Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Copper(I)/TF-Biphamphos Catalyzed Asymmetric Nitroso Diels-Alders Reaction

Jun Li, Hai-Yan Tao, and Chun-Jiang Wang*

E-mail: cjwang@whu.edu.cn

Table of Contents

I.	General Remarks	S2
II.	General Procedure for Cu(I)/TF-Biphamphos Catalyzed As	symmetric Nitroso
	Diels-Alders Reaction	S2
III.	References	S8
IV.	¹ H NMR and ¹³ C NMR Spectra	S9-28
V.	HPLC Chromatograms	S29-48

I. General Remarks

¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as (s = single, d = double, t = triple, q = quarte, m = multiple or unresolved, brs = broad single, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded on a Bruker 100 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. Enantiomeric ratios were determined by HPLC, using a chiralpak OD-H column with hexane and *i*-PrOH as solvents. **1a**, **1h**, **1i** were purchased from J&K Scientific and Aldrich. 1,3-Cyclopentadiene **1f** was cracked and distilled at 200°C. Various substituted 1,3-cyclohexandienes **1b-1e**, **1g**, **1j** and nitroso compounds **2a-2e** were prepared according to the literature procedure^{1.2}.

II. General Procedure for the Asymmetric Nitroso Diels-Alder Reaction of 1,3-dienes with nitroso compounds

Under argon atmosphere, TF-Biphamphos (17.6 mg, 0.022 mmol) and CuBF₄ (6.3 mg, 0.020 mmol) were dissolved in 4 mL DCM, and stirred at room temperature for about 30 min. The mixture was then cooled into -80°C and nitroso compound (0.20 mmol) dissolved in 0.5 mL of DCM was added. After stirred for 10 min, the 1,3-diene (0.24 mmol) dissolved in another 0.5 mL of DCM was added dropwise. The reaction mixture was gradually warmed to -40°C and kept at this temperature until the reaction complete. Then the organic solvent was removed and the residue was purified by column chromatography to give the product, which was then directly analyzed by HPLC to determine the enantiomeric excess. All the racemic samples were prepared by mixing the nitroso compounds (0.20 mmol) with the dienes (0.24 mmol) in DCM at 0°C

3a (known compound, see ref. 3)

(1*R*,4*S*)-3-(6-methylpyridin-2-yl)-2-oxa-3-azabicyclo[2.2.2]oct-5-ene: Yield (98%); [α]²⁵_D = -149 (*c* 0.90, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.39 (t, *J* = 8.0 Hz, 1H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.49-6.45 (m, 1H), 6.30-6.25 (m, 1H), 5.32-5.28 (m, 1H), 4.72-4.69 (m, 1H), 2.42 (s, 3H), 2.30-2.20 (m, 2H), 1.62-1.55 (m, 1H), 1.43-1.34 (m, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 163.7, 156.1, 137.5, 131.6, 130.7, 116.0, 108.0, 69.5, 52.4, 24.2, 24.1, 20.5. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (chiralpak OD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm); t_r = 9.25 and 10.43 min.

3b (known compound, see ref. 3)

(1*R*,4*S*)-5-methyl-3-(6-methylpyridin-2-yl)-2-oxa-3-azabicyclo[2.2.2]oct-5-ene : Yield (95%); [α]²⁵_D = -110 (*c* 0.68, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.39 (t, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 6.03-6.01 (m, 1H), 5.12-5.10 (m, 1H), 4.70-4.66 (m, 1H), 2.42 (s, 3H), 2.26-2.15 (m, 2H), 1.68 (d, *J* = 1.2 Hz, 3H), 1.62-1.51 (m, 1H), 1.38-1.30 (m, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 164.1, 155.9, 141.4, 137.5, 122.6, 115.9, 108.2, 70.6, 56.7, 25.3, 24.2, 20.5, 20.1. The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (chiralpak OD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm); t_r = 8.33 and 11.03 min.

3c (known compound, see ref. 3)

(1R,4S)-3-(6-methylpyridin-2-yl)-5-phenyl-2-oxa-3-azabicyclo[2.2.2]oct-5-ene:

Yield (98%); $[\alpha]^{25}_{D} = +111$ (*c* 1.10, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.55 (d, *J* = 8.0 Hz, 2H), 7.35-7.20 (m, 4H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.65 (dd, *J* = 2.0, 6.0 Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 5.79-5.78 (m, 1H), 4.90-4.88 (m, 1H), 2.41 (s, 3H), 2.36-2.29 (m, 2H), 1.71-1.64 (m, 1H), 1.47-1.41 (m, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 163.3, 155.8, 142.7, 137.6, 136.0, 128.2, 127.8, 125.5, 122.4, 116.1, 107.9, 70.0, 54.3, 24.6, 24.0, 20.9. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (chiralpak OD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm); t_r = 12.90 and 19.07 min.

