Supporting Information for

Silver(I)-Promoted Insertion into X-H (X = Si, Sn, and Ge) Bonds

with N-Nosylhydrazones

Zhaohong Liu,^a Qiangqiang Li^a, Yang Yang,^a and Xihe Bi*^{a,b}

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, China

^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071,

China

E-mail: bixh507@nenu.edu.cn

Table of Contents

1.	General Information	2
2.	Synthesis and Analytical Data of <i>N</i> -Nosylhydrazones	3
3.	Optimization of the Reaction Conditions	9
4.	Synthesis and Analytical Data of compounds <mark>3aa to 3sa, and 3bb-3bs</mark>	10
5.	¹ H and ¹³ C NMR Spectral Copies	22

1. General Information

All reagents were purchased from commercial sources and used without purification unless otherwise mentioned. The products were purified by column chromatography over silica gel (200-400 size). ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded at 25 °C on a Varian 500 MHz and 125 MHz or on a Bruker 400 MHz and 100 MHz, and TMS was used as internal standard. Mass spectra were recorded on BRUKER AutoflexIII Smartbeam MS-spectrometer. High resolution mass spectra (HRMS) were recorded on Bruck microTof by using ESI method.

2. Synthesis and Analytical Data of N-Nosylhydrazones

N-nitrobenzenesulfonylhydrazide (NBSH) was prepared according to literature procedure.¹

General procedure for converting carbonyl compounds to *N***-nosylhydrazones:** To a stirred solution of NBSH (2.0 mmol, 1 equiv) in methanol (2 mL) were added carbonyl compounds (2.2 mmol, 1.1 equiv) and the mixture was stirred for 1-2 h at room temperature. The mixture was filtered and the resulting solid was washed with ice cold diethyl ether and dried under reduced pressure to give pure *N*-nosylhydrazones. The yields were around 80% in general.

(1a) White solid, m.p. 149-150 °C; ¹H-NMR (500 MHz, DMSO-d₆) δ 12.17 (s, 1H), 8.09-8.06 (m, 2H), 8.02-8.00 (m, 1H), 7.89-7.87 (m, 2H), 7.58-7.57 (m, 2H), 7.39-7.38 (m, 3H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 148.4, 148.3, 135.3, 133.9, 133.1, 131.4, 131.0, 130.9, 129.3, 127.5, 125.1; HRMS (ESI) m/z calcd. for C₁₃H₁₁N₃O₄SNa [M+Na]⁺ 328.0362, found 328.0368.

(1b) White solid, m.p. 152-153 °C; ¹H-NMR (400 MHz, DMSO-d₆) δ 12.28 (s, 1H), 8.08-8.02 (m, 3H), 7.92-7.90 (m, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 148.4, 144.4, 143.0, 131.4, 129.2, 128.8, 127.4, 127.0, 125.5, 125.1, 121.1; HRMS (ESI) m/z calcd. for C₁₃H₁₀ClN₃O₄SNa [M+Na]⁺ 361.9973, found 361.9968.

(1c) White solid, m.p. 178-179 °C; ¹H-NMR (500 MHz, DMSO-d₆) δ 12.54 (s, 1H), 8.12 (s, 1H), 8.09-8.08 (m, 1H), 8.02-8.01 (m, 1H), 7.90-7.89 (m, 2H), 7.85 (d, *J* = 7.5 Hz, 2H), 7.76 (d, *J* = 7.5 Hz, 2H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 148.3, 146.1, 138.3, 135.5, 133.2, 131.2, 131.1, 130.4, 128.0, 125.1, 119.0, 112.7; HRMS (ESI) m/z calcd. for C₁₄H₁₀N₄O₄SNa [M+Na]⁺ 353.0314, found 353.0321.

(1d) White solid, m.p. 107-108 °C; ¹H-NMR (600 MHz, DMSO-d₆) δ 12.39 (s, 1H), 8.14 (s, 1H), 8.10-8.07 (m, 1H), 8.03-8.00 (m, 1H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.91-7.88 (m, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 3.84 (s, 3H); ¹³C-NMR (151 MHz, DMSO-d₆) δ 166.2, 148.3, 146.8, 138.2, 135.3, 133.1, 131.4, 131.2, 130.9, 130.0, 127.5, 125.1, 52.7; HRMS (ESI) m/z calcd. for C₁₅H₁₃N₃O₆SNa [M+Na]⁺ 386.0419, found 386.0438.

(1e) Yellow solid, m.p. 154-155 °C; ¹H-NMR (600 MHz, DMSO-d₆) δ 12.15 (s, 1H), 8.12 (s, 1H), 8.10-8.18 (m, 1H), 8.02-8.00 (m, 1H), 7.90-7.88 (m, 2H), 7.7-7.66 (m, 6H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.38 (t, *J* = 7.8 Hz, 1H); ¹³C-NMR (151 MHz, DMSO-d₆) δ 148.3, 147.8, 142.3, 139.7, 135.2, 133.0, 132.9, 131.4, 131.0, 129.4, 128.4, 128.0, 127.5, 127.1, 125.0; HRMS (ESI) m/z calcd. for C₁₉H₁₅N₃O₄SNa [M+Na]⁺ 404.0677, found 404.0657.

