Zwitterionic BODIPYs with Larger Stokes Shift: Small Molecular Biomarkers for Live Cells

Adiki Raja Sekhar,^a Santhosh Kumar Sariki,^b R. V. Ramana Reddy,^a Alakesh Bisai,^a Pushpendra Kumar Sahu,^b Raghuvir Singh Tomar,^b Jeyaraman Sankar*^a

^a Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal bypass road, Bhouri, Bhopal, India-462066. Fax: +91-755-6692392; Tel: +91-755-6692334.

^b Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal bypass road, Bhouri, Bhopal, India-462066. Fax: +91-755-6692392; Tel: +91-755-6692334.

Supporting Information

- 1. General Information
- 2. Synthetic procedure
- 3. Photophysical properties
- 4. NMR and Mass spectra
- 5. Geometric calculation
- 6. Plausible reaction mechanism
- 7. Crystallographic information
- 8. Bio- Imaging and toxicity studies
- 9. Computational calculation
- **10. References**

1. General Information

All solvents and reagents were purchased from commercial sources and used without further purification except for dry THF which was further distilled over sodium metal. Mass spectra were recorded on a Bruker HR-LCMS spectrometer using CH₃OH and CHCl₃ as solvents. 100 MHz for ¹³C, 376 MHz for ¹⁹F, 128 MHz for ¹¹B and 500 MHz for ¹H- NMR spectra were recorded using a Bruker instrument operating at 500 MHz in deuterated solvent of methanol and dimethyl sulfoxide solvent. UV/Vis spectra were recorded on Cary-100 spectrophotometry. Fluorescence emission spectra were recorded on a Horiba Jovin Vyon Fluoro log 3-111 spectrophotometer.

UV/Vis and fluorescence experiments were carried with stock solution of Zwitterionic BODIPY **2** and **3** and diluted in cuvette for further analysis, prepared in methanol (HPLC grade). Absorption coefficient of zwitterionic BODIPYs was calculated in same solvent. In fluorescence, BODIPYs was excited at λ_{max} with entrance and exit slits 1 nm and 1 nm respectively. Experiments were carried under ambient conditions. Quantum yields of BODIPYs compounds were calculated with respect to coumarin 153 (Φ =0.58) in ethanol. **2** and **3** were excited at cross point with standard sample in absorption profile. Quantum yield was calculated according to the following formula

$$\Phi_{\rm X} = \Phi_{\rm R} \left[\frac{A_{\rm R}(\lambda_{\rm r})}{A_{\rm X}(\lambda_{\rm x})} \right] \left[\frac{I(\lambda_{\rm r})}{I(\lambda_{\rm x})} \right] \left[\frac{\eta_{\rm x}^2}{\eta_{\rm r}^2} \right] \left[\frac{D_{\rm x}}{D_{\rm r}} \right]$$

where $I(\lambda r)$ is the Relative Intensity of the existing light at wavelength λ , η is the average refractive index of the solution, D is the area under the emission spectrum, $A(\lambda)$ is the absorbance per cm of the solution at the excitation wavelength λ . Subscripts "x" and "r" refer to the unknown and reference solutions, respectively. Since the solvent used is the same for both the unknown and the reference, hence it is assumed that $I(\lambda x)=I(\lambda r)$. Then the equation is further simplified as:

$$\Phi_{\rm X} = \Phi_{\rm R} \left[\frac{A_{\rm R}(\lambda_{\rm r})}{A_{\rm X}(\lambda_{\rm x})} \right] \left[\frac{D_{\rm x}}{D_{\rm r}} \right]$$

Single crystal data was collected on a Bruker APEX II diffractometer equipped with a graphite monochromator and Mo-K α ($\lambda = 0.71073$ Å) radiation. Data collection was performed using φ and ω scans. The structures was solved using direct method followed by full matrix least square refinements against F2 (all data HKLF 4 format) using SHELXTL.¹ Subsequent difference Fourier synthesis and least-square refinement revealed the positions of the remaining non-hydrogen atoms. Determinations of the crystal system, orientation matrix, and cell dimensions were performed according to the established procedures. Lorentz polarization and multi-scan absorption correction were applied. Non-hydrogen atoms were refined with independent anisotropic displacement parameters and hydrogen atoms were placed geometrically and refined using the riding model. All calculations were carried out using SHELXL² and WinGXsystemVer-1.6414.