(1*R*,4*S*)-5-((tert-butyldimethylsilyl)oxy)-3-(6-methylpyridin-2-yl)-2-oxa-3-azabicy clo[2.2.2]oct-5-ene: Yield (95%); [α]²⁵_D = -64 (*c* 0.91, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.38 (t, *J* = 8.0 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 5.14 (dd, *J* = 2.8, 6.4 Hz, 1H), 5.06 (dd, *J* = 2.8, 6.4 Hz, 1H), 4.82-4.79 (m, 1H), 2.39 (s, 3H), 2.25-2.13 (m, 2H), 1.80-1.73 (m, 2H), 0.78 (s, 9H), 0.02 (s, 3H), -0.28 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 164.0, 156.3, 153.3, 137.6, 116.4, 108.1, 100.3, 72.0, 58.6, 26.3, 25.3, 24.3, 21.1, 17.8, -4.6, -5.8. The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (chiralpak OD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm); t_r = 6.68 and 9.45 min.

(1R,4S)-5-((tert-butyldimethylsilyl)oxy)-6-methyl-3-(6-methylpyridin-2-yl)-2-oxa-3-azabicyclo[2.2.2]oct-5-ene: Yield (92%); $[\alpha]^{25}_{D} = -82$ (*c* 0.73, CHCl₃); ¹H NMR

(CDCl₃, TMS, 400 MHz) δ 7.39 (t, *J* = 8.0 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 5.01-4.99 (m, 1H), 4.65-4.63 (m, 1H), 2.41 (s, 3H), 2.24-2.12 (m, 2H), 1.69 (s, 3H), 1.44-1.38 (m, 1H), 0.86 (s, 9H), 0.05 (s, 3H), -0.02 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 163.7, 156.2, 145.9, 137.7, 116.3, 112.8, 107.9, 76.8, 58.3, 26.1, 25.5, 24.2, 22.1, 18.0, 11.9, -4.3, -4.5. IR (KBr) v 2955, 2928, 2856, 2341, 1681, 1589, 1576, 1450, 1259, 1213, 1200, 931, 839, 783, 681, 668 cm⁻¹. HRMS Calcd. For C₁₉H₃₁O₂N₂Si⁺: 347.2149, found: 347.2149. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (chiralpak OD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm); t_r = 5.51 and 8.33 min.

benzyl (1*S*,4*R*)-3-(6-methylpyridin-2-yl)-2-oxa-3-azaspiro[bicyclo[2.2.1]heptane -7,4'-piperidin]-5-ene-1'-carboxylate: Yield (96%); $[α]^{25}{}_{D} = -89$ (*c* 0.83, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.38-7.30 (m, 6H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 6.23-6.21 (m, 1H), 6.01-5.98 (m, 1H), 5.15-5.13 (m, 3H), 4.74-4.72 (m, 1H), 3.68-3.52 (m, 2H), 3.50-3.37 (m, 2H), 2.42 (s, 3H), 2.05-1.93 (m, 2H), 1.60-1.54 (m, 2H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 162.9, 156.4, 137.6, 136.7, 134.2, 130.1, 128.4, 127.9, 127.8, 116.4, 108.6, 86.1, 70.4, 67.0, 60.0, 42.1, 41.6, 29.1, 29.0, 24.3. IR (KBr) v 2960, 2924, 2852, 1589, 1579, 1450, 1330, 1260, 1230, 1021, 926, 853, 799, 736 cm⁻¹. HRMS Calcd. For C₂₃H₂₆O₃N₃⁺: 392.1969, found: 392.1971. The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (chiralpak OD-H, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 10.92 and 20.60 min.

3g (known compound, see ref. 3)

(1R,4S)-3-(6-methylpyridin-2-yl)-2-oxa-3-azabicyclo[2.2.1]hept-5-ene:

Yield (90%); $[\alpha]^{25}_{D} = -114$ (*c* 0.95, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.39 (t, *J* = 8.0 Hz, 1H), 6.65 (t, *J* = 8.0 Hz, 2H), 6.32-6.30 (m, 1H), 6.12-6.09 (m, 1H), 5.52-5.50 (m, 1H), 5.21-5.19 (m, 1H), 2.44 (s, 3H), 2.12 (dt, *J* = 2.0, 8.4 Hz, 1H), 1.80 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 163.2, 156.4, 137.6, 134.9, 132.3, 116.5, 108.9, 82.7, 66.8, 47.9, 24.2. The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee (chiralpak OD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm); t_r = 9.27 and 12.71 min.