(1f) White solid, m.p. 166-167 °C; ¹H-NMR (500 MHz, DMSO-d₆) δ 12.41 (s, 1H), 8.44 (s, 1H), 8.10-8.08 (m, 1H), 8.03-8.01 (m, 1H), 7.91-7.89 (m, 2H), 7.74 (d, *J* = 7.2 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.2 Hz, 1H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 148.3, 144.1, 135.5, 133.6, 133.3, 132.4, 131.3, 131.2, 131.1, 130.5, 128.2, 127.1, 125.2; HRMS (ESI) m/z calcd. for C₁₃H₁₀ClN₃O₄SNa [M+Na]⁺ 361.9972, found 361.9976.

(1g) White solid, m.p. 172-173 °C; ¹H-NMR (600 MHz, DMSO-d₆) δ 12.39 (s, 1H), 8.31 (s, 1H), 8.10-8.18 (m, 1H), 8.06-7.99 (m, 1H), 7.94-7.85 (m, 3H), 7.65 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.14 (td, *J* = 7.7, 1.5 Hz, 1H); ¹³C-NMR (151 MHz, DMSO-d₆) δ 150.9, 148.2, 140.1, 135.4, 135.3, 133.1, 132.4, 131.3, 131.1, 129.0, 127.2, 125.1, 100.2; HRMS (ESI) m/z calcd. for C₁₃H₁₀IN₃O₄SNa [M+Na]⁺ 453.9330, found 453.9360.

(1h) White solid, m.p. 152-153 °C; ¹H-NMR (400 MHz, DMSO-d₆) δ 12.15 (s, 1H), 8.08-8.00 (m, 3H), 7.90-7.88 (m, 2H), 7.30 (t, J = 8.0 Hz, 1H), 7.15-7.13 (m, 2H), 6.97 (d, J = 8.0 Hz, 1H), 3.75 (s, 3H; ¹³C-NMR (125 MHz, DMSO-d₆) δ 160.0, 148.4, 148.1, 135.4, 135.3, 133.1, 131.3, 131.1, 130.5, 125.0, 120.1, 116.8, 112.0, 55.7; HRMS (ESI) m/z calcd. for C₁₄H₁₃N₃O₅SNa [M+Na]⁺ 358.0468, found 358.0476.

(1i) White solid, m.p. 147-148 °C; ¹H-NMR (600 MHz, DMSO-d₆) δ 12.39 (s, 1H), 8.17 (s, 1H), 8.10-8.08 (m, 1H), 8.02-7.99 (m, 1H), 7.92 (s, 1H), 7.91-7.86 (m, 3H), 7.73 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H); ¹³C-NMR (151 MHz, DMSO-d₆) δ 148.4, 146.5, 135.3, 135.0, 133.0, 131.3, 131.0, 130.9, 130.4, 130.1 (q, J = 32.0 Hz), 127.0 (q, J = 3.0 Hz), 125.0, 124.3 (q, J = 272.0 Hz), 123.7 (q, J = 3.6 Hz).

(1j) White solid, m.p. 163-164 °C; ¹H-NMR (400 MHz, DMSO-d₆) δ 12.39 (s, 1H), 8.32 (s, 1H), 8.11-8.09 (m, 1H), 8.02-8.00 (m, 1H), 7.91-7.89 (m, 2H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.22 (d, *J* = 2.8 Hz, 1H), 6.96-6.93 (m, 1H), 3.74 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 159.1, 148.4, 146.2, 135.6, 134.5, 133.3, 133.2, 131.3, 131.0, 125.0, 119.1, 114.5, 111.6, 56.0; HRMS (ESI) m/z calcd. for C₁₄H₁₂BrN₃O₅SNa [M+Na]⁺ 435.9573, found 435.9560.

(1k) Brown solid, m.p. 148-149 °C; ¹H-NMR (500 MHz, DMSO-d₆) δ 11.96 (s, 1H), 8.08 (s, 1H), 8.05-8.02 (m, 2H), 8.01-7.99 (m, 1H), 7.89-7.87 (m, 2H), 7.68 (s, 1H), 6.62 (s, 1H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 148.4, 146.2, 145.4, 141.4, 135.2, 133.1, 131.4, 131.0, 125.0, 122.3, 107.4; HRMS (ESI) m/z calcd. for C₁₁H₉N₃O₅SNa [M+Na]⁺ 318.0155, found 318.0150.

(11) Brown solid, m.p. 152-153 °C; ¹H-NMR (400 MHz, DMSO-d₆) δ 11.99 (s, 1H), 8.10 (s, 1H), 8.07-8.04 (m, 1H), 8.01-7.99 (m, 1H), 7.89-7.87 (m, 3H), 7.56-7.55 (m, 1H), 7.29 (d, *J* = 4.8 Hz, 1H);
¹³C-NMR (125 MHz, DMSO-d₆) δ 148.4, 144.0, 137.0, 135.2, 133.1, 131.4, 131.1, 129.3, 128.3, 125.0, 124.8; HRMS (ESI) m/z calcd. for C₁₁H₉N₃O₄S₂Na [M+Na]⁺ 333.9926, found 333.9935.

(1m) Yellow solid, m.p. 184-185 °C; ¹H-NMR (500 MHz, DMSO-d₆) δ 12.15 (s, 1H), 8.32 (s, 1H), 8.24 (s, 1H), 8.13-8.11 (m, 1H), 8.00-7.98 (m, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.88-7.85 (m, 4H), 7.39-7.37 (m, 3H), 7.30 (t, *J* = 7.5 Hz, 1H), 2.29 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 148.4, 146.5, 143.0, 135.4, 135.1, 134.1, 133.0, 131.3, 131.2, 131.1, 130.9, 127.4, 126.9, 126.3, 125.0, 124.8, 123.2, 117.6, 113.6, 21.6; HRMS (ESI) m/z calcd. for C₂₂H₁₈N₄O₆S₂Na [M+Na]⁺ 521.0559, found 521.0567.

