Supporting Information

Desymmetrization of Aziridine with Malononitrile using Cinchona Alkaloid Amide/Zinc(II) Catalysts
Noriyuki Shiomi, ${ }^{\text {a,b }}$ Mami Kuroda, ${ }^{\text {a }}$ Shuichi Nakamura ${ }^{*, a, b}$

${ }^{\text {a}}$ Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 (Japan)
${ }^{\mathrm{b}}$ Frontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 (Japan)

General Methods:

All reactions were performed in oven-dried glassware under a positive pressure of argon. Solvents were transferred via syringe and were introduced into the reaction vessels through a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7\% phosphomolybdic acid or p-anisaldehyde in ethanol/heat. Column chromatography was carried out on a column packed with silica-gel 60 N spherical neutral size $63-210 \mu \mathrm{~m}$. The ${ }^{1} \mathrm{H}$ NMR (300 MHz), ${ }^{13} \mathrm{C}$ NMR (75.5 MHz) spectra for solution in CDCl_{3}, were recorded on a Varian Gemini-300. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or CHCl_{3}. HPLC analyses were performed on a JASCO PU-2080 Plus using $4.6 \times 250 \mathrm{~mm}$ DAICEL CHIRALPAK column. ESI Mass spectra was recorded on a SHIMADZU LCMS-2050EV. Optical rotations were measured on a JASCO P-2200. Infrared spectra were recorded on a JASCO FT/IR-4600 spectrometer.

Optimization of reaction conditions:

Table S1. Screening of Lewis acids. ${ }^{\text {a }}$

Entry	Metal species	Yield (\%)	Ee (\%) ${ }^{\text {b }}$
1	none	-	-
2^{c}	$\mathrm{Et}_{2} \mathrm{Zn}$	63	90
3	$\mathrm{Zn}(\mathrm{OAc})_{2}$	53	11
4	$\mathrm{Zn}(\mathrm{OTf})_{2}$	41	14
5^{d}	$\mathrm{Zn}(\mathrm{OTf})_{2}$	58	81
6^{d}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	10	79
7^{d}	$\mathrm{Ni}(\mathrm{OTf})_{2}$	35	33^{e}
8^{d}	$\mathrm{Sc}(\mathrm{OTf})_{3}$	16	0

${ }^{\text {a }}$ Reaction condition; aziridine $\mathbf{1}(0.1 \mathrm{mmol})$, malononitrile (1.5 equiv.), $\mathrm{Et}_{2} \mathrm{Zn}(10 \mathrm{~mol} \%), \mathbf{3}$ (1 mol $\%)$ in THF (0.1 M) were used. ${ }^{\mathrm{b}}$ Ee was determined by HPLC analysis using a chiral column.
${ }^{c}$ Ligand 3 ($12 \mathrm{~mol} \%$) was used. ${ }^{\mathrm{d}} \mathrm{Et}_{3} \mathrm{~N}$ (1.0 equiv.) was added. ${ }^{\mathrm{e}}$ Opposite enantiomer was obtained.

Table S2. Screening of ligands. ${ }^{\text {a }}$

Entry	R (chiral ligand)	Time (h)	Yield $(\%)$	Ee (\%) $)^{\text {b }}$
1	H	6	74	88
2	$4-\mathrm{CF}_{3}$	20	45	24
3	$4-\mathrm{Cl}$	24	57	61
4	$4-\mathrm{OMe}$	12	71	91
5	$6-\mathrm{F}$	40	60	$3^{\text {c }}$
6	$6-\mathrm{Me}$	32	54	30^{c}
7	$6-\mathrm{OMe}$	32	60	6^{c}

${ }^{\text {a }}$ Reaction condition; aziridine 1 (0.1 mmol), malononitrile (5.0 equiv.), $\mathrm{Et}_{2} \mathrm{Zn}(10 \mathrm{~mol} \%$), ligand ($12 \mathrm{~mol} \%$) in THF (0.2 M) were used. ${ }^{\mathrm{b}}$ Ee was determined by HPLC analysis using a chiral column. ${ }^{\mathrm{c}}$ Opposite enantiomer was obtained.

Table S3. Screening of protecting groups. ${ }^{\text {a }}$

Entry	Ar	Time (h)	Yield (\%)	Ee (\%) ${ }^{\text {b }}$
1		6	74	88
2		72	-	-
3		66	trace	-
4		66	19	24
5		17	69	81
6		3	84	92
7		6	88	95
8		12	82	96
$9{ }^{\text {c }}$		20	89	97

${ }^{\text {a }}$ Reaction condition; aziridine $\mathbf{1}(0.1 \mathrm{mmol})$, malononitrile (5.0 equiv.), $\mathrm{Et}_{2} \mathrm{Zn}(10 \mathrm{~mol} \%$), $\mathbf{3}$ (12 mol \%) in THF (0.2 M) were used. ${ }^{\mathrm{b}}$ Ee was determined by HPLC analysis using a chiral column. ${ }^{\mathrm{c}}$ At $0^{\circ} \mathrm{C}$.

General procedure for synthesis of \boldsymbol{N}-(imidazolecarbonyl)aziridines:

1b
A solution of 1-methylimidazole ($3.16 \mathrm{~mL}, 40 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and added $n-\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ solution in Hexane, 44 mmol) dropwise. After stirring for $1 \mathrm{~h}, \mathrm{CO}_{2}$ gas was bubbled to the reaction mixture, and stirred overnight. The reaction mixture was filtrated and washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo to afford lithium 1-methyl-1H-imidazole-2-carboxylate as a white solid in quantitative yield. This compound was used in the next step without futher purification.