3h (known compound, see ref. 3)

(1*S*,5*R*)-7-(6-methylpyridin-2-yl)-6-oxa-7-azabicyclo[3.2.2]non-8-ene: Yield (90%); [α]²⁵_D = -167 (*c* 0.57, CH₂Cl₂); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.41 (t, *J* = 8.0 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 1H), 6.19-6.14 (m, 1H), 6.06-6.01 (m, 1H), 5.38-5.33 (m, 1H), 4.81-4.77 (m, 1H), 2.40 (s, 3H), 2.06-1.89 (m, 3H), 1.76-1.70 (m, 1H), 1.64-1.56 (m, 1H), 1.48-1.36 (m, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 163.5, 156.3, 137.7, 130.4, 125.6, 115.5, 107.6, 73.4, 57.0, 31.6, 27.1, 24.3, 18.7. The product was analyzed by HPLC to determine the enantiomeric excess: 71% ee (chiralpak OD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm); t_r = 6.78 and 7.79 min.

(15,6R)-8-(6-methylpyridin-2-yl)-7-oxa-8-azabicyclo[4.2.2]dec-9-ene: Yield (80%);

[α]²⁵_D =-77 (*c* 0.61 CH₂Cl₂); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.44 (t, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 6.28 (d, *J* = 10.0 Hz, 1H), 6.26 (d, *J* = 10.0 Hz, 1H), 5.71 (d, *J* = 10.0 Hz, 1H), 5.70 (d, *J* = 10.0 Hz, 1H), 5.26-5.22 (m, 1H), 4.95-4.92 (m, 1H), 2.40 (s, 3H), 2.32-2.25 (m, 1H), 2.20-2.07 (m, 2H), 1.91-1.60 (m, 6H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 163.2, 156.5, 137.9, 131.9, 125.5, 115.4, 106.8, 73.0, 54.6, 34.8, 32.0, 26.2, 24.4, 22.3. IR (KBr) v 2917, 2854, 1589, 1576, 1447, 1283, 1231, 1178, 972, 830. 783, 637 cm⁻¹. HRMS Calcd. For C₁₄H₁₉ON₂⁺: 231.1492, found: 231.1488. The product was analyzed by HPLC to determine the enantiomeric excess: 80% ee (chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm); t_r = 5.20 and 7.29 min.

3j (known compound, see ref. 3)

(*3R*,6*S*)-3,6-dimethyl-2-(6-methylpyridin-2-yl)-4-((triisopropylsilyl)oxy)-3,6-dihy dro-2H-1,2-oxazine: Yield (93%); [α]²⁵_D = -134 (*c* 1.09, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.44 (t, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.59 (d, *J* = 8.0Hz, 1H), 4.79-4.66 (m, 3H), 2.41 (s, 3H), 1.29-1.19 (m, 9H), 1.12 (s, 12H), 1.10 (s, 6H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 159.3, 156.6, 152.5, 137.7, 114.7, 106.2, 102.9, 71.9, 54.2, 24.4, 20.0, 18.0, 14.2, 12.6. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (chiralpak OD-H, *i*-propanol/hexane = 0/100, flow rate 1.0 mL/min, λ = 254 nm); t_r = 8.75 and 15.06 min.

III. References

a) A. S. E. Karlstrom, M. Ronn, A. Thorarensen and J. E. Backvall, J. Org. Chem.
 1998, 63, 2517-2522; (b) M. E. Jung and M. A. Guzaev, Org. Lett., 2012, 14,
 5169-5171; (c) W. Lin, A. Gupta, K. H. Kim, D. Mendel and M. J. Miller, Org. Lett.
 2009, 11, 449-452; (d) M. Arisawa, Y. Torisawa, M. Kawahara and M. Nakagawa, J.
 Org. Chem. 1997, 62, 4327-4329; (e) A. G. Dossetter, T. F. Jamison and E. N.
 Jacobsen, Angew. Chem. Int. Ed. 1999, 43, 2398-2400.

(a) G. G. Moskalenko, V. F. Sedova and V. P. Mamaev, *Chem. Heterocycl. Compd.* 1989, 25, 805-811; (b) G. G. Moskalenko, V. F. Sedova, and V. P. Mamaev, *Chem. Heterocycl. Compd.* 1986, 22, 1232-1236; (c) E. C. Taylor, C. P. Tseng and J. B. Rampal, *J. Org. Chem.* 1982, 47, 552-555.