2. Synthetic procedure

2 ml of trimethylamine in water was added to the solution of dibromo-pentafluorophenyl BODIPY 100 mg in 20 ml of dry chloroform. The reaction mixture was stirred for 24 h at room temperature in an open atmospheric condition. Concentrate the reaction mixture under reduced pressure, to remove an inseparable mixture subjected to neutral alumina column chromatography in ethyl acetate without any further extraction. Purified desire compounds by slow increment of polarity in neutral alumina column chromatography. By gradual increment in polarity from Hexane, ethyl acetate to methanol afforded pure product of Oxo and Imino- BODIPYs. By repetitive precipitation in ethyl acetate gives dry powder of desired products.

Scheme S1. Synthesis procedure of Zwitterionic BODIPYs

Oxo-BODIPY (2):

Light green shining solid in 30 mg (35.9 % yield). ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 7.09-7.08 (d, 1H_a, *J*= 5.34 Hz), 6.46-6.45 (d, 1H_c, *J*= 4.18 Hz), 6.14-6.13 (d, 1H_b, *J*= 5.34 Hz), 5.90-5.89 (d, 1H_d, *J*= 4.18 Hz), 3.71 (s, 9H_e); ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 173.94, 146.12, 144. 76, 141.88, 139.91, 138.37, 137.10, 134.51, 133.19, 126.74, 109.52, 107.55, 105.32, 98.57, 57.65-57.59; ¹⁹F ((CD₃)₂SO, 470 MHz): - δ (ppm) 130.33-130.42, 140.00-140.07, 155.22-155.31, 162.21-162.33; ¹¹B ((CD₃)₂SO, 160 MHz) δ (ppm) 0.44 (t, *J*_{B-F} = 30.17 Hz). HR-MS (ESI): m/z calc for C₁₈H₁₃BF₇N₃ONa 454.0935, found 454.0962. UV/Vis (CH₃OH): λ (nm) - 390 (2.258 × 10⁴ M⁻¹ cm⁻¹). Emission (excitation at 390 nm): $\lambda_{emi} = 461$ nm.

Imino-BODIPY (3):

Dark green solid in 20 mg (23.27 % yield). ¹H NMR (CD₃OD, 500 MHz): δ (ppm) 7.25-7.24 (d, 1H_a, *J*= 4.88 Hz), 6.96-6.95 (d, 1H_b, *J*= 5.05 Hz), 6.65-6.64 (d, 1H_c, *J*= 3.35 Hz), 6.24-6.23 (d, 1H_d, *J*= 3.35 Hz), 3.85 (s, 9H_c), 3.28 (s, 3H_f); ¹³C NMR (CD₃OD, 125 MHz): δ (ppm) 172.02, 164.85, 145.62, 144.34,141.96, 138.42,137.78, 136.92, 135.72, 132.56, 118.56, 113.38, 109.87, 107.72, 106.12, 57.32, 30.68; ¹⁹F (CD₃OD, 470 MHz): -δ (ppm) 136.73-136.96, 141.13-141.18, 154.63-154.72, 163.50-163.60; ¹¹B (CD₃OD, 160 MHz) δ (ppm) 1.55-1.11 (t, *J*_{B-F}= 35.43 Hz). HR-MS (ESI): m/z calc for C₁₉H₁₆BF₇N₄ + H 445.1432, found 445.1439. UV/Vis (Methanol): λ (nm) - 414 (1.84 × 10⁴ M⁻¹ cm⁻¹); 434 (1.982 × 10⁴ M⁻¹ cm⁻¹). Emission (excitation at 410 nm): λ_{eni} = 406 nm.

3. Photophysical properties

Figure S1. Comparision photophysical properties of Oxo-BODIPY (2) and Imino BODIPY (3) with typical PF BODIPY in DCM.

Figure S2. Photophysical properties of Oxo-BODIPY (**2**) and Imino BODIPY (**3**) in PBS buffer (pH-7).

Figure S3. Absorption spectra of Oxo-BODIPY (2) in different solvents.

Figure S4. Absorption spectra of Imino-BODIPY (3) in different solvents.