(1n) White solid, m.p. 150-151 °C; ¹H-NMR (600 MHz, DMSO-d₆) δ 11.20 (s, 1H), 8.07-8.05 (m, 1H), 8.00-7.98 (m, 1H), 7.89-7.86 (m, 2H), 7.63-7.61 (m, 2H), 7.37-7.34 (m, 3H), 2.28 (s, 3H); ¹³C-NMR (151 MHz, DMSO-d₆) δ 154.8, 148.7, 137.6, 135.0, 132.8, 131.6, 130.7, 130.1, 128.8, 126.6, 124.8, 15.1; HRMS (ESI) m/z calcd. for C₁₄H₁₃N₃O₄SNa [M+Na]⁺ 342.0520, found 342.0521.

1p

(1p) Yellow solid, m.p. 128-129 °C; ¹H-NMR (600 MHz, DMSO-d₆) δ 11.29 (s, 1H), 8.18 (s, 1H), 8.13-8.10 (m, 1H), 8.02-7.99 (m, 1H), 7.95 (dd, J = 6.1, 3.4 Hz, 1H), 7.90-7.87 (m, 3H), 7.85-7.85 (m, 2H), 7.55-7.52 (m, 2H), 2.40 (s, 3H); ¹³C-NMR (151 MHz, DMSO-d₆) δ 154.5, 148.7, 135.1, 134.9, 133.8, 133.0, 132.8, 131.5, 130.8, 129.0, 128.2, 127.9, 127.5, 127.0, 126.9, 124.8, 123.6, 14.8; HRMS (ESI) m/z calcd. for C₁₈H₁₅N₃O4₅Na [M+Na]⁺ 392.0681, found 392.0676.

(1q) White solid, m.p. 158-159 °C; ¹H-NMR (600 MHz, DMSO-d₆) 10.70 (s, 1H), 8.13-8.08 (m, 1H), 8.03 (dt, J = 7.5, 3.7 Hz, 1H), 7.94-7.89 (m, 2H), 7.60-7.55 (m, 3H), 7.39 (t, J = 7.2 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 7.29 (dd, J = 6.1, 3.1 Hz, 4H); ¹³C-NMR (151 MHz, DMSO-d₆) δ 156.3, 148.8, 137.1, 135.2, 133.0, 132.6, 131.4, 130.8, 130.5, 130.2, 129.5, 129.1, 128.8, 127.8, 124.9; HRMS (ESI) m/z calcd. for C₁₉H₁₅N₃O₄SNa [M+Na]⁺404.41.0685, found 404.0671.

(1r) Yellow solid, m.p. 148-149 °C; ¹H-NMR (400 MHz, DMSO-d₆) δ 12.10 (s, 1H), 8.03-7.98 (m, 2H), 7.90-7.88 (m, 3H), 7.56 (d, J = 7.2 Hz, 2H), 7.37-7.28 (m, 3H), 7.02 (d, J = 16.0 Hz, 1H), 6.89-6.83 (m, 1H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 150.6, 148.4, 140.5, 136.1, 135.2, 133.2, 131.8, 130.8, 129.5, 129.3, 127.7, 125.2, 125.0; HRMS (ESI) m/z calcd. for C₁₅H₁₃N₃O₄SNa [M+Na]⁺354.0519, found 354.0525.

(1s) Yellow solid, m.p. 104-105 °C; ¹H-NMR (500 MHz, CDCl₃) δ 9.29 (s, 1H), 8.24-8.22 (m, 1H), 7.85-7.83 (m, 1H), 7.77-7.73 (m, 2H), 6.70 (s, 1H), 1.09-1.08 (m, 18H), 1.02-1.01 (m, 3H),; ¹³C-NMR (125 MHz, CDCl₃) δ 148.1, 134.5, 132.8, 132.6, 131.6, 127.6, 125.3, 110.2, 93.5, 18.4, 10.9; HRMS (ESI) m/z calcd. for C₁₈H₂₇N₃O₄SSiNa [M+Na]⁺ 432.1384, found 432.1387.

3. Optimization of the Reaction Conditions

				NaH (1.5 equiv) cat., solv.		ŞiEt ₃	Ph.		Ph N A	
		1a', R = Ts 1a, R = Ns	2a	temp.,	N ₂ , 24 h	Ph ^A H 3aa	4aa	Ph +	5aa	
Entry	R	Cat.	Sc	olvent	Temp		Yield (%) ^b			
		<mark>(30 mol %)</mark>			<mark>. (°C)</mark>	<mark>3aa</mark>	<mark>la/la'</mark>	<mark>4aa</mark>	<mark>5aa</mark>	
<mark>1</mark>	Ts	a AgOTf	C	H ₂ Cl ₂	<mark>40</mark>	<mark>15</mark>	<mark>68</mark>	<mark>6</mark>	<mark>4</mark>	
<mark>2</mark>	<mark>N:</mark>	s AgOTf	C	H ₂ Cl ₂	<mark>40</mark>	<mark>57</mark>	<mark>22</mark>	<mark>10</mark>	<mark>2</mark>	