3. (a) B. Maji and H. Yamamoto, J. Am. Chem. Soc., 2015, 137, 15957-15963; (b) Y.
Yamamoto and H. Yamamoto, Angew. Chem., Int. Ed., 2005, 44, 7082-7085; (c). Y.
Yamamoto and H. Yamamoto, J. Am. Chem. Soc., 2004, 126, 4128-4129.

IV. ¹H NMR and ¹³C NMR Spectra

—141.36 —137.51
—122.63 —115.90 —108.18
√77.32 √77.00 76.68 −70.59
—56.66
∠25.29 ∠24.19 ⊤20.50 ⊤20.12

—164.10

V. HPLC Chromatograms

3a

Data File D:\LC\D&T&\LJ\LJ-10-22\LJ-10-22 2015-12-25 21-30-39\054-0201.D Sample Wame: LJ-10-22

lea Operator	 · LHC		Sea Line '	2	
Acg. Instrument	: Instrument 1		Location : Vi	ial 54	
Injection Date	: 12/25/2015 9:4	3:08 PM	Int :	1	
Ingeoblon Dabe	. 10,00,0010).1	JIOO IL	ini Volume : 5	n]	
Acq. Method	: D:\LC\DATA\LJ\: 20MIN.M	LJ-10-22\LJ-10-22	2015-12-25 21	L-30-39\0DH-5-95-1ML-254WM	[-
Last changed	: 12/16/2015 3:0	5:20 PM by LHC			
Analysis Method	: D:\LC\DATA\LJ\)	LJ-10-22\LJ-10-22	2015-12-25 23	L-30-39\054-0201.D\DA.M (0	DH-
	5-95-1ML-2541NM	-20MIN.M)			
Last changed	: 6/30/2016 4:00	23 PM by LHC			
	(modified afte	<u>r loading)</u> Tau Muta agusta agus			
	elength=204 nm (DXLC/DA	.1A4L04L0-10-224L0-10-22 20	110-12-20 21-3U-39 004- CD	-0201.0)	
m AU			53 95		
200-			1	5	
			A .	1.0	
175 -				j.	
			Ц		
150			J	11	
				- II	
120-				- []	
			J		
100-					
				11	
75-				11	
50-				{]	
26			()	()	
				1 1	
	~				
			· · ·	······	
0	2 4	6	8	10 12 1	14 min
•					
	Area Pe	rcent Renort			
Sorted By	: Sig	лаl			
Multiplier	: 1.0	000			
Dilution	: 1.0	000			
Use Multiplier &	Dilution Factor	with ISTDs			
Sigmal 1: VWD1 A	, Wavelength=254	ΠUT			
Peak RetTime Typ	e Width Are	a Height	Area		
# [min]	[min] mAU	*s [mAU]	8		
	-	-			
1 8.929 BB	0.2122 2921.2	4168 211.40381	50.0379		
Z 10.151 BB	0.2499 2916.7	9443 180.24718	49.9621		
Totola	5000 0	1611 201 65000			
IUTAIS :	5838.0	TOTT 9AT.020AA			

Instrument 1 6/30/2016 4:00:32 PM LHC

Data File D:\LC\DATA\LJ\LJ-10-31\LJ-10-31 2015-12-31 16-11-01\049-0201.D Sample Wame: C

log Operator '	LHC Sea Line 2
Aca. Instrument :	Instrument Location : Vial 49
Injection Date :	12/31/2015 4:23:50 PM Int: 1
ingeoption puber .	Ini Volume : 5 ul
Acq. Method :	D:\LC\DATA\LJ\LJ-10-31\LJ-10-31 2015-12-31 16-11-01\0DH-5-95-1ML-254MM- 20MIN.M
Last changed :	12/16/2015 3:05:20 PM by LHC
Analysis Method :	D:\LC\DATA\LJ\LJ-10-31\LJ-10-31 2015-12-31 16-11-01\049-0201.D\DA.M (0DH- 5-95-1ML-254NM-20MIN.M)
Last changed :	6/30/2016 4:03:30 PM by LHC (modified after loading)
WVD1 A, Wave	/ength=254 nm (DALC/DATA/LALJ-10-31/LJ-10-31 2015-12-31 16-11-01/049-0201.0)
mAU 1	+3
600 -	#
500 -	
400 -	
300 -	
200 -	
100 -	
o]	, Ä, J _,
 	
b	2 4 0 0 10 12 14 11
	Area Percent Report
Sorted By	: Signal
Multipiler	: 1.0000
Dilution	: 1.0000
Use Multiplier s	Dilution Factor with ISTDs
Sional I. Man 1 &	Navelength=251 nm
Light in Your A	
Peak RetTime Type # [min]	Width Area Height Area [min] mAU *s [mAU] %
 1 0 250 PP	0 2105 200 02072 17 70225 2 2200
1 9.430 BB	0.217 1.00500×0 £15 01502 07 7712
4 IU.443 BB	0.6111 1.0939064 013.91303 91.1116
Totals :	1.12096e4 633.61908