To a solution of lithium 1-methyl- $1 H$-imidazole-2-carboxylate ($924 \mathrm{mg}, 7.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(10.5 \mathrm{~mL})$, oxalyl chloride ($3.6 \mathrm{~mL}, 42 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 \min at $0^{\circ} \mathrm{C}$, the reaction mixture was warmed to room temperature and stirred for 2 h . The volatile compounds were removed under reduced pressure, and the yellow crude compound was used in the next step immediately without futer purification.

7-Aza-bicyclo[4.1.0]heptane ($340 \mathrm{mg}, 3.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.1 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.9 \mathrm{~mL}$, mmol) and cooled to $-50^{\circ} \mathrm{C}$. 1-Methyl-1 H -imidazole-2-carbonyl chloride hydrochloride (760 mg , 4.2 mmol) was added slowly to the reactin mixture and stirred for overnight. The mixture was added $\mathrm{H}_{2} \mathrm{O}$ and warmed to room temperature. The organic layer was separated and water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residure was purified by flash column chromatography (Hexane/AcOEt=70/30) to afford 1b in 58% yield as a white solid.

7-Aza-bicyclo[4.1.0]heptane ($219 \mathrm{mg}, 2.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.6 \mathrm{~mL})$ was cooled to $-20{ }^{\circ} \mathrm{C}$ and added $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 9.0 \mathrm{mmol})$ followed by imidazole-2-acylchloride hydrochloride salt (453 mg , 2.7 mmol) synthesized by previous report. ${ }^{1,2}$ After stirring overnight, the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$, and warmed to room temperature. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (Hexane/AcOEt=50/50) to afford (7-azabicyclo[4.1.0]heptan-7-yl)(1 H -imidazol-2-yl)methanone in 85% yield as a white solid.

A solution of (7-azabicyclo[4.1.0]heptan-7-yl)(1H-imidazol-2-yl)methanone ($279 \mathrm{mg}, 1.5 \mathrm{mmol}$)
in DMF (4.0 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and added $\mathrm{NaH}(117 \mathrm{mg}, 60 \%$ mineral oil suspension, 2.9 $\mathrm{mmol})$. After stirring for 30 min , ethyliodide $(0.14 \mathrm{~mL}, 1.8 \mathrm{mmol})$ was added dropwise. After stirring for 6 h , the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$ and warmed to room temperature. The reaction mixture extracted with AcOEt twice. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residure was purified by flash column chromatography (Hexane/AcOEt=70/30) to afford $\mathbf{1 c}$ in 40% yield as a white solid.

A solution of (7-azabicyclo[4.1.0]heptan-7-yl)(1 H -imidazol-2-yl)methanone ($191 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{MeCN}(2.5 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and added benzylbromide $(0.14 \mathrm{~mL}, 1.2 \mathrm{mmol})$ dropwise. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was diluted with MeCN and filtrated through celite, and the volatile compounds were removed under reduced pressure. The crude product was purified by silica gel column chromatography (Hexane/ $\mathrm{AcOE}=80 / 20$) to afford $\mathbf{1 d}$ in 58% yield as a white solid.

A solution of trans-6-azidocyclohex-3-enol ($417 \mathrm{mg}, 3.0 \mathrm{mmol}$) in THF (15 mL) was added triphenylphosphine ($944 \mathrm{mg}, 3.6 \mathrm{mmol}$) and refluxed for 5 h . The reaction mixture was cooled to $-30{ }^{\circ} \mathrm{C}$, and $\mathrm{Et}_{3} \mathrm{~N}(1.67 \mathrm{~mL}, 12 \mathrm{mmol})$ was added to the solution followed by 1 -methyl- 1 H -imidazole-2-carbonyl chloride hydrochloride ($650 \mathrm{mg}, 3.6 \mathrm{mmol}$) in portionwise. After stirring overnight, the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$ and warmed to room temperature. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (Hexane/ $\mathrm{AcOEt}=60 / 40$) to afford $\mathbf{1 e}$ in 51% yield as a white solid.
Compound $\mathbf{1 f}, \mathbf{1 h}$ were prepared by similar method for the preparation of $\mathbf{1 e}$.

Chopped sodium metal ($322 \mathrm{mg}, 14 \mathrm{mmol}$) was added to a solution of naphthalene $(1.97 \mathrm{~g}, 15.4$
mmol) in 1,2-dimethoxyethane (12 mL) and stirred at room temperature for 1 h . The reaction mixture became a dark green solution, and it was added to a solution of 6-tosyl-6azabicyclo[3.1.0]hexane ($1.66 \mathrm{mg}, 7.0 \mathrm{mmol}$) in 1,2-mimethoxyethane $(24 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$, and stirred for 30 min at room temperature. Then, MgSO_{4} was added to the reaction mixture and stirred for 15 min . The precipitate was filtrated off through celite and washed with $\mathrm{Et}_{2} \mathrm{O}$. After removal of $\mathrm{Et}_{2} \mathrm{O}$ under reduced pressure, the residure was cooled to $-30^{\circ} \mathrm{C}$, and $\mathrm{Et}_{3} \mathrm{~N}(3.9 \mathrm{~mL}, 28 \mathrm{mmol})$ was added to the solution followed by 1-methyl-1 H -imidazole-2-carbonyl chloride hydrochloride ($1.52 \mathrm{~g}, 8.4 \mathrm{mmol}$) in portionwise. After stirring overnight, the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$ and warmed to room temperature. The mixture was extracted with AcOEt three times and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (Hexane/ $\mathrm{AcOEt}=50 / 50$) to afford $\mathbf{1 g}$ in 38% yield as a white solid. Compound $\mathbf{1 i}$ was prepared by similar method for the preparation of $\mathbf{1 g}$.