STable 1 Optimization of the Reaction Conditions^{*a*}

<mark>4</mark>	<mark>Ns</mark>	AgOAc	CH ₂ Cl ₂	<mark>80</mark>	<mark>55</mark>	<mark>0</mark>	22	<mark>14</mark>
<mark>5</mark>	<mark>Ns</mark>	AgOTAF	CH ₂ Cl ₂	<mark>80</mark>	<mark>60</mark>	<mark>0</mark>	<mark>16</mark>	<mark>4</mark>
<mark>6</mark>	<mark>Ns</mark>	AgF	CH ₂ Cl ₂	<mark>80</mark>	<mark>28</mark>	<mark>0</mark>	<mark>60</mark>	2
7	<mark>Ns</mark>	Ag ₂ CO ₃	CH ₂ Cl ₂	<mark>80</mark>	<mark>34</mark>	<mark>0</mark>	<mark>48</mark>	<mark>6</mark>
<mark>8</mark>	<mark>Ns</mark>	AgOTf	1,4-dioxane	<mark>80</mark>	<mark>20</mark>	<mark>0</mark>	<mark>26</mark>	<mark>18</mark>
<mark>9</mark>	<mark>Ns</mark>	AgOTf	PhCl	<mark>80</mark>	<mark>6</mark>	<mark>32</mark>	<mark>10</mark>	<mark>16</mark>
<mark>10</mark>	<mark>Ns</mark>	AgOTf	MeCN	<mark>80</mark>	<mark><5</mark>	<mark>20</mark>	<mark>6</mark>	<mark>40</mark>
<mark>11</mark>	<mark>Ns</mark>	AgOTf	ClCH ₂ CH ₂ Cl	<mark>80</mark>	<mark>32</mark>	<mark>0</mark>	<mark>42</mark>	<mark>18</mark>
<mark>12</mark>	<mark>Ns</mark>	Cu(OTf) ₂	CH ₂ Cl ₂	<mark>80</mark>	<mark>7</mark>	<mark>0</mark>	<mark>26</mark>	<mark>44</mark>
<mark>13</mark>	<mark>Ns</mark>	Cu(MeCN) ₄ PF ₆	CH ₂ Cl ₂	<mark>80</mark>	<mark>10</mark>	<mark>0</mark>	<mark>26</mark>	<mark>20</mark>
14 ^c	<mark>Ns</mark>	Rh ₂ (OAc) ₄	CH ₂ Cl ₂	<mark>80</mark>	<mark>25</mark>	<mark>0</mark>	<mark>60</mark>	2

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (1.5 mmol). NaH (0.45 mmol), and the catalyst (30 mol %) in solvent (6.0 mL) for 24 h under N₂-atmosphere. ^{*b*} Yield calculated from ¹H-NMR spectroscopy with CH_2Br_2 as the internal standard. ^{*c*} $Rh_2(OAc)_4$ (5 mol %) was used. ^{*d*} Isolated yield.

4. Synthesis and Analytical Data of compounds 3aa to 3sa, and 3bb-3bs

The synthesis of compounds **3aa-3sa** and **3bb-3bs** is performed according to the below given procedure for the synthesis of compound **3aa**.

General procedure (with **3aa** as an example): To a flame-dried sealed tube were added *N*-nosylhydrazone **1a** (91.5 mg, 0.3 mmol, 1.0 equiv), NaH (18 mg, **60 wt%**, 0.45 mmol, 1.5 equiv) and dry CH_2Cl_2 (6.0 mL, 0.05 M) inside a glove box. The resulting mixture was stirred at room temperature for 1 h. Then, triethylsilane **2a** (240 µl, 1.5 mmol, 5.0 equiv) and AgOTf (23.1 mg, 0.09 mmol, 30 mol %) were added and the tube was sealed and heated at 80 °C for additional 24

h.The reaction was monitored by TLC. When the reaction was completed, the crude reaction mixture was allowed to reach room temperature, and filtered through a short pad of silica gel with EtOAc as an eluent. The filtrate was evaporated under reduced pressure to leave a crude mixture, which was purified by column chromatography on silica gel (eluting with petroleum ether) to afford **3aa** as a colorless oil (50.1 mg, 81% yield).

(3aa) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.19 (t, *J* = 7.5 Hz, 2H), 7.05 (t, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 7.5 Hz, 2H), 2.09 (s, 2H), 0.91 (t, *J* = 8.0 Hz, 9H), 0.51 (q, *J* = 8.0 Hz, 6H); ¹³C-NMR (CDCl₃, 125 MHz) δ 140.6, 128.11, 128.07, 123.7, 21.6, 7.3, 3.0; HRMS (ESI) m/z calcd. for C₂₆H₄₅Si₂ [2M+H]⁺: 413.3058, found: 413.3054.

(3ba) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.18 (d, J = 8.5 Hz, 2H), 6.95 (d, J = 8.5 Hz, 2H),
2.08 (s, 2H), 0.93 (t, J = 8.0 Hz, 9H), 0.52 (q, J = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 139.2,
129.4, 129.3, 128.2, 21.1, 7.3, 2.9.

(3ca) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H),
2.19 (s, 2H), 0.91 (t, J = 8.0 Hz, 9H), 0.51 (q, J = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 147.4,
132.0, 128.6, 119.4, 107.4, 23.1, 7.2, 2.9; HRMS (ESI) m/z calcd. for C₁₄H₂₁NNaSi [M+Na]⁺:
254.1335, found: 254.1337.