Instrument 1 6/30/2016 4:03:36 PM LHC

Data File D:\LC\DATA\LJ\LJ-10-43\LJ-10-43 2016-01-09 10-53-20\061-0101.D Sample Name: c

dea Operator · LHC	Sea Line : 1
Acq. operator : Ent	Jorstion : Viel Kl
Acq. INSCILMENC , INSCILMENC I Injection Date : 1/0/2016 10.60.05 XM	Totation , viai of
UNJECTION DALE : TAN 7010 10:34:43 WU	III J; I Ini Volume ; 5 ul
law Mothed , D. II CONSTRUCTED TO SOLVE TO	10 2016 01 00 10 62 20/05μ 5 05 100 250mm
Acq. method : D:\Lt\DATA\LJ\LJ-10-43\LJ-10-	-43 2010-01-09 10-33-20\0DR-3-93-1ML-254MM-
40011N.M Logt shopwood (1/0/2016 10.52.45 10.52.45	
Last changed : 1/9/2016 10:53:45 AM by LHC	
(moulfied after Loading)	40 0016 01 00 10 50 000 061 0101 BUBL # 4057
ANALYSIS METNON : D:\LL\DAIA\LJ\LJ-10-43\LJ-10-	-43 2010-01-09 10-53-20\061-0101.D\DA.M (UDH-
5-95-1ML-254MM-20M1N.M)	
Last changed : 6/30/2016 7:28:00 PM by LHC	
(modified after loading)	2 2016 01 00 10 52 20081 0101 Fb
word A, wavelength=254 nm (UNLOBALABJU-10-43/LD-10-43/LD-10-43	2010-01-08 10-03-20 00 1-010 1.0)
^{m,4} U	i an
350-	1
	1
), s 'b _' ,
300 -	
	л 🖓
	ll A
250 -	
1 200	
1 ²⁰⁰ 7	
150 -	
100 -	
50 -	
	-lh
	8 10 12 14 min
1 D	
Area Percent Report	
Control Dec. Charact	
borrea By : Signal	
Multiplier : 1.0000	
Dilution : 1.0000	
Use Multiplier & Dilution Factor with ISTDs	
Signal 1: VWD1 A, Wavelength=254 nm	
-	
Peak RetTime Type Width Area Height	Area
# [min] [min] mAU *s [mAU]	5
	-
1 8.142 MF 0.2275 5069.31201 371.41397	7 48.0506
2 10.739 MM 0.3286 5480.64209 277.96939	9 51.9494
Totals : 1.05500e4 649.38336	5

Instrument 1 6/30/2016 7:28:05 PM LHC

Data File D:\LC\DATA\LJ\LJ-10-43\LJ-10-43 2016-01-09 10-53-20\063-0301.D Sample Name: b

lag Operator (INC - Seg Line (2	
Acq. operator : Lat 5eq. Line : 5	
Acq. Instrument : Instrument I Location : Vial 63	
Injection Date : 1/9/2016 11:27:55 AM Inj: 1	
ing Volume : 5 µ1 Acq. Method : D:\LC\DATA\LJ\LJ-10-43\LJ-10-43 2016-01-09 10-53-20\0DH-5-95-1ML-254NM- 20MIN M	
Last changed $(1)/2016 (1)/26/27$ M by IVC	
(malified after loading)	
(mouries alber loading) Amalumeie Mathod - D.(10.04111,10.0011,10.001,00.0016,0010,0010,50.000,000,000,000,000	r_
ANALYSIS MELINU : D: 10:00170000000000000000000000000000000	-
3-33 - 101 - 23400 - 2001 10.00	
Last changed : 6/30/2016 7:24:53 PM by LHC	
(modified after loading)	
Viii A, Viavelengm=254 nm (L/XLC/LARI A/LJ/LD-10-43/LD-10-43/2016-01-09 10-53-20/003-0501-0)	
mAU B	
τ μ	
250	
200	
150 -	
100 -	
	min
	min
	min
0 10 12 14	min
0 1	min
Δrea Percent Report	
Area Percent Report	
Area Percent Report	
Area Percent Report Sorted By : Signal Multiplier : 1.0000	min
0 2 4 6 8 10 12 14 Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000	
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs	min
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs	min
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs	
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm	min
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm	min
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area	min
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # (min) (min) mAU *s (mAU) 8	mir
Image: Signal Multiplier Signal Multiplier 10 12 14 Sorted By : Signal Multiplier 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area # [min] [min] mAU	mi
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 	mir
Image: Description of the second s	mir
Image: Signal 2 Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU %	mir
Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system Image: product of the system	mir

