129.9(CH), 127.4(CH), 126.7(CH), 125.7(CH), 68.4(CH₂), 42.1(CH), 17.4(CH₃); IR (neat, cm⁻¹) 3300, 2929, 1597, 1570, 1429, 1082, 877, 783, 696; GC-MS (EI) *m/z* (relative intensity) 170(24) [M⁺], 139(100), 103(87), 77(34), 51(8), 39(4); HRMS (EI) *m/z* calcd for C₉H₁₁CIO: 170.0498, found 170.0498

Conditions screening of N-methylation

NH ₂	Ir NCs (0.1 mol %)	H N
	Base (0.5 mmol) MeOH (2 mL)	
4a	150 °C, 24 h	5a

1.0 mmol

Entry	Base	Conv. (%)	GC Yield (%)
1	Cs ₂ CO ₃	>99	87 [78] ^a
2	K ₂ CO ₃	18	90
3	KO ^t Bu	>99	94
4	КОН	18	92
5	Cs ₂ CO ₃ (0.2 mmol)	>99	72
6	Cs ₂ CO ₃ (without Ir NCs)	18	n.d. ^b

a) Isolated yield. b) Not detected.

Table S2

Table S1

Entry ^a	Ir NCs (mol %)	Conv. (%)	GC Yield (%)	TON ^b
1	0.1	>99	87	870
2	0.01	90	80	8000
3	0.001	52	33	33000
4	0.0001	52	31	310000

a) Cs_2CO_3 was used as base. b) Turnover number (TON) = **5a** (mol)/IrNCs (mol)

Scheme S1. α -methylation of acetophenone with methanol using Ir NCs

Conversion : >99%

Total GC yield : 31% (sel. 2a: 3a = 89 : 11)

Scheme S2. Reaction with paraformaldehyde

Table S3

Entry	Conditions	Conv. (%)	GC Yield (%)			
			Α	В	C(2a)	D(3a)
1	as above	>99	n.d. ^a	n.d. ^a	2	3
2	without (HCHO) _n	35	n.d. ^a	n.d. ^a	trace	trace
3	add Ir NCs (0.1 mol %) >99	n.d. ^a	n.d. ^a	12	n.d. ^a

a) Not detected by GC.

References

(1) S. Kobayashi, K. Shibakawa, Y. Miyaguchi and A. Masuyama, *Asian J. Org. Chem.*, 2016, **5**, 636-645.

- (2) N. Kise, Y. Hirata and N. Ueda, J. Org. Chem., 2001, 66, 862-867.
- (3) J.-L. Jiang and Y.-M. Zhang, Youji Huaxue, 1988, 8, 543-545.
- (4) J. Farkaš and J. J. k. Novák, Collect. Czech. Chem. Commun. 1960, 25, 1815-1823.
- (5) Y. Li, H. Li, H. Junge and M. Beller, Chem. Commun., 2014, 50, 14991-14994.
- (6) S. Serra, Tetrahedron, Asymmetry, 2011, 22, 619-628.

(7) T. Morimoto, T. Fujii, K. Miyoshi, G. Makado, H. Tanimoto, Y. Nishiyama and K. Kakiuchi, *Org. Biomol. Chem.*, 2015, **13**, 4632-4636.

(8) T. T. Dang, B. Ramalingam and A. M. Seayad, ACS Catal., 2015, 5, 4082-4088.

¹H NMR and ¹³C NMR spectra

2a

2d and 3d (69:31)