Figure S5. Fluorescence spectra of Oxo-BODIPY (2) in different solvents.

Figure S6. Fluorescence spectra of Imino-BODIPY (3) in different solvents.

Figure S7. Fluorescence lifetime of Oxo-BODIPY (2) and Imino-BODIPY (3) in methanol solvents.

4. NMR and Mass spectra.

Figure S8. ¹H- NMR spectrum of Oxo-BODIPY (2) in DMSO- D₆ solvent.

Figure S9. ¹⁹F- NMR spectrum of Oxo-BODIPY (2) in DMSO- D_6 solvent.

Figure S10. ¹¹B- NMR spectrum of Oxo-BODIPY (2) in DMSO- D_6 solvent.

Figure S11. ¹³C- NMR spectrum of Oxo-BODIPY (2) in DMSO- D₆ solvent.

Figure S12. ¹H- NMR spectrum of Imino-BODIPY (3) in CD₃OD solvent.

Figure S13. ¹¹B- NMR spectrum of Imino-BODIPY (3) in CD₃OD solvent.

Figure S14. ¹⁹F- NMR spectrum of Imino-BODIPY (3) in CD₃OD solvent.

Figure S15. ¹³C- NMR spectrum of Imino-BODIPY (3) in CD₃OD solvent.

Figure S16. COSY- NMR spectrum of Oxo-BODIPY (2) in DMSO- D_6 solvent.

Figure S17. NOSY- NMR spectrum of Oxo-BODIPY (2) in DMSO- D_6 solvent.

Figure S18. HSQC- NMR spectrum of Oxo-BODIPY (2) in DMSO- D_6 solvent.

Figure S19. HMBC- NMR spectrum of Oxo-BODIPY (2) in DMSO- D_6 solvent.

Figure S20. COSY- NMR spectrum of Imino-BODIPY (3) in CD₃OD solvent.

Figure S21. NOSY- NMR spectrum of Imino-BODIPY (3) in CD₃OD solvent.

Figure S22. HSQC- NMR spectrum of Imino-BODIPY (3) in CD₃OD solvent.

Figure S23. HMBC- NMR spectrum of Imino-BODIPY (3) in CD₃ODs solvent.

Figure S24. HR-MS of Oxo-BODIPY (2) in methanol solvent.

Figure S25. HR-MS of Imino-BODIPY (3) in methanol solvent.

5. Geometrical Calculation

a. Distortion Angular index (τ_4)

Angular index $(\tau 4)$ is a measurement to describe distortion in tetrahedral geometry, which is proposed by Robert P. Houser and co-workers is

$$\tau_4 = \frac{360^\circ - (\alpha + \beta)}{141^\circ}$$

 α and β are two largest angle in tetrahedral geometry of boron. According to angular index, the value range from 0 (square planar) to 1 (tetrahedral).

Geometry	$ au_4$
Tetrahedral (T _d)	1.00
Trigonal pyramidal (C _{3v})	0.85
Seesaw (C_{2v} , $\theta_6 = 90^\circ$)	0.64
Seesaw (C _{2v} , $\theta_6 = 109.5^\circ$)	0.50
Seesaw (C_{2v} , $\theta_6 = 154.4^\circ$)	0.18
Seesaw ($C_{2v}, \theta_6 = 170^\circ$)	0.07
Square planar (D _{4h})	0.00

Table S1. Four-coordinate geometry indices for ideal geometrical shapes

b. Donor – Acceptor Tetrahedral Calculation (THC_{D-A})

The geometry of four coordination boron systems and to know the strength of coordination covalent bond Herbert Hopfl proposed tetrahedral donor-acceptor equation for B-N system is

$$THC_{D-A}(\%) = \left[1 - \frac{\sum_{n=1-6} |109.5 - \theta_n|}{3(120 - 109.5)^\circ - 3(109.5 - 90)^\circ}\right] \times 100$$

After generalized the formula

$$THC_{D-A}(\%) = \left[1 - \frac{\sum_{n=1-6} |109.5 - \theta_n|}{90^{\circ}}\right] \times 100$$

Where θ = angle in tetrahedral geometry around boron atom.