(3da) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 3.88 (s, 3H), 2.18 (s, 2H), 0.91 (t, *J* = 8.0 Hz, 9H), 0.51 (q, *J* = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 167.3, 147.1, 129.6, 127.9, 125.8, 51.8, 22.6, 7.2, 2.9; HRMS (ESI) m/z calculated for C₁₅H₂₄NaO₂Si [M+Na]⁺: 287.1438, found: 287.1424.

(**3ea**) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.41 (t, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 2H), 2.14 (s, 2H), 0.94 (t, *J* = 8.0 Hz, 9H), 0.54 (q, *J* = 8.0 Hz, 6H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 141.2, 139.9, 136.6, 128.6, 128.5, 126.8, 126.74, 126.70, 21.3, 7.3, 3.0; **HRMS** (ESI) m/z calculated for C₁₉H₂₆NaSi [M+Na]+: 282.1877, found: 282.1884.

(3fa) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.28 (d, *J* = 8.0 Hz, 1H), 7.15-7.03 (m, 2H), 6.98-7.00 (m, 1H), 2.28 (s, 2H), 0.91 (t, *J* = 8.0 Hz, 9H), 0.56 (q, *J* = 8.0 Hz, 6H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 139.1, 132.7, 129.9, 129.3, 126.4, 125.2, 19.4, 7.2, 3.4.

(3ga) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.76 (dd, *J* = 8.0 Hz, *J* = 1.0 Hz, 1H), 7.18 (td, *J* = 7.5, 1.0 Hz, 1H), 7.08-7.06 (m, 1H), 6.75-6.72 (m, 1H), 2.37 (s, 2H), 0.91 (t, *J* = 8.0 Hz, 9H), 0.59 (q,

J = 8.0 Hz, 6H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 144.6, 139.4, 128.4, 127.9, 125.6, 100.4, 27.1, 7.3, 3.6.

(3ha) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.11 (t, J = 7.5 Hz, 1H), 6.61 (d, J = 7.5 Hz, 2H),
6.57 (s, 1H), 3.77 (s, 3H), 2.08 (s, 2H), 0.92 (t, J = 8.0 Hz, 9H), 0.51 (q, J = 8.0 Hz, 6H); ¹³C-NMR
(125 MHz, CDCl₃) δ 159.5, 142.3, 129.0, 120.8, 113.9, 109.0, 55.0, 21.8, 7.3, 3.0.

(3ia) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.26-7.24 (m, 1H), 7.19-7.17 (m, 1H), 2.16 (s, 2H), 0.91 (t, J = 8.0 Hz, 9H), 0.51 (q, J = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 141.8, 131.3 (d, J = 1 Hz), 130.4 (d, J = 31.6 Hz), 128.5, 124.5 (q, J = 3.8 Hz), 124.0 (q, J = 270.0 Hz), 120.6 (q, J = 3.8 Hz), 21.9, 7.2, 2.9.

(3ja) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 8.5 Hz, 1H), 6.55 (d, J = 3.0 Hz, 1H), 6.43 (dd, J = 9.0, 3.0 Hz, 1H), 3.68 (s, 3H), 2.21 (s, 2H), 0.84 (t, J = 8.0 Hz, 9H), 0.51 (q, J = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 158.6, 142.0, 133.1, 115.0, 114.4, 111.3, 55.3, 22.4, 7.3, 3.5.

(3n) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.30-7.29 (m, 1H), 7.09 (s, 1H), 6.15-6.14 (m, 1H),
1.79 (s, 2H), 0.93 (t, J = 8.0 Hz, 9H), 0.52 (q, J = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 142.3,
137.8, 121.6, 112.2, 8.5, 7.3, 3.1.

(30) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.19-7.17 (m, 1H), 6.79-6.78 (m, 1H), 6.69-6.68 (m, 1H), 2.11 (s, 2H), 0.92 (t, J = 8.0 Hz, 9H), 0.52 (q, J = 7.5 Hz, 6H); ¹³CNMR (125 MHz, CDCl₃) δ 139.6, 129.0, 124.7, 117.6, 15.5, 7.3, 3.1.

(3ma) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 7.5 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.15-7.13 (m, 3H), 2.28 (s, 3H), 2.02 (s, 2H), 0.85 (t, *J* = 8.0 Hz, 9H), 0.45 (q, *J* = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 144.4, 135.3, 135.1, 132.0, 129.5, 126.6, 124.4, 122.9, 121.4, 121.2, 119.5, 113.9, 21.4, 8.6, 7.2, 3.2; HRMS (ESI) m/z calculated for C₂₂H₂₉NNaO₂SSi [M+Na]⁺: 422.1578, found: 422.1582.

(3na) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.24-7.21 (m, 2H), 7.08-7.06 (m, 3H), 2.30 (q, *J* = 7.5 Hz, 1H), 1.37 (d, *J* = 7.5 Hz, 3H), 0.89 (t, *J* = 8.0 Hz, 9H), 0.51 (q, *J* = 8.0 Hz, 6H); ¹³**C-NMR** (CDCl₃, 125 MHz) δ 146.3, 128.0, 127.1, 124.2, 26.8, 15.4, 7.5, 2.0.

(30a) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 2H), 7.25 (t, *J* = 7.5 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 2H), 3.07-3.00 (m, 1H), 0.93 (t, *J* = 8.0 Hz, 9H), 0.69-0.60 (m, 6H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 134.3 (q, *J* = 3.4 Hz), 129.0, 128.5, 128.4 (q, *J* = 276.0 Hz), 126.6, 40.9 (q, *J* = 11 Hz), 7.0, 2.9.