(7-Azabicyclo[4.1.0]heptan-7-yl)(1H-imidazol-2-yl)methanone;

 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.0,23.8,37.7,119.8,131.2,141.3,170.5$; IR (ATR) 2945, 2910, 1665, 1389, 1310, 1198, 1092, 947, 799, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 213.0956. found 214.0957.

(7-Azabicyclo[4.1.0]heptan-7-yl)(1-methyl-1H-imidazol-2-yl)methanone (1b);

$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.2,23.9,36.1,37.7,125.9,129.1,139.7,171.0$; IR (ATR) 2931, 1651, 1404, 1273, 1191, 1132, 895, 823, 776, $675 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 228.1113. found 228.1116 .

(7-Azabicyclo[4.1.0]heptan-7-yl)(1-Ethyl-1 H -imidazol-2-yl)methanone (1c);

$(\mathrm{d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.7,20.2,37.7,43.6,124.1,129.3,139.0,170.8$;
IR (ATR) 2922, 1661, 1407, 1268, 1136, 894, 784, $670 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for
(1-Benzyl-1 H-imidazol-2-yl)(7-azabicyclo[4.1.0]heptan-7-yl)methanone (1d);
 NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.1,23.9,37.8,51.6,124.9,127.7,128.0,128.9,129.5,136.9,139.3$, 170.9; IR (ATR) 2937, 1739, 1658, 1410, 1272, 1200, 1121, 894, 770, $723 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$304.1426. found 304.1415.

(7-azabicyclo[4.1.0]hept-3-en-7-yl)(1-methyl-1H-imidazol-2-yl)methanone (1e);

(1-Methyl-1H-imidazol-2-yl)(1a,2,7,7a-tetrahydro-1H-naphtho[2,3-b]azirin-1-yl)methanone

 (1f); $35.6,37.6,125.5,126.7,128.7,129.3,132.6,139.6,169.2$; IR (ATR) 3022, 2922, 1758, 1657, 1416, 1277, 1140, 887, 761, $666 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 2761113$. found 276.1114 .

(6-Azabicyclo[3.1.0]hexan-6-yl)(1-methyl-1H-imidazol-2-yl)methanone (1g);

(2,3-Dimethylaziridin-1-yl)(1-methyl-1H-imidazol-2-yl)methanone (1h);
 m.p. 80.0-61.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.41(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 6 \mathrm{H})$, 2.75-2.79 (m, 1H), $4.00(\mathrm{~s}, 3 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.9,36.0,38.1,126.0,129.1,139.6,171.2$; IR (ATR) 3129 , 3114, 2958, 1656, 1453, 1416, 1453, 1416, 1312, 1283, 1164, 903, 788, $670 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$202.0956. found 202.0961.
(2,3-Diethylaziridin-1-yl)(1-methyl-1H-imidazol-2-yl)methanone (1i);

m.p. $71.5-72.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$, 1.54-1.63 (m, 2H), 1.90-1.99 (m, 2H), 2.63-2.66 (m, 2H), $4.00(\mathrm{~s}, 3 \mathrm{H}), 6.99$ $(\mathrm{d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 11.6, 21.0, 35.9, 44.3, 125.9, 128.9, 139.5, 171.1; IR (ATR) 2961, 1658, 1407, 1284, 1144, 1011, 907, 788, $663 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$230.1269. found 230.1273.

(2,3-Dipropylaziridin-1-yl)(1-methyl-1H-imidazol-2-yl)methanone (1j);

m.p. 80.5-81.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96-1.03(\mathrm{~m}, 6 \mathrm{H})$, 1.50-1.62 (m, 6H), 1.83-1.88 (m, 2H), 2.67-2.69 (m, 2H), $3.99(\mathrm{~s}, 3 \mathrm{H})$, $6.99(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,20.7,29.9$, $36.0,42.9,126.0,129.0,139.6,171.3$; IR (ATR) 2953, 1657, 1410, 1285, 1153, 914, 794, $663 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$258.1582. found 258.1587.

General procedure for the enantioselective desymmetrization of aziridines with malononitrile:

Ligand 3a ($4.8 \mathrm{mg}, 0.012 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{Zn}(1.11 \mathrm{M}$ solution in toluene, $9.0 \mu \mathrm{~L}, 0.01 \mathrm{mmol}$) was dissolved in THF $(0.5 \mathrm{~mL})$ and stirred at room temperature for 30 min . Aziridine $\mathbf{1 b}(20.5 \mathrm{mg}, 0.1$ mmol) was added to a solution and cooled to $0^{\circ} \mathrm{C}$, then malononitrile ($33.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added. After stirring for 20 h , the reaction mixture was diluted with AcOEt and filtraed through the celite pad, and the volatile compounds were removed under reduced pressure. The crude product was purified by silica gel column chromatography (Hexane/AcOEt=50/50) to give $(1 R, 2 S)$-2b in 89% yield 97% ee) as a white solid. ($1 S, 2 R$)-2b can be synthesised by using ligand $\mathbf{3 b}$ instead of $\mathbf{3 a}$ in 74% yield 94% ee).