Table S2. Tetrahedral character calculation of four-coordinate geometry for ideal geometrical shapes

|--|

F2	1.3808	F1	1.4046	110.262	
F2	1.3808	N1	1.5265	110.030	
F2	1.3808	N2	1.5797	111.613	
F1	1.4046	N1	1.5265	110.452	
F1	1.4046	N2	1.5797	107.604	
N1	1.5265	N2	1.5797	106.803	
	F2 F2 F2 F1 F1 N1	F21.3808F21.3808F21.3808F11.4046F11.4046N11.5265	F21.3808F1F21.3808N1F21.3808N2F11.4046N1F11.4046N2N11.5265N2	F21.3808F11.4046F21.3808N11.5265F21.3808N21.5797F11.4046N11.5265F11.4046N21.5797N11.5265N21.5797	F21.3808F11.4046110.262F21.3808N11.5265110.030F21.3808N21.5797111.613F11.4046N11.5265110.452F11.4046N21.5797107.604N11.5265N21.5797106.803

Table S3. Bond angles and distance of boron coordinate geometry in Oxo-BODIPY (2)

Atom 1	Atom 2	d 1,2 [Å]	Atom 3	d 1,3 [Å]	Angle 2,1,3 [°]
B1	F2	1.3749	F1	1.3998	109.270
B 1	F2	1.3749	N1	1.5029	111.667
B1	F2	1.3749	N2	1.5798	109.630
B 1	F1	1.3998	N1	1.5029	110.450
B1	F1	1.3998	N2	1.5798	107.389
B1	N1	1.5029	N2	1.5798	108.334

Table S4. Bond angles and distance of boron coordinate geometry in Imino-BODIPY (3)

Figure S26. Geometrical arrangement in PF-BODIPY, Br-BODIPY (1), Oxo-BODIPY (2) and Imino-BODIPY (3).

Geometrical calculations	$ au_4$	THC _{D-A} (%)
PF-BODIPY	0.981	99.7%
Br-BODIPY (1)	0.977	99.5%
Oxo-BODIPY (2)	0.978,	99.7%

```
Imino-BODIPY (3) 0.977 99.6%
```

Table S5. Geometrical calculations of PF-BODIPY, Br-BODIPY (1), Oxo-BODIPY (2) and Imino-BODIPY (3).

6. Plausible Reaction Mechanism

Scheme S2. Plausible reaction mechanism of formation of zwitterionic BODIPYs.

7. Crystallographic information

	Oxo-BODIPY (2)	Imino-BODIPY (3)
Empirical formula	$C_{18}H_{13}BF_7N_3O$	$C_{19}H_{16}BF_{7}N_{4}$

Formula weight	431.12	444.17
Temperature	110 K	186 K
Wavelength	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	P 2(1)/c	P 2(1)/c
Unit cell dimensions	a=15.2794(4)	a=15.712(5)
	b=9.0171(2)	b=9.184(3)
	c=13.5025(4)	c=13.544(4)
	α=90	α=90
	β=111.891(1)	β=111.297(8)
	γ=90	γ=90
Volume	1726.18(8)	1820.9(10)
Z	4	4
Dcalc (g/cm5)	1.659	1.620
Absorption coefficient	0.174	0.160
F(000)	872.0	904.0
Tmin and Tmax	0.923, 0.957	0.950, 0.959
Reflections collected	6299	4510
Independent reflections	5298	1646
Goodness-of-fit on F2	1.051	0.960
Final R indices [I>2sigma(I)]	0.0373	0.0645
R indices (all data)	0.1079	0.1699
Largest diff. peak and hole	0.518, -0.246	0.214, -0.335

 Table S6. Important crystallographic information of Oxo-BODIPY (2) and Imino-BODIPY (3).

Figure S27. Crystal structures of a. Oxo-BODIPY (2), b. Imino-BODIPY (3).