3ра

(**3pa**) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.80-7.66 (m, 3H), 7.48 (s, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.24 (dd, *J* = 8.0, 1.0 Hz, 1H), 2.47 (q, *J* = 7.5 Hz, 1H), 1.47 (d, *J* = 7.5 Hz, 3H), 0.90 (t, *J* = 8.0 Hz, 9H), 0.54 (q, *J* = 8.0 Hz, 6H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 144.1, 133.7, 131.2, 127.5, 127.23, 127.17, 127.0, 125.7, 124.4, 124.3, 27.1, 15.5, 7.5, 2.1; **HRMS** (ESI) m/z calculated for C₁₈H₂₆NaSi [M+Na]⁺: 293.1797, found: 293.1784.

(**3qa**) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.27-7.21 (m, 8H), 7.14-7.09 (m, 2H), 3.65 (s, 1H), 0.84 (t, *J* = 8.0 Hz, 9H), 0.60 (q, *J* = 8.0 Hz, 6H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 142.9, 128.8, 128.2, 125.0, 43.0, 7.5, 3.4; **HRMS** (ESI) m/z calculated for C₁₉H₂₆NaSi [M+Na]⁺: 305.1697, found: 305.1684.

3ra

(3ra) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.31-7.23 (m, 4H), 7.18-7.10 (m, 1H), 6.28-6.20 (m, 2H), 1.70 (dd, *J* = 5.0, *J* = 2.0 Hz, 2H), 0.96 (t, *J* = 8.0 Hz, 9H), 0.57 (q, *J* = 8.0 Hz, 6H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 138.5, 128.4, 128.1, 128.0, 126.1, 125.4, 18.8, 7.4, 3.3.

(3sa) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 1.59 (s, 2H), 1.05-1.03 (m, 18H), 1.02-1.00 (m, 3H), 0.96 (t, J = 8.0 Hz, 9H), 0.63 (q, J = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 106.6, 78.4, 18.6, 11.5, 7.3, 3.4, 3.1, 1.0.

(3bb) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.15 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H),
2.05 (s, 2H), 1.32-1.20 (m, 12H), 0.87 (t, J = 7.5 Hz, 9H), 0.50-0.44 (m, 6H); ¹³C-NMR (125 MHz,
CDCl₃) δ 139.3, 129.4, 129.3, 128.1, 26.7, 25.9, 22.2, 13.7, 11.6;

(**3bc**) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.15 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 8.5 Hz, 2H), 2.15 (s, 2H), 1.08-1.03 (m, 3H), 1.01-1.00 (m, 18H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 139.6, 129.8, 129.4, 128.1, 18.6, 18.5, 10.9; **HRMS** (ESI) m/z calculated for C₁₆H₂₇ClNaSi [M+Na]⁺:305.1464, found: 305.1456.

(3bd) Colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.16 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H),
2.05 (s, 2H), 0.92 (t, J = 8.0 Hz, 3H), 049 (q, J = 8.0 Hz, 2H), 0.05 (s, 6H); ¹³C-NMR (125 MHz, CDCl₃)
δ 139.1, 129.5, 129.3, 128.2, 24.7, 7.2, 6.4, -4.2.

(3be) Colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H),
2.07 (s, 2H), 0.92 (s, 9H), 0.10 (s, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 139.2, 129.5, 128.2, 26.5, 22.1,
16.7, -6.6.

(3bf) Colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.77 (s, 2H), 7.16 (d, J = 8.0 Hz, 2H),
6.81 (d, J = 8.0 Hz, 2H), 2.31 (s, 2H), 0.35 (s, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 141.5, 136.8, 133.4,
130.7 (q, J = 33.4 Hz), 130.4, 129.4, 128.5, 123.9 (q, J = 272.0 Hz), 123.0 (q, J = 3.6 Hz), 25.2, -3.8.

(**3bg**) Colourless oil; ¹**H-NMR** (500 MHz, CDCl₃) δ 7.45-7.43 (m, 4H), 7.40-7.36 (m, 2H), 7.35-7.31 (m, 4H), 7.07 (d, *J* = 8.5 Hz, 2H), 6.77 (d, *J* = 8.5 Hz, 2H), 2.58 (s, 2H), 0.46 (s, 3H); ¹³**C-NMR** (125 MHz, CDCl₃) δ 137.4, 135.9, 134.6, 129.9, 129.8, 129.4, 128.1, 127.8, 24.0, -4.9; **HRMS** (ESI) m/z calculated for C₂₀H₁₉ClNaSi [M+Na]+: 345.0838, found: 345.0867.

(3bh) White solid, m.p. 166-167 °C; ¹H-NMR (500 MHz, CDCl₃) δ 7.41-7.38 (m, 9H), 7.33-7.31 (m, 6H), 7.01 (d, *J* = 8.5 Hz, 2H), 6.74 (d, *J* = 8.5 Hz, 2H), 2.87 (s, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 136.8, 135.9, 133.8, 130.4, 130.1, 129.7, 128.0, 127.8, 23.0; HRMS (ESI) m/z calculated for C₂₅H₂₁ClNaSi [M+Na]+: 407.0995, found: 407.0972.

(3bi) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.16 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H),
2.30 (s, 2H), 0.12 (s, 27H); ¹³C-NMR (125 MHz, CDCl₃,) δ 141.8, 129.6, 129.4, 128.3, 16.1, 1.1;
HRMS (ESI) m/z calculated for C₁₆H₃₃ClNa Si₄ [M+Na]+: 395.1246, found: 395.1254.