N-((1R,2S)-2-(Dicyanomethyl)cyclohexyl)picolinamide (2a);
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-33.2$ (c 0.59, $\mathrm{CHCl}_{3}, 88 \%$ ee); m.p. $109.0-111.0{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.23-$ $2.27(\mathrm{~m}, 1 \mathrm{H}), 3.92-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.7,24.8,26.6,28.3,33.0,45.9,50.1,111.4,113.0,122.7,126.9$, 137.8, 148.2, 149.0, 164.9; IR (ATR) 3339, 2925, 2362, 1737, 1655, 1520, 1365, 1217, $729 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 291.1222. found 291.1230; HPLC (DAICEL CHIRALPAK IC-3, Hexane: $i \operatorname{PrOH}=70: 30,1.0$ $\mathrm{mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(1 S, 2 R)}=15.6, \mathrm{t}_{(1 R, 2 S)}=20.2 \mathrm{~min}$.

N -(2-(Dicyanomethyl)cyclohexyl)-1-methyl-1 H -imidazole-2-carboxamide (2b);

$(1 S, 2 R)-\mathbf{2 b}:\left[\alpha_{\mathbf{D}^{25}}{ }^{\mathbf{2 5}}-13.6\left(c 0.72, \mathrm{CHCl}_{3}, 97 \%\right.\right.$ ee $) ;(1 R, 2 S)-\mathbf{2 b}:[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+34.5(c$ $0.59, \mathrm{CHCl}_{3}, 94 \%$ ee); m.p. $151.0-152.0^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.29-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.12(\mathrm{~m}, 2 \mathrm{H})$, 2.21-2.25 (m, 1H), 3.84-3.96 (m, 1H), $4.06(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.6,24.8,26.4,28.1$, $33.0,35.8,45.5,49.5,111.5,112.9,126.1,127.8,138.4,159.5$; IR (ATR) 3288, 2925, 2360, 1650, 1550, 1270, 1155, 825, 748, $658 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$294.1331. found 294.1330; HPLC (DAICEL CHIRALPAK ID-3,

Hexane: $i \mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(1 S, 2 R)}=12.9, \mathrm{t}_{(1 R, 2 S)}=20.0 \mathrm{~min}$.
\boldsymbol{N}-((1R,2S)-2-(Dicyanomethyl)cyclohexyl)-1-ethyl-1H-imidazole-2-carboxamide (2c);

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-24.2\left(c 0.81, \mathrm{CHCl}_{3}, 95 \%\right.$ ee); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31-1.54$ $(\mathrm{m}, 6 \mathrm{H}), 1.57-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.25(\mathrm{~m}$, $1 \mathrm{H}), 3.84-3.94(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.61(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}$, $1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.7$, 24.7, 24.8, 26.5, 28.2, 33.1, 43.5, 45.7, 49.6, 111.4, 112.9, 124.3, 128.0, 137.7, 159.3; IR (ATR) 3366, 2936, 2360, 1662, 1534, 1497, 1263, 1155, $765 \mathrm{~cm}^{-1}$;

HRMS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$308.1487. found 308.1493; HPLC (DAICEL CHIRALPAK IG, Hexane: $i \operatorname{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(1 S, 2 R)}=17.7, \mathrm{t}_{(1 R, 2 S)}=20.5 \mathrm{~min}$.

1-Benzyl- N -((1R,2S)-2-(dicyanomethyl)cyclohexyl)-1H-imidazole-2-carboxamide (2d);

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-23.6$ (c 0.85, $\mathrm{CHCl}_{3}, 96 \%$ ee); m.p. $135.0-136.0{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.86-2.02(\mathrm{~m}, 3 \mathrm{H}), 2.05-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.22(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.91(\mathrm{~m}, 2 \mathrm{H}), 5.64-5.75(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}$, $1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.39(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.7,24.8,26.3,28.1,32.9,45.8,49.5,51.6,111.4,112.9,125.1$, 127.9, 128.2, 128.3, 129.0, 136.6, 138.1, 159.4; IR (ATR) 3726, 3702, 3624, 3603, 2364, 2341, 2309, 1655, 1529, 1496, 1464, 784, 731, $669 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$370.1644. found 370.1653; HPLC (DAICEL CHIRALPAK IC-3, Hexane: $i \operatorname{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(1 S, 2 R)}=17.4, \mathrm{t}_{(1 R, 2 S)}=20.1 \mathrm{~min}$.
\boldsymbol{N}-((1R,6S)-6-(Dicyanomethyl)cyclohex-3-en-1-yl)-1-methyl-1H-imidazole-2-carboxamide (2e);

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-40.6\left(c 0.58, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.29-2.67$ $(\mathrm{m}, 5 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.24(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 2 \mathrm{H})$, $7.01(\mathrm{~s}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.8,28.1$, $31.6,35.9,40.7,46.8,111.4,112.5,124.2,125.0,126.3,127.9,138.3,159.5 ;$ IR (ATR) 3726, 3381, 3033, 2844, 1721, 1659, 1536, 1498, 1473, 1269, 1154, $734,679 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$292.1174. found 292.1174; HPLC (DAICEL CHIRALPAK ID-3, Hexane: $i \operatorname{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 209$ $\mathrm{nm}) \mathrm{t}_{(1 S, 6 R)}=17.2, \mathrm{t}_{(1 R, 6 S)}=20.6 \mathrm{~min}$.