	Oxo- B	ODIPY (2)			Imino- BODIPY (3)				
Number	Atom1	Atom2	Length	Number	Atom1	Atom2	Length		

						-	
1	F2	B1	1.381(1)	1	F2	B1	1.376(6)
2	F1	B1	1.405(1)	2	F1	B1	1.400(5)
3	N2	C8	1.397(1)	3	N2	C8	1.401(5)
4	N2	C5	1.381(1)	4	N2	C5	1.380(3)
5	N2	B1	1.580(1)	5	N2	B1	1.579(4)
6	N1	C1	1.389(1)	6	N1	C1	1.388(5)
7	N1	C4	1.393(1)	7	N1	C4	1.409(4)
8	N1	B1	1.527(1)	8	N1	B1	1.503(5)
9	01	C4	1.225(2)	9	N4	C5	1.477(5)
10	N3	C5	1.473(1)	10	N3	C4	1.261(5)
11	C6	C5	1.380(1)	11	C8	C9	1.447(4)
12	C6	C7	1.409(2)	12	C8	C7	1.374(3)
13	C9	C8	1.443(1)	13	C5	C6	1.364(4)
14	C9	C1	1.361(1)	14	C9	C10	1.480(5)
15	C8	C7	1.386(1)	15	C9	C1	1.348(4)
16	C1	C2	1.451(1)	16	C1	C2	1.432(4)
17	C2	C3	1.346(2)	17	C4	C3	1.464(5)
18	C4	C3	1.485(2)	18	C7	C6	1.384(5)
				19	C2	C3	1.324(6)

Table S7. Important bond lengths in indacene crystal frame work of Oxo-BODIPY (2) and Imino-BODIPY (3).

Figure S28. Boron atom displacement from indacene mean plane a). Oxo-BODIPY (2), b). Imino-BODIPY (3).

Figure S29. Intermolecular hydrogen bonds in Oxo-BODIPY by a). Oxygen atom, b). Boron atom, c). Fluorine atom and d). Nitrogen atom.

Figure S30. Intermolecular hydrogen bonds in Imino-BODIPY by a). Nitrogen atom, b). Fluorine atom and c). Boron atom.

Figure S31. 1-D molecular chain formation by hydrogen bond in crystal frame work of Oxo-BODIPY (2).

Figure S32. 1-D molecular chain formation by hydrogen bond in crystal frame work of Imino-BODIPY (**3**)

8. Bio- Imaging and toxicity studies

Materials and Method

Yeast Strain and Growth Conditions- Yeast strain used in this study were gifted by Sten Stymne's laboratory; the strains were grown in synthetic complete medium at 25 °C. Genotypes of the strains used in this study are listed on table.1.

Transformations: The WT strain was transformed with the Dcp2pRFP construct using the lithium acetate (LioAC) transformation method (Brachmann *et al.*, 1998)³. For selection of positive colonies, transformants were plated onto dropout media (without Leucine).

Strain	Genotype	Reference ⁴
SCY62	MATa ADE2	Sandager et al.2002
H1246	MAT α are1- Δ ::HIS3 are2- Δ ::LEU2 dga1- Δ ::KanMX4 lro1-	Sandager et al.2002
	Δ::TRP1 ADE2	
yRP1825	MAT_ leu2-3,112 trp1 ura3-52 his4-539 DCP2-GFP (NEO)	Teixeira et al, 2005

Table S8. Genotypes of yeast strains which used in fluorescence imaging.

Fluorescence microscopy

Yeast strains were grown at 25 °C in synthetic complete medium and harvested at OD 0.8, subsequently washed twice with PBS and re-suspended in PBS. Fluorescence imaging was performed as described previously (Madeira et al. 2015). 1 μ l of 10 mM BODIPY (BODIPY493/506, IminoBODIPY434/506 (**3**) and Oxo-BODIPY390/405 (**2**)) and 2 μ l of vector mounting media were added on 2 μ l of yeast cells and fluorescence images were captured with ZEISS Axio ImagerM2 Apotome.2 on 63X oil immersion objective lens.

Commercial available BODIPY 493-506 –Difluoro {2-[1-(3, 5-dimethyl-2H-pyrrol-2-ylidene-N) ethyl]-3, 5-dimethyl-1H-pyrrolato-N}boron which is specifically bind to lipid droplets purchased from Sigma-Aldrich used to test lipids presence in mutant Quadruple yeast cells.⁷

BODIPY 493 506

Figure S33. Fluorescence emission imaging of (A) BODIPY 493-506, (B) Imino-BODIPY (3) and (C) OXO-BODIPY (2) on wild-type yeast strain (SCY62) and mutant (H1246 -Quadruple Mutant).