Instrument 1 6/30/2016 7:25:00 PM LHC

Data File D:\LC\DATA\LJ\LJ-10-46\LJ-10-51 2006-01-01 05-03-48\009-0101.D Sample Wame: LJ-10-51A

Instrument 1 10/5/2016 7:22:20 PM LHC

Data File D:\LC\DATA\LJ\LJ-10-46\LJ-10-51 2006-01-01 05-03-48\010-0201.D Sample Wame: LJ-10-51B

Instrument 1 6/30/2016 4:14:36 PM LHC

Data File D:\LC\DATA\LJ\LJ-10-67\XZY-BINAP 2016-07-05 11-12-31\092-0201.D Sample Wame: 1j-10-67-1

Instrument 1 7/6/2016 10:33:02 AM LHC

Data File D:\LC\DATA\LJ\LJ-10-67\XZY-BINAP 2016-07-05 11-12-31\093-0301.D Sample Wame: 1j-10-67-2

Instrument 1 7/6/2016 10:35:14 AM LHC

Data File D:\LC\DATA\LJ\LJ-11-51\LJ-11-51 2016-05-04 16-42-30\012-0201.D Sample Wame: LJ-11-51

Instrument 1 10/5/2016 8:35:39 PM LHC

Data File D:\LC\DATA\LJ\LJ-11-58\LJ-11-58 2016-05-09 08-58-09\004-0301.D Sample Name: LJ-11-58

Instrument 1 10/5/2016 7:35:10 PM LHC

Data File D:\LC\DATA\LJ\LJ-11-90\LJ-11-90-4 2016-07-07 14-51-05\096-0301.D Sample Wame: LJ-11-90-1

Instrument 1 10/5/2016 6:34:03 PM LHC

Cbz Ν. 3f

Data File D:\LC\DATA\LJ\LJ-11-90\LJ-11-90-4 2016-07-07 14-51-05\098-0201.D Sample Wame: LJ-11-90-2

Aco. Operator	: LHC Seg. Line : 2
Acg. Instrument :	Instrument l Location : Vial 98
Injection Date	7/7/2016 3:03:37 PM Inj: 1
	Ini Volume : 5 ul
Acq. Method	: D:\LC\DATA\LJ\LJ-11-90\LJ-11-90-4 2016-07-07 14-51-05\0DH-20-80-1ML-254RM- 30MIR.M
Last changed :	: 1/1/2006 1:57:18 AM by LHC
Analysis Method :	: D:\LC\DATA\LJ\LJ-11-90\LJ-11-90-4 2016-07-07 14-51-05\098-0201.D\DA.M (ODH-20-80-1ML-254MM-30MIN.M)
Last changed :	: 10/5/2016 6:44:17 PM by LHC
WVD1 A, Wav	(modified after foading) elength=254nm(DALCDATALAL)-11-90AL)-11-90-42016-07-07 14-51-05'098-0201.D)
mAU]	8
120	ä
120	
100	
80 -	
	()
60 -	
1	
40 -	
20	t ()
	÷~~ ()
	\wedge (\land)
0	5 10 15 20 25 min
	Area Percent Report
Control Dec	
SUILED BY Multiplier	
Mult ipiler Dálastász	; 1.0000
Dilution	: 1.0000
Use Multiplier &	Dilution Factor with ISTDs
Signal I: VWDI A,	, wavelength=254 nm
Peak RetTime Type	e Width Area Height Area
# [min]	[min] mau ™s [maŭ] %
	-
1 10.915 MM	0.6517 469.36676 12.00426 5.0319
2 20.596 BB	1.0799 8858.53125 124.16433 94.9681
Totals :	9327.89801 136.16859

Instrument 1 10/5/2016 6:44:29 PM LHC

Data File D:\LC\DATA\LJ\LJ-10-9\LJ-10-9 2015-12-16 20-46-49\005-0201.D Sample Wame: LJ-10-9A

Instrument 1 6/30/2016 3:55:24 PM LHC

Data File D:\LC\DATA\LJ\LJ-10-9\LJ-10-9B 2015-12-16 22-13-24\006-0101.D Sample Wame: LJ-10-9B