N -((2R,3S)-3-(Dicyanomethyl)-1,2,3,4-tetrahydronaphthalen-2-yl)-1-methyl-1 H -imidazole-2

 -carboxamide (2f);
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-33.1\left(c \quad 0.27, \mathrm{CHCl}_{3}, 73 \%\right.$ ee $) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.64-2.71 (m, 1H), 2.98-3.37 (m, 4H), 4.07 (s, 3H), 4.33 (d, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37-4.40(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.11-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.2,31.8$, $35.3,35.9,42.0,47.8,111.3,112.5,126.3,127.2,128.0,128.8,132.4$, 133.0, 138.3, 159.7; IR (ATR) 3362, 2929, 2359, 2254, 1665, 1536, 1496, 1474, 1154, 909, $730 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$342.1331. found 342.1318; HPLC (DAICEL CHIRALPAK IC-3, Hexane: $: \mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 209 \mathrm{~nm}$) $\mathrm{t}_{(2 S, 3 R)}=26.8, \mathrm{t}_{(2 R, 3 S)}=30.0 \mathrm{~min}$.

N -((1R,2S)-2-(Dicyanomethyl)cyclopentyl)-1-methyl-1 H-imidazole-2-carboxamide (2g);

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-13.3$ (c 0.47, $\mathrm{CHCl}_{3}, 95 \%$ ee); m.p. $99.0-100.0^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.69-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.17-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.42(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H})$, 4.15-4.20 (m, 1H), 4.63 (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.47$ (br, $1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.8,26.5,28.5,32.4,35.7,48.2,54.0$, $112.2,112.9,126.0,127.9,138.3,160.1$; IR (ATR) 3390, 2969, 2360, 1735, 1655, 1506, 1281, 1091, 912, $731 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$280.1174. found 280.1173; HPLC (DAICEL CHIRALPAK IC-3, Hexane: $: \mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(1 S, 2 R)}=14.5, \mathrm{t}_{(1 R, 2 S)}=16.5 \mathrm{~min}$.
(4S,5R)-2-amino-4,5-dimethyl-1-(1-methyl-1H-imidazole-2-carbonyl)-4,5-dihydro-1 H -pyrrole-3-carbonitrile (2h);

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+56.0\left(c \quad 0.51, \mathrm{CHCl}_{3}, 90 \%\right.$ ee $)$; m.p. $126.5-127.5{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17-1.22(\mathrm{~m}, 6 \mathrm{H}), 2.48-2.52(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 5.21(\mathrm{br}$, $1 \mathrm{H}), 6.39(\mathrm{br}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $20.8,21.7,36.3,40.9,64.4,66.4,119.6,125.9,128.3,138.7,156.3,160.3 ;$ IR (ATR) 3400, 2962, 2179, 1644, 1551, 1404, 1167, 987, 780, $658 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$268.1174. found 268.1174; HPLC (DAICEL CHIRALPAK IC-3, Hexane: $i \mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(4 R, 5 S)}=17.8$, $\mathrm{t}_{(4 S, 5 R)}=22.6 \mathrm{~min}$.
(4S,5R)-2-amino-4,5-diethyl-1-(1-methyl-1 H -imidazole-2-carbonyl)-4,5-dihydro-1 H -pyrrole-3-carbonitrile (2i);

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+46.7\left(c 0.63, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.67(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.49(\mathrm{~m}, 1 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 5.25(\mathrm{br}, 1 \mathrm{H}), 6.41(\mathrm{br}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.9,10.7,28.5,36.2,44.4,64.7,66.8,120.0,125.8,128.3$, 138.8, 157.4, 160.3; IR (ATR) 3726, 3700, 2970, 2366, 1468, 1434, 1376, 1334, 1158, 806, $754 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 396.1487. found 296.1491; HPLC (DAICEL CHIRALPAK ID-3, Hexane: $i \mathrm{PrOH}=90: 10,1.0$ $\mathrm{mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(4 S, 5 R)}=22.2, \mathrm{t}_{(4 R, 5 S)}=25.1 \mathrm{~min}$.
(4S,5R)-2-amino-1-(1-methyl-1 H-imidazole-2-carbonyl)-4,5-dipropyl-4,5-dihydro-1 H -pyrrole-3-carbonitrile (2j);

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+15.9\left(c \quad 0.63, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $) ;$ m.p. $119.0-120.0{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.82(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-1.00(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.27(\mathrm{~m}$, $3 \mathrm{H}), 1.37-1.62(\mathrm{~m}, 5 \mathrm{H}), 2.49-2.53(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 5.34(\mathrm{br}, 1 \mathrm{H}), 6.42$ (br, 2H), $7.01(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.2,17.8,19.6,36.1,37.6,38.1,43.2,64.8,66.1$, 120.1, 125.7, 128.2, 138.8, 157.3, 160.4; IR (ATR) 3400, 2959, 2178, 1655, 1650, 1557, 1411, 1143, $771 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 324.1800$. found 324.1797; HPLC (DAICEL CHIRALPAK IC-3, Hexane: $i \operatorname{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm}) \mathrm{t}_{(4 R, 5 S)}=28.4, \mathrm{t}_{(4 S, 5 R)}=36.1 \mathrm{~min}$.