Figure S34. Fluorescence imaging of Imino-BODIPY (3) and OXO-BODIPY (2) on yeast strain (SCY62).

Figure S35. Comparison of fluorescence imaging with Imino-BODIPY (**3**) and Dcp2pRFP transformed SCY62 yeast strain.

Growth Curve Assay: The strain taken for this study was BY4741 (MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0). The cells were grown overnight in synthetic complete media (Synthetic Complete Media: YNB 0.17%, Amino Acids 0.18%, Ammonium Sulphate 0.5%, Glucose 2%), then inoculated secondary at OD₆₀₀ 0.2 and allowed to grow till exponential phase (OD₆₀₀ 0.8). Cells growing in exponential phase were normalized to OD₆₀₀ 0.1 in each well of 96 well plate and treated with fluorescent dyes BODIPY493/503, Imino-BODIPY, Oxo-BODIPY. The cells were incubated in plate reader at 30°C for 19 hours where OD₆₀₀ reading was taken at every 30 minutes time interval.

Figure S36. Growth curve assay of Commercial BODIPY493/503, Oxo-BODIPY (2) and Imino-BODIPY (3) up to 25 μ M concentration of dye.

Figure S37. Growth curve assay of Commercial BODIPY493/503, Oxo-BODIPY (2) and Imino-BODIPY (3) up to 200 μ M concentration of dye.

9. Computational calculation

In order to support the optical properties and zwitterionic nature of BODIPYs, we carried out time-dependent density functional theory (TD-DFT/PCM) calculations at B3LYP/6-31G (d) level using Gaussian 09 suite of programs.14 Structural coordinates obtained from crystal data were used for single point energy calculations.

The highest occupied molecular orbital (HOMO) energy of oxo-BODIPY is slightly stabilized than the imino-BODIPY. This may be due to the higher electronegativity of oxygen. The lowest occupied molecular orbital (LUMO) of zwitterionic BODIPYs lie predominantly on the weakly delocalized pyrrole, but HOMO are spread all over the indacene core. TD-DFT predicted absorption spectra and oscillator transitions support the experimental data. The highest oscillator strength represented the transition from HOMO to LUMO that is similar to S0 \rightarrow S1 electronic transition; second highest oscillator strength from the contribution of HOMO to LUMO +1 stems from S0 \rightarrow S2.

Figure S38. Frontier molecular orbitals and energy levels (above), experimental, predicted TD-DFT absorption spectra and oscillator strength (below) of 2 and 3 in methanol.

Oxo-BODIPY (2)

Figure S39. Experimental (top) Oscillator strength (middle) and PCM-TDDFT calculated (bottom) UV-vis spectra of Oxo-BODIPY (2) in methanol.

PCM-TDDFT expansion coefficients for Oxo-BODIPY (2)⁵

Excited State 1: Singlet-A 3.1674 eV 391.44 nm f=0.4738 <S**2>=0.000

109 ->110 0.70267

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1656.79773072

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.6536 eV 339.34 nm f=0.0006 <S**2>=0.000 107 ->110 0.35475 108 ->110 0.60265 Excited State 3: Singlet-A 3.9073 eV 317.31 nm f=0.0516 <S**2>=0.000 109 ->111 0.70161

Excited State	4:	Singlet-A	4.0914 eV	303.04 nm	f=0.0302	<s**2>=0.000</s**2>				
104 ->110	-0.15	-0.15765								
106 ->110	-0.14	-0.14786								
107 ->110	0.57	0.57509								
108 ->110	-0.32	2907								
Excited State	5:	Singlet-A	4.2636 eV	290.80 nm	f=0.0032	<s**2>=0.000</s**2>				
105 ->110	-0.15	5710								
109 ->112	0.67	7965								
Excited State	6:	Singlet-A	4.3450 eV	285.35 nm	f=0.0286	<s**2>=0.000</s**2>				
105 ->110	0.44	1064								
106 ->110	0.50)663								
109 ->112	0.17	7558								
Excited State	7:	Singlet-A	4.3479 eV	285.16 nm	f=0.0129	<s**2>=0.000</s**2>				
105 ->110	0.52	2080								
106 ->110	-0.43	3200								
107 ->110	-0.13	3671								
Excited State	8:	Singlet-A	4.5815 eV	270.62 nm	f=0.0862	<s**2>=0.000</s**2>				
103 ->110	0.11	217								
104 ->110	0.67	7098								
107 ->110	0.10)476								
Excited State	9:	Singlet-A	4.9907 eV	248.43 nm	f=0.0028	<s**2>=0.000</s**2>				
103 ->110	-0.1	1150								
109 ->113	0.69	9405								
Excited State	10:	Singlet-A	5.0780 eV	244.16 nm	f=0.0663	<s**2>=0.000</s**2>				
103 ->110	0.57	7341								
109 ->113	0.11	965								

