Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Highly Efficient Bifunctional Heterogeneous Catalyst for Morphological Control of Discharged Products in Na-air Battery

Wen-Wen Yin, Zheng-Wen Fu

Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry & Laser Chemistry Institute, Fudan University, Shanghai, 200433, P.R. China

S1 Experimental

Synthesis of Co₃O₄ nanowires

Pure carbon cloth supported-Co₃O₄ was prepared via a template-free growth method. In a typical experiment, after degreased with acetone, the carbon cloth (3*4 cm²) was then rinsed with deionized water and absolute ethanol for 30 min respectively. Then the pure carbon cloth was placed standing against the wall of the Teflon-lined autoclave (100 ml).

Co₃O₄ nanowires were directly deposited on the carbon cloth by a solvothermal method. In a typical synthesis, 0.7485g Co(NO₃)₂·6H₂O, 0.0635g NH₄F and 0.2574g CO(NH₂)₂ were dissolved into 60ml deionized water under vigorous magnetic stirring. The pink solution was then transferred into a Teflon-lined stainless autoclave for reaction. The autoclave was sealed and maintained at 120°C for 5.5h. After cooling down to room temperature, the product was collected, washed, vacuum dried and then annealed at 250°C for 3h.

Electrochemical measurements and Physical characterization

The assembly of the cell has been described in detail in our recent work ^[22]. 0.05M Fe(C₅H₅)₂ in 1M NaClO₄/1,2-dimethoxyethane (DME) was used as the electrolyte. Charge-discharge measurements were performed at room temperature with a Land BT 1-40 battery test system. Field-emission scanning electron microscopy (FESEM, Cambridge S-360) was employed to study the morphology of the air cathodes. Field-emission transmission electron microscopy (FETEM) and selected-area

electron diffraction measurements (SAED) were carried out in a 200 kV side entry JEOL 2010 TEM. All discharge/charge capacities were calculated based on the weight of Co_3O_4 nanowires (0.5 mg cm⁻²), which was examined by electrobanlance (BP211D, Sartorius).

Table S1. Cyclic performance of Na-air batteries reported recently

Battery System	Discharge Product	Air Electrode	Discharge Capacity / mAh g ⁻¹	Current Density / mA g ⁻¹	Cycle Number	Reference
Na-O ₂	Na ₂ O ₂	DLC	1050-2100	1/10 C	20	1
Na-O ₂	Na_2O_2	GNS	1150	75	3	2
Na-O ₂	Na_2O_2	NGNS	1150	75	3	2
Na-O ₂	Na_2O_2	GNS	1200	300	10	3
Na-O ₂	Na_2O_2	$\mathbf{CF_x}$	1000	200	6	4
Na-O ₂	Na ₂ O ₂ .2H ₂ O	CNT	1000	500	7	5
Na-O ₂	Na_2O_2	NiCo ₂ O ₄	1000	50	10	6
Na-O ₂	NaO ₂	GDL	64	200 μAcm ⁻²	80	7
Na-O ₂	NaO_2	Ketjenblack	1666	200 μA cm ⁻	60	7
Na-O ₂	NaO_2	VACNT	750	67	130-140	8
Na-O2	Na_2O_2	CNT+ NaI	1000	500	150	9
Na-O2	Na_2O_2	CNT +	1000	500	230	10
		ferrocene				
Na-O ₂	NaO_2	GDL-MWCNT	500	100	60	11
Na-O ₂	Na ₂ CO ₃	OMC	500	100	20	12
Na-O ₂	$Na_2O_2 \cdot 2H_2O$	B-OLC	1000	0.3mA/cm ²	120	13
Na-O ₂	Na_2O_2	3D N-GA	500	100	100	14
Na-O ₂	NaO ₂ Na ₂ O ₂	NC-750	500	200	66	15
Na-O ₂	Na_2O_2	Co ₃ O ₄ /C	1000	500	570	This
						work

Reference

- [1] Q. Sun, Y. Yang, Z. W. Fu, Electrochem Commun. 16 (2012) 22-25.
- [2] Y. L. Li, H. Yadegari, X. Li, M. N. Banis, R. Li, X. Sun, Chem. Commun. 49 (2013) 11731-11733.
- [3] W. Liu, Q. Sun, Y. Yang, J. Y. Xie, Z. W. Fu, Chem. Commun. 49 (2013) 1951-1953.
- [4] W. Liu, H. Li, J.Y. Xie, and Z. W. Fu, ACS Appl. Mater. Interfaces. 6(2014) 2209–2212.

- [5] Z. L. Jian, Y. Chen, F. J. Li, T. Zhang, C. Liu, H. S. Zhou, J. Power Sources. 251 (2014) 466-469.
- [6] W.M. Liu, W.W. Yin, F. Ding, L. Sang, Z. W. Fu, Electrochem. Commun. 45 (2014) 87-90.
- [7] C. L. Bender, P. Hartmann, M. Vracar, P. Adelhelm, and J. Janek, Adv. Energy Mater. 4 (2014) 1301863.
- [8] N. Zhao, C.L. Li and X. X. Guo, Phys. Chem. Chem. Phys. 16 (2014) 15646—15652.
- [9] W. W. Yin, Z. Shadike, Y. Yang, F, Ding, L. Sang, H. Li and Z. W. Fu, Chem. Commun. 51(2015) 2324-2327.
- [10] W. W. Yin, J. L. Yue, M. H. Cao, W. Liu, J. J. Ding, F. Ding, L. Sang and Z. W. Fu, J. Mater. Chem. A. 3 (2015) 19027 –19032.
- [11] G. A. Elia, I. Hasa, J. Hassoun, Electrochimica Acta. 191 (2016) 516–520.
- [12] W. J. Kwak, Z. H. Chen, C. S. Yoon, J. K. Lee, K. Amine, Y. K. Sun, Nano Energy 12 (2015) 123-130.
- [13] C. Z. Shu, Y. M. Lin, B. S. Zhang, S. B. A. Hamid and D. S. Su, J. Mater. Chem. A. 4 (2016) 6610-6619.
- [14] S. P. Zhang, Z. Y. Wen, J. Jin, T. Zhang, J. H. Yang and C. H. Chen, J. Mater. Chem. A. 4 (2016) 7238–7244.
- [15] J. L. Ma and X. B. Zhang, J. Mater. Chem. A. 4 (2016) 10008–10013.