Transformation of 2b to various optically active compounds:

A solution of $\mathbf{2 b}(97 \%$ ee, $85.7 \mathrm{mg}, 0.32 \mathrm{mmol})$ in $\mathrm{MeOH}(6.3 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$ and m CPBA ($141 \mathrm{mg}, 0.63 \mathrm{mmol}$) was added to the solution followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(116 \mathrm{mg}, 0.33 \mathrm{mmol})$. After stirring for 30 min , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and warmed to room temperature, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residure was purified by flash column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ Hexane $\left.=95 / 5\right)$ to afford 4 in 67% yield $(97 \%$ ee $)$ as a colorless oil.

To a solution of $4(97 \%$ ee, $21.6 \mathrm{mg}, 0.08 \mathrm{mmol})$ and 4-dimethylaminopyridine $(19.5 \mathrm{mg}, 0.16$ $\mathrm{mmol})$ in THF $(0.32 \mathrm{~mL})$, di-tert-butyl dicarbonate ($150 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) was added and refluxed for 14 h . The reaction mixture was cooled to room temperature and diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with AcOEt three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residure was purified by flash column chromatography (Hexane/AcOEt=60/40) to afford N-Boc- β-aminoester in 79% yield (96% ee) as a colorless solid.
N-Boc- β-aminoester (96% ee, $24.6 \mathrm{mg}, 0.067 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(0.33 \mathrm{~mL})$ and added $\mathrm{NaOMe}(4.0 \mathrm{mg}, 0.074 \mathrm{mmol})$. After stirring for 24 h at room temperature, the reaction was quenched with HCl aq. $(1.0 \mathrm{M}, 0.6 \mathrm{~mL})$, and the volatile was removed under reduced pressure. The residure was added $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (Hexane/AcOEt=80/20) to afford 5 in 92% yield $(96 \%$ ee) as a white solid.

Methyl (1R,2R)-2-(1-methyl-1H-imidazole-2-carboxamido)cyclohexane-1-carboxylate (4);

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-28.1$ (c $1.06, \mathrm{CHCl}_{3}, 98 \%$ ee); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23-$ $1.46(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.96-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.43$ $(\mathrm{dt}, J=3.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.06-4.16(\mathrm{~m}, 1 \mathrm{H}), 6.94$ ($\mathrm{s}, 1 \mathrm{H}$), $6.98(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $24.5,24.6,28.7,32.6,35.7,49.3,49.5,51.9,125.5,127.5,139.0,158.5,174.4$; IR (ATR) 3377, 2933, 1733, 1662, 1540, 1266, 1173, 1020, $733 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$288.1324. found 288.1337; HPLC (DAICEL CHIRALPAK IC-3, Hexane: $i \operatorname{PrOH}=70: 30,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(1 R, 2 R)}=10.6, \mathrm{t}_{(1 S, 2 S)}=17.3 \mathrm{~min}$.

Methyl (1R,2R)-2-(N-(tert-butoxycarbonyl)-1-methyl-1H-imidazole-2-carboxamido)

Cyclohexane-1-carboxylate;

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-23.3\left(c 0.95, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$; m.p. $89.5-90.5^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.18-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.73-2.08(\mathrm{~m}, 5 \mathrm{H}), 3.33(\mathrm{dt}, J=3.6$, $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{dt}, J=3.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ $(\mathrm{s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.8,25.7,27.6,29.2$, $30.2,34.3,46.8,51.8,57.6,82.7,124.2,128.3,142.1,153.2,163.8,174.8$; IR (ATR) 2947, 1731, 1669, 1421, 1315, 1233, 1106, 768, $660 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$388.1848. found 388.1848; HPLC (DAICEL CHIRALPAK ID-3, Hexane: $i \operatorname{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(1 R, 2 R)}=9.8, \mathrm{t}_{(1 S, 2 S)}=12.7 \mathrm{~min}$.

Methyl (1R,2R)-2-((tert-butoxycarbonyl)amino)cyclohexane-1-carboxylate (5); ${ }^{3}$

$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}-5.8\left(c 0.73, \mathrm{CHCl}_{3}, 96 \%\right.$ ee); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.12-1.26$ $(\mathrm{m}, 2 \mathrm{H}), 1.31-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.93(\mathrm{~m}, 1 \mathrm{H})$, $2.01-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{dt}, J=3.3 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, 3 H), $4.50(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.5,24.9,28.5,28.6,33.2 .50 .4,51.4,51.9,79.3$, 155.1, 174.6; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NnaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$280.1525. found 280.1520.

In order to determine the enantiomeric excess, we replaced the Boc group for 5 to Cbz group. 5 $(96 \%$ ee, $9.0 \mathrm{mg}, 0.035 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(60 \mu \mathrm{~L})$ and added hydrogen chloride (4 M in 1,4-dioxane, $530 \mu \mathrm{~L}$). After stirring for 1 h at room temperature, the solution was removed under reduced pressure and the residure was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.85 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and added $\mathrm{Et}_{3} \mathrm{~N}(19.5 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$ followed by benzyl chloroformate ($5.9 \mu \mathrm{~L}$, 0.042 mmol). After stirring overnight at room temperature, sat. NaHCO_{3} aq. was added to the reaction mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (Benzene/AcOEt=90/10) to afford N-Cbz- β-aminoester in 56% yield (97% ee) as a colorless oil.