Instrument 1 6/30/2016 3:58:15 PM LHC

Data File D:\LC\DATA\LJ\LJ-11-79\LJ-11-79 2016-05-23 18-17-38\003-0801.D Sample Wame: LJ-11-79B

Aco. Operator	: 102 F	Sea. 1	Line: 8		
Acg. Instrument	: Instrument 1	Local	tion : Vial 3		
Injection Date	· 5/23/2016 7·54·12 PI	M	Ini 1		
	,,,	- Ιπή Vo	lume: 5 ul		
Acq. Method	: D:\LC\DATA\LJ\LJ-11 20MIN.M	-79\LJ-11-79 2016	-05-23 18-17-38\0	DH-5-95-1ML-254	4 MM -
Last changed	: 5/23/2016 7:52:54 P	М Бү WZF			
	(modified after loa	ding)			
Analysis Method	: D:\LC\DATA\LJ\LJ-11 5-95-1ML-254NM-20MI	-79\LJ-11-79 2016 N.M)	-05-23 18-17-38\0	03-0801.D\DA.M	(0DH-
Last changed	: 10/5/2016 6:57:27 Pl	M by LHC			
V0/D1 A \06	(MOGIFIEG AFTER 10a) veleouth=254.pm (DN CNDATAN N.)	aing) L11.701.L11.79.2016.05.23	18-17-38\003-0801 D		
- 01 1	delenger-zomm(bacober-Abba		10-11-30-200-0001.0)		
		F			
		1 5			
		2.6			
25 -		1 1			
		1 N			
201					
207					
15 -					
10-		11 11			
01					
	Δ				
0+					
	· · · · · · · · · · · · · · · · · · ·			12	14 min
	dree Dercent	Benort			
Sorted By	: Sional				
Multinlier	: 1.0000				
Dilution	: 1.0000				
Use Multinlier /	Dilution Factor with	ISTDE			
obe maiorprice .		10100			
Sigmal 1: VWD1 /	A, Wavelength=254 nm				
Peak RetTime Tvi	e Width Area	Height Area			
# [min]	[min] mAU *s	[mAU] %			
1 6.607 BB	0.1565 298.76682	29.37936 50.00	87		
2 7.554 BB	0.1797 298.66275	25.61117 49.99	13		
Totals :	597.42957	54.99053			

Instrument 1 10/5/2016 6:57:39 PM LHC

Data File D:\LC\DAT&\LJ\LJ-12-20\LJ-12-20& 2016-06-29 18-19-13\010-0201.D Sample Wame: LJ-12-21&

Acq. Operator : LHC Seq. Line : 2
Acq. Instrument : Instrument 1 Location : Vial 10
Injection Date : 6/29/2016 6:31:47 PM Inj : 1
Inj Volume : 5 µl
Acq. Method : D:\L\DATA\LJ\LJ-12-20\LJ-12-20A 2016-06-29 18-19-13\UDH-5-95-1ML-254MM-
20010.0 Last changed - 12/16/2015 3:05:20 DM by THC
analysis Method : h:)1071072010 0.00120 11 12 2011 1-12-2012 2016-06-29 18-19-131010-0201. D\DA.M (0DH-
5-95-1ML-2540M-20MIN.M)
Last changed : 10/5/2016 6:59:09 PM by LHC
(modified after loading)
Vii/01 A, Vilavelength=254 nm (DALCUATAU/U-12-20/U-12-20A2016-06-29 18-19-13/010-0201.U)
m/2U
1 I T
140 -
120-
100 -
40 - Finite Andread Andre
0 2 4 6 8 10 12 14 mi
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1. Vimil & Havelength=254 mm
Find I. Well R. Whitehold J.
Peak RetTime Type Width Area Height Area
[min] [min] mAU *s [mAU] %
1 6.779 VB 0.1572 307.61816 30.07200 14.4776
Z 7.786 BV 0.1786 1817.16223 155.50630 85.5224
Totele / 2124 78040 185 57830
100410 . 2124.10040 103.31030

Instrument 1 10/5/2016 6:59:32 PM LHC

Data File D:\LC\DATA\LJ\LJ-11-104\LJ-11-104 2016-06-07 09-12-44\006-0401.D Sample Wame: LJ-11-103-1

Instrument 1 7/6/2016 4:26:56 PM LHC

Data File D:\LC\DATA\LJ\LJ-12-15\LJ-12-15 2016-06-17 10-04-00\014-0201.D Sample Wame: LJ-12-15-3