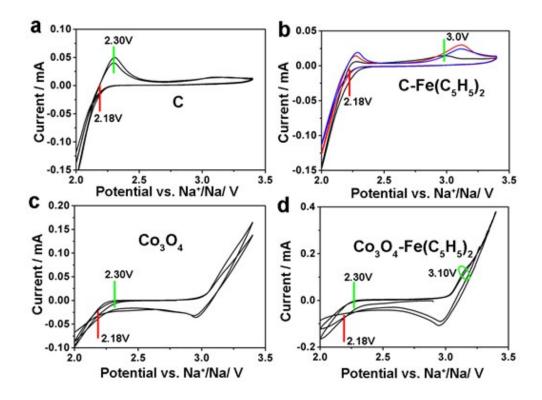


Figure S1. The CV curves of SABs with (a) carbon air electrode in pristine electrolyte (b) carbon air electrode in ferrocene-containing electrolyte (c) Co_3O_4 NWs/C air electrode in pristine electrolyte (d) Co_3O_4 NWs/C air electrode in the ferrocene-containing electrolyte between 2.0 and 3.4 V at a scanning rate of 0.1 mV/s.

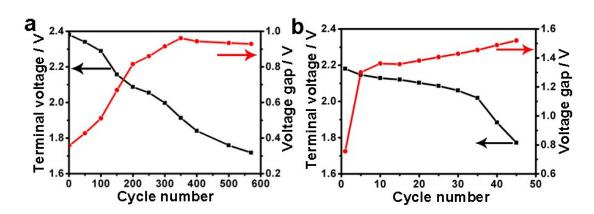


Figure S2. Terminal discharge voltage (the black line) and voltage gap (the red line) Co_3O_4 NWs/C air electrodes using (a) 0.05 M ferrocene-containing electrolyte; (b) pristine electrolyte during galvanostatic discharge and charge at 500 mA h g⁻¹ as a function of cycle number.

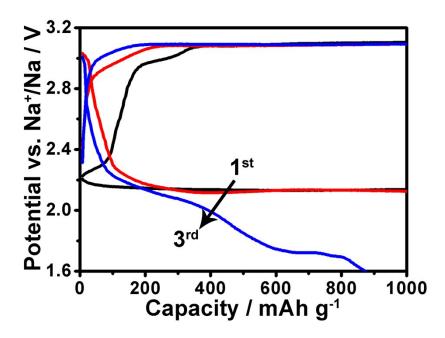


Figure S3. Cyclic performance of pure C air electrodes using 0.05 M ferrocene-containing electrolyte (the capacity was limited to 1000 mAh g^{-1}) at the current density of 500 mA g^{-1} .

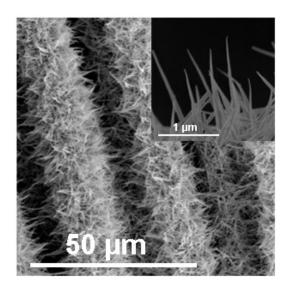


Figure S4. SEM images of Co₃O₄ nanowires/C

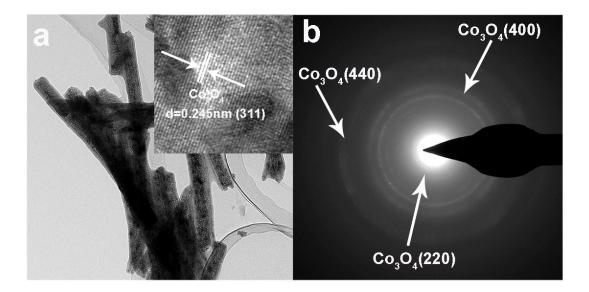


Figure S5. High resolution TEM images of the Co_3O_4 nanowires/C in the ferrocene containing electrolyte (a) after charging to 3.3 V at the current density of 500 mA g⁻¹ and (b) corresponding SAED patterns.

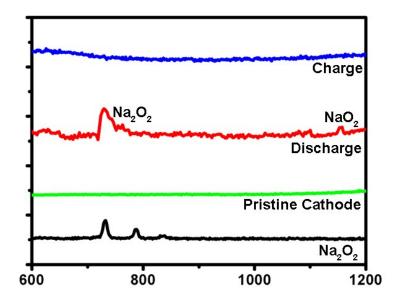


Figure S6. Raman spectra of the pristine cathode and electrodes after being discharged to 1.8V and charged to 3.3V in ferrocene-containing electrolyte, respectively.

To test the Raman spectra of discharge product, we use the carbon cathode instead of Co_3O_4 NWs/C cathode.