Methyl (1R,2R)-2-(((benzyloxy)carbonyl)amino)cyclohexane-1-carboxylate; ${ }^{3}$

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-10.6$ (c $0.27, \mathrm{CHCl}_{3}, 97 \%$ ee); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.16-$ $1.25(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.05-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.30(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.76(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H})$, $5.07(\mathrm{~s}, 2 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.4,24.6,28.6,32.9,49.8,51.8$, 66.6, 128.0, 128.5, 136.6, 155.4, 174.4; HRMS (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NaNO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 314.1368. found 314.1375

Compound 6 was synthesized by modified previous method. ${ }^{4}$ To a solution of $\mathbf{2 b}(98 \% \mathrm{ee}$, $27.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$, benzylamine ($22.0 \mu \mathrm{~L}, 0.2$ mmol) was added. The reaction mixture was stirred for 24 h under an oxygen atmosphere (balloon). The reaction mixture was diluted with CHCl_{3} and filtrated through celite, and the volatile compounds were removed under reduced pressure. The crude product was purified by flash column chromatography (Hexane/AcOEt=20/80) to afford 6 in 91% yield $(99 \%$ ee) as a colorless solid.
\boldsymbol{N}-((1R,2R)-2-(Benzylcarbonyl)cyclohexyl)-1-methyl-1H-imidazole-2-carboxamide (6);

$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-16.9$ (c 0.97, $\mathrm{CHCl}_{3}, 99 \%$ ee); m.p. $222.0-223.0{ }^{\circ} \mathrm{C}$; $\mathbf{1}^{\mathbf{H}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.81(\mathrm{~m}, 2 \mathrm{H})$, $2.00-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.44(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.03-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.31-$ $4.47(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.51$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.1,25.2,30.4,33.1,35.6$, $43.4,49.6,52.0,125.6,127.1,127.3,127.6,128.3,138.5,138.8,158.9,173.7$; IR (ATR) 3730, 3303, 2933, 2855, 2347, 1640, 1546, 1470, 1270, 743, $656 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$363.1797. found 363.1800.; HPLC (DAICEL CHIRALPAK ID-3, Hexane: $: \mathrm{PrOH}=70: 30,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}) \mathrm{t}_{(1 S, 2 R)}=46.8, \mathrm{t}_{(1 R, 2 S)}=53.8 \mathrm{~min}$.

A solution of $\mathbf{2 b}(98 \%$ ee, $27.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(0.7 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and added di-tert-butyl dicarbonate $(150 \mu \mathrm{~L}, 0.64 \mathrm{mmol})$ in $\mathrm{MeOH}(0.3 \mathrm{~mL})$. Nickel chloride hexahydrate (71.3 $\mathrm{mg}, 0.3 \mathrm{mmol}$) was added to the reaction mixture, followed by sodium borohydride ($53 \mathrm{mg}, 1.4$ mmol) was added at once. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was warmed to r.t. and stirred for 24 h . Diethylenetriamine ($71 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$) was added to the reaction mixture and stirred for 1 h . The mixture was diluted with AcOEt and washed with sat. NaHCO_{3} aq., and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatile compounds were removed under reduced pressure and the residure was purified by flash column chromatography (Hexane/Acetone $=80 / 20$) to afford 7 in 59% yield $(98 \%$ ee) as a colorless solid.

Di-tert-Butyl (2-((1S,2R)-2-(1-methyl-1H-imidazole-2-carboxamido)cyclohexyl)propane

 -1,3-diyl)dicarbamate (7);
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+7.1\left(c 0.86, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$; m.p. $159.0-160.0^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.11-1.26 (m, 3H), 1.29-1.42 (m, 20H), 1.75-1.80 (m, 4H), $1.98-2.05(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.25(\mathrm{~m}, 4 \mathrm{H}), 3.88-3.93(\mathrm{~m} 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$, 5.29-5.36 (m, 2H), $6.97(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{br} 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.2,25.4,26.0,28.5,28.6,33.7,35.8,39.5,40.2,41.9$, 44.4, 49.5, 79.1, 125.7, 127.7, 159.2; IR (ATR) 3331, 2933, 1706, 1650, $1514,1363,1252,1157,720 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 502.3005$. found 502.2996; HPLC (DAICEL CHIRALPAK IG, Hexane: $i \operatorname{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$) $\begin{array}{lllll}\mathrm{t}_{(1 S, 2 R)} & = & 16.8, & \mathrm{t}_{(1 R, 2 S)} & = \\ m i n\end{array}$

ESI-Mass spectroscopic analysis:

In order to clarify the assumed reaction mechanism, we investigated the ESI-Mass spectroscopic analysis of complex \mathbf{C} (aziridine $\mathbf{1 b}(0.1 \mathrm{mmol})$, malononitrile (5.0 equiv.), $\mathrm{Et}_{2} \mathrm{Zn}(10 \mathrm{~mol} \%$), 3a ($12 \mathrm{~mol} \%$) in THF (0.2 M) , cation mode).

Calculated for [(complex C) - $\left.(\mathrm{CN})_{2} \mathrm{CH}^{-}\right]^{+} 666.2$

$375.0400 .0425 .0450 .0475 .0500 .0525 .0550 .0575 .0600 .0625 .0650 .0675 .0700 .0725 .0 \mathrm{~m} / \mathrm{z}$
Expanding spectra for $\left[(\text { complex } \mathbf{C})-(\mathrm{CN})_{2} \mathrm{CH}^{-}\right]^{+}$

Simulated mass spectra

References

1) E. Galeazzi, A. GuzmBn, J. L. Navaz, J. Org. Chem., 1995, 60, 1990.
2) B. Lassalle-Kaiser, R. Guillot, J. Sainton, M.-F. Charlot, A. Aukauloo, Chem. Eur. J., 2008, 14, 4307.
3) D. H. Appella, P. R. LePlae, T. L. Raguse, S. H. Gellman, J. Org. Chem., 2000, 65, 4766.
4) J. Li, M. J. Lear, Y. Hayashi, Angew. Chem. Int. Ed., 2016, 55, 9060.