Instrument 1 7/6/2016 4:24:56 PM LHC

Data File D:\LC\DAT&\LJ\LJ-11-90\LJ-11-90-0DH-2 2016-05-30 22-23-17\001-0801.D Sample Wame: LJ-11-79&

leg Operator		Sear Line :	8					
Acq. Operator :	Instrument 1	Jogetion :	Viel 1					
Acq. Instrument :	11(SUILLINE)(U I	Localion :						
infection pare :	3/ 31/2010 2:34:49 2		1 5 ml					
law Mathad	B. VI (V B 171) I TVI I 11	10) VOLUME :	3 μ1 3 μ1					
2000 - 2000								
د معدد - عند المعدد - عند المعدد - عند - معدد - عند - معدد - م (معد - مامه معد - معدد - مع								
Jast chanyeu . Jaslueje Mathad :	D: \1 C\ D X T X\ L J\ L J_ 1	-00/1 J-11-00-00W-2 2016	-05-20 22-22-17\001-0801 D\D} M					
אומביאס אר אראר איז אראר איז אומביאס אראר איז איז איז איז א								
(0DH-0-100-111-20-110-10)								
habb changea .	(modified ofter los	ding)						
WVD1 A, Wave	ength=254 nm (DALCADATALLA	J-11-90/LJ-11-90-0 DH-2 2016-05-30 2	2-23-17'001-0801.D)					
mAU I	•	₽	·					
160		Â						
		Т						
140-		Ц						
120-								
100			_					
		[]	090					
		15	÷.					
80-			Δ					
60-		11						
			()					
		{	11					
1 **7		J J						
20-	Ъ.	}						
		[]	$\{ \cdot \}$					
0		<u>_/ \</u>	/					
		· · · · · · · · · ·						
Ó	25 5	7.5 10	12.5 15 17.5 min					
	Area Percent	Report						
Sorted By	: Signal							
Multiplier	: 1.0000							
Dilution	: 1.0000							
Use Multiplier & D	Dilution Factor with	ISTDs						
Signal 1: VWD1 A,	Wavelength=254 nm							
Peak RetTime Type	Width Area	Height Area						
# [min]	[min] mAU *s	[mAU] %						
1 8.840 BB	0.2755 2958.30957	165.51152 50.2429						
2 14.650 BB	0.5571 2929.70850	82.17965 49.7571						
Totals :	5888.01807	247.69117						

Instrument 1 10/5/2016 6:43:07 PM LHC

Data File D:\LC\DAT&\LJ\LJ-11-90\LJ-11-90-0DH-2 2016-05-30 22-23-17\003-0901.D Sample Wame: LJ-11-76

Acq. Op Acq. In Acq. In Injecti	erator : strument : on Date :	HR Instrum 5/31/20	ent 1 16 3:16:23 A		Seq. Line Location Inj Inj Volume	: 9 : Vial 3 : 1 : 5 pl			
Acq. Me Last ch Analysi	thod : anged : s Method :	D:\LC\D. 254 NM- 4 5/30/20 D:\LC\D.	ATA\LJ\LJ-11 DMIN.M 16 10:18:58 ATA\LJ\LJ-11	-90\LJ-11-9 PM by HR -90\LJ-11-9	90-0DH-2 20. 90-0DH-2 20.	16-05-30 22- 16-05-30 22-	23-17\0DH- 23-17\003-	-0-100-1ML- -0901.D\DA.	м
(0DH-0-100-1ML-254MM-40MIN.M) Last changed : 10/5/2016 6:41:06 PM by LHC (modified after loading)									
- 41	WVD1 A, Wavelength=254 nm (D/LC/DATA/L/NL)-11-90/LD/1-190-0DH-2 2016-05-30 22-23-17/003-0901.D)								
300 -				Ĩ					
250 -									
200 -									
150 -									
100 -	-								
50 -			6				.055		
0-	 			/ \ 	<u>-</u> , . ,	·····	<u> </u>		
	0	25	5	7.5	10	12.5	15	17.5	min
	Area Percent Report								
Sorted Multipl Dilutio Use Mul	By ier n tiplier &	: Dilution	Signal 1.0000 1.0000 Factor with	ISTDs					
Signal	1: VWD1 A,	. Wavelen	gth=254 nm						
Peak Re # [: 	tTime Type min] 	e Width [min]	Area mAU *s 	Height [mAU] 	Area ۴				
1 2 1	8.747 BB 5.055 BB	0.2773 0.4589	5781.29346 109.15193	318.45264 3.15551	98.1470 1.8530				
Totals	:		5890.44539	321.60815					

Instrument 1 10/5/2016 6:41:12 PM LHC