Imino-BODIPY (3)

Figure S40. Experimental (top) Oscillator strength (middle) and PCM-TDDFT calculated (bottom) UV-vis spectra of Imino-BODIPY (**3**) in methanol.

PCM-TDDFT expansion coefficients for Imino-BODIPY (3)⁵

Excited State 1: Singlet-A 3.0432 eV 407.42 nm f=0.5020 <S**2>=0.000

113 ->114 0.70136

This state for optimization and/or second-order correction.

Total Energy, E (TD-HF/TD-KS) = -1676.09862012

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.7155 eV 333.70 nm f=0.0552 <S**2>=0.000

113 ->115 0.70081

Excited State 3: Singlet-A 3.9089 eV 317.19 nm f=0.0097 <S**2>=0.000

113 ->116	0.704	460				
Excited State	4:	Singlet-A	3.9430 eV	314.44 nm	f=0.0009	<s**2>=0.000</s**2>
110 ->114	0.118	320				
111 ->114	0.690	023				
Excited State	5:	Singlet-A	4.2177 eV	293.96 nm	f=0.0833	<s**2>=0.000</s**2>
108 ->114	-0.12	521				
112 ->114	0.674	483				
Excited State	6:	Singlet-A	4.4431 eV	279.05 nm	f=0.0007	<s**2>=0.000</s**2>
113 ->117	0.704	404				
Excited State	7:	Singlet-A	4.5451 eV	272.79 nm	f=0.0193	<s**2>=0.000</s**2>
110 ->114	0.682	259				
111 ->114	-0.12	343				
Excited State	8:	Singlet-A	4.6889 eV	264.42 nm	f=0.0068	<s**2>=0.000</s**2>
109 ->114	0.70	191				
Excited State	9:	Singlet-A	4.9339 eV	251.29 nm	f=0.1238	<s**2>=0.000</s**2>
108 ->114	0.610)62				
113 ->118	-0.32	160				
Excited State	10:	Singlet-A	5.1127 eV	242.50 nm	f=0.0992	2 <s**2>=0.000</s**2>
107 ->114	0.514	499				
108 ->114	-0.154	400				
113 ->118	-0.444	466				

10. References

- 1. Sheldrick, G. M. SHELXTL Program for the Solution of Crystal of Structures, University of Göttingen, Göttingen, Germany, 1993.
- 2. Sheldrick, G. M. SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.

- **3.** C. B. Brachmann, A. Davies, G. J. Cost, E. Caputo, J. li, P. Hieter, J. D. Boeke, Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, *Yeats*, **1998**, *14*, 115-132.
- (a) Sandager L, Gustavsson MH, Ståhl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S. 2002. Storage Lipid Synthesis Is Non-essential in Yeast. *J Biol Chem.* 2002, 277, 6478-82. (b) Sorger D, Athenstaedt K, Hrastnik C, Daum G. 2004. A Yeast Strain Lacking Lipid Particles Bears a Defect in Ergosterol Formation. *J Biol Chem.* 2004, 279, 31190-31196. (c) Madeira JB, Masuda CA, Maya-Monteiro CM, Matos GS, Montero-Lomelí M, Bozaquel-Morais BL. 2015. TORC1 inhibition induces lipid droplet replenishment in yeast. *Mol Cell Biol* 35, 737–746. (d) D. Teixeira, U. Sheth, M. A. Valencia-Sanchez, M. Brengues, R. Parker, Processing bodies require RNA for assembly and contain nontranslating mRNAs. *RNA*, 2005, *11*, 371-382.
- Gaussian 09, Revision A02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.