1c

4

$\sim_{5}^{\mathrm{NHBoc}}$
5

racemic-2a

$(1 R, 2 S)-\mathbf{2 a}$

racemic-2a

Peak	tR (min)	Area (\%)
1	17.5	49.4
2	23.6	50.6

$(1 R, 2 S)-\mathbf{- 2 a}$

Peak	tR (min)	Area (\%)
1	17.7	6.2
2	23.6	93.8

racemic-2b

$(1 R, 2 S)-\mathbf{2 b}$

$(1 S, 2 R)-\mathbf{2 b}$

racemic-2b

Peak	tR (min)	Area (\%)
1	14.0	49.9
2	23.1	50.1

$(1 R, 2 S)-\mathbf{2 b}$

Peak	tR (min)	Area (\%)
1	14.0	49.9
2	23.1	50.1

$(1 S, 2 R)-\mathbf{2 b}$

Peak	tR (min)	Area (\%)
1	11.7	97.0
2	18.6	3.0

racemic-2c

$(1 R, 2 S)-\mathbf{2 c}$

racemic-2c

Peak	tR (min)	Area (\%)
1	17.2	50.3
2	20.1	49.7

$(1 R, 2 S)-\mathbf{2 c}$

Peak	tR (min)	Area (\%)
1	17.7	2.3
2	20.5	97.7

racemic-2d

$(1 R, 2 S)-\mathbf{2 d}$

racemic-2d

Peak	tR (min)	Area (\%)
1	16.1	50.1
2	18.5	49.9

$(1 R, 2 S)-\mathbf{2 d}$

Peak	tR (min)	Area (\%)
1	17.4	1.8
2	20.1	98.2

racemic-2e

$(1 R, 6 S)-2 \mathbf{e}$

racemic-2e

Peak	tR (min)	Area (\%)
1	17.6	50.0
2	21.6	50.0

$(1 R, 6 S)-\mathbf{2 e}$

Peak	tR (min)	Area (\%)
1	17.2	3.1
2	20.6	96.9

racemic-2f

$(2 R, 3 S)-\mathbf{2 f}$

racemic-2f

Peak	tR (min)	Area (\%)
1	27.0	50.2
2	30.7	49.8

$(2 R, 3 S)-\mathbf{2 f}$

Peak	tR (min)	Area (\%)
1	28.1	13.6
2	31.2	86.4

$(1 R, 2 S)-\mathbf{2 g}$

racemic-2g

Peak	tR (min)	Area (\%)
1	13.3	50.1
2	14.7	49.9

$(1 R, 2 S)-\mathbf{- 2 g}$

Peak	tR (min)	Area (\%)
1	14.5	97.4
2	16.5	2.6

racemic-2h

$(4 S, 5 R)-\mathbf{2 h}$

racemic-2h

Peak	tR (min)	Area (\%)
1	16.9	50.1
2	21.4	49.9

(4S,5R)-2h

Peak	tR (min)	Area (\%)
1	17.8	5.2
2	22.6	94.8

racemic-2i

$(4 S, 5 R)-\mathbf{2 i}$

racemic-2i

Peak	tR (min)	Area (\%)
1	22.2	50.2
2	24.1	49.8

$(4 S, 5 R)-\mathbf{2 i}$

Peak	tR (min)	Area (\%)
1	22.2	96.9
2	25.1	3.1

racemic-2j

$(4 S, 5 R)-\mathbf{2} \mathbf{j}$

racemic-2j

Peak	tR (min)	Area (\%)
1	26.1	48.9
2	33.4	50.1

$(4 S, 5 R)-\mathbf{2 j}$

Peak	tR (min)	Area (\%)
1	28.4	2.8
2	36.1	97.2

4

$(1 R, 2 R)-\mathbf{4}$

racemic-4

Peak	tR (min)	Area (\%)
1	12.3	49.9
2	21.3	50.1

$(1 R, 2 R)-4$

Peak	tR (min)	Area (\%)
1	10.6	98.5
2	17.3	1.5

racemic

$(1 R, 2 R)$

racemic-4

Peak	tR (min)	Area (\%)
1	9.8	50.2
2	12.6	49.8

$(1 R, 2 R)-4$

Peak	tR (min)	Area (\%)
1	9.8	98.1
2	12.7	1.9

racemic

$(1 R, 2 R)$

racemic

Peak	tR (min)	Area (\%)
1	43.2	50.5
2	46.1	49.5

$(1 R, 2 R)$

Peak	tR (min)	Area (\%)
1	42.6	98.6
2	45.9	1.4

racemic-6

$(1 R, 2 R)-6$

racemic-6

Peak	tR (min)	Area (\%)
1	46.1	50.0
2	54.4	50.0

$(1 R, 2 R)-6$

Peak	tR (min)	Area (\%)
1	46.8	0.7
2	53.8	99.3

racemic-7

$(1 S, 2 R)-7$

racemic-7

Peak	tR (min)	Area (\%)
1	16.6	50.0
2	24.3	50.0

$(1 S, 2 R)-7$

Peak	tR (min)	Area (\%)
1	16.2	99.3
2	22.9	0.7