(3bj) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.11 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 2H), 2.26 (t, *J*_{Sn-H} = 56 Hz, 2H), 1.47-1.35 (m, 6H), 1.29-1.22 (m, 6H), 0.87 (t, *J* = 8.0 Hz, 9H), 0.80 (t, *J* = 8.0 Hz, 6H); ¹³C-NMR (125 MHz, CDCl3) δ 142.4, 128.22 (128.27, 128.18), 128.13, 128.05, 29.00 (29.08, 29.02), 27.30 (27.52, 27.09), 17.7, 13.7, 9.3 (10.60, 10.54, 8.11, 8.06); (The spliting peaks generated from J-coupling of ¹¹⁵Sn/¹¹⁹Sn with ¹³C).

(3bk) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.41-7.33 (m, 15H), 7.06 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 2.91 (t, J_{Sn-H} = 66 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 139.5, 139.3, 137.0 (137.1, 136.9), 129.11 (129.15, 129.06), 129.0, 128.7, 128.6, 128.37 (128.42, 128.31),

19.5(20.78,20.72, 18.25, 18.19). (The spliting peaks generated from J-coupling of $^{115}Sn/^{119}Sn$ with ^{13}C).

(3bl) Colourless oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 6.96 (d, J = 7.8 Hz, 2H), 6.89 (d, J = 7.8 Hz, 2H), 2.26 (s, 3H), 2.25 (t, $J_{Sn-H} = 28$ Hz, 2H), 1.44-1.39 (m, 6H), 1.29-1.23 (m, 6H), 0.86 (t, J = 7.8 Hz, 9H), 0.79 (t, J = 7.8 Hz, 6H); ¹³**C-NMR** (150 MHz, CDCl3) δ 140.3, 132.0, 128.90 (128.93, 128.86), 126.87 (126.94, 126.80), 29.03 (29.10, 28.97), 27.33 (27.50, 27.15), 20.8, 17.5, 13.7, 9.23 (10.28, 10.23, 8.23, 8.18); (The spliting peaks generated from J-coupling of ¹¹⁵Sn/¹¹⁹Sn with ¹³C).

(3bm) Colourless oil; ¹H-NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 7.8 Hz, 2H), 7.42-7.39 (m, 4H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.05 (d, *J* = 7.8 Hz, 2H), 2.34 (t, *J*_{Sn-H} = 28 Hz, 2H), 1.46-1.40 (m, 6H), 1.29-1.24 (m, 6H), 0.88-0.81 (m, 15H); ¹³C-NMR (150 MHz, CDCl3) δ 143.1, 141.3, 135.7, 128.6, 127.33 (127.40, 127.26), 126.92 (126.96, 126.88), 126.7, 126.5, 29.03 (29.10, 28.96), 27.32 (27.50, 27.14), 17.9, 13.7, 9.38 (10.43, 10.39, 9.38, 8.38, 8.33); (The spliting peaks generated from J-coupling of ¹¹⁵Sn/¹¹⁹Sn with ¹³C).

(3bn) Colourless oil; ¹H-NMR (600 MHz, CDCl₃) δ 7.26-7.24 (m, 1H), 7.07-7.04 (m, 2H), 6.92-6.90 (m, 1H), 2.40 (t, $J_{\text{Sn-H}}$ = 28 Hz, 2H), 1.45-1.39 (m, 6H), 1.27-1.22 (m, 6H), 0.87-0.81 (m, 15H); ¹³C-NMR (150 MHz, CDCl3) δ 142.2, 131.6, 129.06 (129.10, 129.02), 128.57 (128.63, 128.50), 126.56 (126.60, 126.52), 124.21 (124, 124.17), 28.94 (29.01, 28.87), 27.30 (27.48, 27.12), 17.2, 13.7,

10.04 (11.09, 11.05, 9.02, 8.98); (The spliting peaks generated from J-coupling of ¹¹⁵Sn/¹¹⁹Sn with ¹³C).

(3bo) Colourless oil; ¹**H-NMR** (600 MHz, CDCl₃) δ 7.07 (t, *J* = 7.8 Hz, 1H), 6.57 (d, *J* = 7.8 Hz, 1H), 6.54-6.51 (m, 2H), 3.76 (s, 3H), 2.28 (t, *J*_{Sn-H} = 28 Hz, 2H), 1.45-1.40 (m, 6H), 1.29-1.23 (m, 6H), 0.86 (t, *J* = 7.8 Hz, 9H), 0.81 (t, *J* = 7.8 Hz, 6H); ¹³**C-NMR** (150 MHz, CDCl3) δ 159.6, 145.4, 129.1, 119.6, 112.4, 108.4, 55.0, 29.02 (29.09, 28.95), 27.31 (27.49, 27.13), 18.36 (19.14, 19.11, 17.61, 17.58), 13.7, 9.35 (10.41, 10.36, 8.35, 8.30); (The spliting peaks generated from *J*-coupling of ¹¹⁵Sn/¹¹⁹Sn with ¹³C).

(3bp) Colourless oil; ¹H-NMR (600 MHz, CDCl₃) δ 7.20 (t, J = 7.2 Hz, 2H), 7.02 (d, J = 7.2 Hz, 2H), 6.98 (t, J = 7.2 Hz, 1H), 2.70 (q, J = 7.8 Hz, 1H), 1.57 (d, J = 7.8 Hz, 3H), 1.40-1.35 (m, 6H), 1.27-1.22 (m, 6H), 0.85 (t, J = 7.8 Hz, 9H), 0.79-0.76 (m, 6H); ¹³C-NMR (150 MHz, CDCl3) δ 149.0, 128.16 (128.20, 128.12), 125.51 (125.58, 125.44), 123.2, 29.05 (29.11, 28.98), 27.45 (27.62, 27.27), 26.8, 17.4, 13.7, 8.72 (9.73, 9.68, 7.76, 7.71); (The spliting peaks generated from Jcoupling of ¹¹⁵Sn/¹¹⁹Sn with ¹³C).

(3bq) Colourless oil; ¹H-NMR (600 MHz, CDCl₃) δ 7.74-7.66 (m, 3H), 7.41-7.39 (m, 2H), 7.33-7.30 (m, 1H), 7.19-7.18 (m, 1H), 2.86 (q, J = 7.8 Hz, 1H), 1.67 (d, J = 7.8 Hz, 3H), 1.41-1.35 (m, 6H), 1.26-1.20 (m, 6H), 0.83-0.78 (m, 15H); ¹³C-NMR (150 MHz, CDCl3) δ 146.7, 134.1, 130.8, 127.5,

127.4, 127.0, 126.31 (126.36, 126.26), 125.7, 124.0, 121.71 (121.79, 121.62), 29.08 (29.04, 29.01), 27.44 (27.62, 27.28), 27.3, 17.31, 13.6, 8.88 (9.88, 9.84, 7.91, 7.87); (The spliting peaks generated from J-coupling of ¹¹⁵Sn/¹¹⁹Sn with ¹³C).

(3br) Colourless oil; ¹H-NMR (600 MHz, CDCl₃) δ 7.23 (t, J = 7.2 Hz, 4H), 7.17 (d, J = 7.2 Hz, 4H), 7.06 (t, J = 7.2 Hz, 2H), 4.04 (s, 1H), 1.35-1.30 (m, 6H), 1.23-1.17 (m, 6H), 0.82-0.79 (m, 15H); ¹³C-NMR (150 MHz, CDCl3) δ 144.5, 128.3, 127.83 (127.91, 127.75), 124.3, 42.4, 28.86 (28.92, 28.79), 27.30 (27.49, 27.12), 13.6, 10.49 (11.52, 11.47, 9.51, 9.47); (The spliting peaks generated from Jcoupling of ¹¹⁵Sn/¹¹⁹Sn with ¹³C).

(3bs) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.15 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 2.17 (s, 2H), 1.33-1.25 (m, 12H), 0.87 (t, J = 7.0 Hz, 9H), 0.70-0.66 (m, 6H); ¹³C-NMR (125 MHz, CDCl3) δ 140.4, 129.1, 128.9, 128.1, 27.2, 26.5, 21.6, 13.7, 12.2.

(4) Colourless oil; ¹H-NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 0.99 (t, J = 7.5 Hz, 9H), 0.93-0.89 (m, 6H); ¹³C-NMR (125 MHz, CDCl₃) δ 236.1, 142.4, 132.6, 128.6, 127.1, 7.4, 3.7; HRMS (ESI) m/z calculated for C₁₃H₂₁OSi [2M+H]⁺: 221.1358, found: 221.1354.

(5) Colourless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.18 (t, *J* = 7.5 Hz, 2H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 7.5 Hz, 2H), 1.65 (s, 1H), 0.92 (t, *J* = 8.0 Hz, 9H), 0.61 (q, *J* = 8.0 Hz, 6H), 0.04 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃) δ 142.8, 129.0, 127.9, 123.2, 25.8, 7.8, 4.8, 0.2; HRMS (ESI) m/z calculated for C₁₆H₃₁Si₂ [M+H]⁺: 279.1964, found: 279.1954.

5. ¹H and ¹³C NMR Spectral Copies

S23

S35

2.976 2.910 2.843

3bk

7.571 7.558 7.411 7.408 7.408 7.338 7.338 7.292 7.292 7.058 $\begin{array}{c} 2.344\\ 2.2297\\ 1.448\\ 1.448\\ 1.421\\ 1.408\\ 1.408\\ 0.878\\ 0.878\\ 0.847\\ 0.847\\ 0.847\\ 0.847\\ 0.847\\ 0.819\end{array}$ -2.391 -2.344 -2.297 $\begin{array}{c} 1.460\\ 1.448\\ 1.429\\ 1.425\\ 1.421\\ 1.421\\ 1.421\\ 1.421\\ 1.425\\ 1.259\\ 1.256\\ 1.255\\ 1.$ Sn(n-Bu)3 Ph 3bm ٨ 6.35 6.3 2.4 2.3 1.6 1.5 1.4 1.3 1.2 15.31H ٣ ٢ ٩ ۲ ч 74 2.00 1.00 1.99 6.35 2.11 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 9.0 8.5 8.0 -135.70 128.62 127.33 126.66 126.66 _143.06 _141.34 29.03 -17.92 -13.69 -9.38 727.40-127.33-127.33-127.26-126.92-126.88-29.10-29.03-29.03-27.50 -27.32 -27.14 10.43 -9.38 8.33 Sn(n-Bu)3 Ph 3bm 127.2 27.4 9.6 1 150 70 60 20 10 0 140 130 120 110 100 90 80 50 40 30

7213721372007187703370337021699569836971

2.716 2.691 2.678 2.678 2.678 2.678 2.678 1.578 0.865 0.776 0.776 0.776 0.776 0.776

•

S74

S75

•

S78