Ir/PTC Cooperatively Catalyzed Asymmetric Umpolung Allylation of α -Imino Esters Enabled Synthesis of α -Quaternary Amino Acid Derivatives Bearing Two Vicinal stereocenters

Yong-liang Su, Yu-hui Li, Yu-gen Chen, and Zhi-Yong Han*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

E-mail: <u>hanzy2014@ustc.edu.cn</u>

Supporting Information

Contents:

1. General Data1
2. General Procedures for the Preparation of Imino Esters2
3. Characterization Data for the Imino Esters
4. General Experimental Procedures6
5. Characterization Data for the Products
6. Synthesis and Characterization of 516
7. Synthesis and Characterization of 617
8. X-ray Single Crystal Data - Determination of the Absolute Configuration18
9. References
10. NMR Data20
11. HPLC Data

1. General Data

NMR spectra were recorded on a Brucker-400 MHz spectrometer. The high resolution mass spectra (HRMS) were recorded on a Thermo LTQ Orbitrap XL (ESI+) or a P-SIMS-Gly of Brucker DaltonicsInc (EI+). Infrared spectra were recorded on a Nicolet MX-1E FT-IR spectrometer. Enantiomeric excesses were performed on Agilent 1200 (UV detection monitored at 220 nm) Chiralpak OD-H, IB, IA, IC columns were purchased from Daicel Chemical Industries, LTD. Optical rotations were measured on Anton Paar MCP 200.

Materials: Starting materials were purchased from commercial suppliers (Aldrich, Acros, TCI, J&K, etc) and used as supplied unless otherwise stated. Allylic acetates were prepared by following the literature report.¹ Imino esters were prepared as described below. All solvents were purified and dried according to standard methods prior to use, unless stated otherwise.

entry	\mathbb{R}^1	R ²	LG	L	PTC	yield (%) ^[b]	d.r. ^[c]	ee (%) ^[d]
1	Et	Ph	OAc	LS1	PTC1	59	4:1	70 (56)
2	Et	Ph	OAc	LS2	PTC1	N.P.	N.D.	N.D.
3	Et	Ph	OAc	LS3	PTC1	40	15:1	4 (8)
4	Et	Ph	OAc	LS4	PTC1	46	2:1	53 (3)
5	<i>t</i> Bu	3,4-Cl ₂ Ph	OAc	L6	PTC1	21	N.D.	83 (N.D.)
6	<i>t</i> Bu	Ph	OPO(OEt) ₂	L6	PTC1	40	3:1	78 (50)
7	<i>t</i> Bu	Ph	OCO ₂ Me	L6	PTC1	29	4:1	85 (50)
8	<i>t</i> Bu	Ph	OAc	L6	РТС9	trace	N.D.	N.D.
9	<i>t</i> Bu	Ph	OAc	L6	PTC10	19	2:1.	81 (53)
10	<i>t</i> Bu	Ph	OAc ^[e]	L6	PTC1	48	3:1	50 (11)

[a] Reaction conditions: unless indicated otherwise, reactions of **1** (0.20 mmol), **2** (0.10 mmol), $[Ir(cod)Cl]_2$ (0.005 mmol), **L** (0.010 mmol), TBAB (0.01 mmol) and KOH (0.15 mmol) were carried out in toluene (1 mL) for 12 h. Then workup with 1N HCl at rt. [b] Isolated yield. [c] The d.r. was determined by 1H NMR analysis of the crude reaction mixture. [d] Determined by chiral HPLC analysis. [e] The reaction was conducted with branched allylic ester.

2. General Procedures for the Preparation of Imino Esters

$$\mathbb{R}^{3} \stackrel{I}{\stackrel{[l]}{\underset{[l]}{\overset{[l]}{\underset{[l]}{\underset{[l]}{\overset{[l]}{\underset{[l]}{\underset{[l]}{\overset{[l]}{\underset{[l]}{\underset{[l]}{\overset{[l]}{\underset{[l]}{\underset{[l]}{\overset{[l]}{\underset{[l]}}{\underset{[l]}{\underset{[l]}{\underset{[l]}{\underset{[l]}}{\underset{[l]$$

A flame-dried round-bottom flask was equipped with vacuum/argon stopcock and a magnetic stirring bar. The round-bottom flask was charged with α -keto ester (10.0 mmol, 1 equiv), BnNH₂ (12.0 mmol, 1.2 equiv), Ti(OEt)₄ or Ti(O*t*Bu)₄ and DCM (30 mL). The resulting mixture was stirred at room temperature, monitored by crude ¹H NMR until the full conversion of the α -keto ester. The resulting mixture was quenched with water (20 mL), then filtered through celite. The aqueous phase was extracted with DCM (3×20 mL) and the combined organic layers were washed with brine. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated. The products were used without further purification.

3. Characterization Data for the Imino Esters

tert-butyl (E)-2-(benzylimino)-2-phenylacetate (1a)

Pale yellow oil. Yield: 77%. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – OtBu OtBu OtBu Pale yellow oil. Yield: 77%. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 2H), 7.48 – 7.37 (m, 5H), 7.37 – 7.32 (m, 2H), 7.30 – 7.26 (m, 1H), 4.79 (s, 2H), 1.62 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.12, 160.97, 138.98, 134.52, 130.89, 128.53, 128.44, 128.02, 127.36, 127.00, 84.18, 57.93, 28.33. IR (KBr) γ 3063, 3029, 2979, 2932, 1724, 1633, 1495, 1450, 1369, 1299, 1235, 1151, 691 cm⁻¹. HRMS (ESI) m/z (M+Na)⁺ calculated for C₁₉H₂₁NO₂Na: 318.1470, observed: 318.1477.

tert-butyl (E)-2-(benzylimino)-2-(m-tolyl)acetate (1b)

NBn OtBu

Pale yellow oil. Yield: 72%. ¹**H NMR** (400 MHz, CDCl₃) δ 7.67 - 7.63 (m, 1H), 7.58 - 7.51 (m, 1H), 7.43 - 7.36 (m, 3H), 7.36 -7.31 (m, 2H), 7.29 - 7.26 (m, 2H), 4.78 (s, 2H), 2.37 (s, 3H), 1.62

(s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.27, 161.25, 138.94, 138.33, 134.37, 131.77, 128.46, 128.41, 128.06, 127.74, 127.02, 124.68, 84.15, 57.99, 28.33, 21.43. **IR** (**KBr**) γ 3062, 3029, 2979, 2930, 2869, 1724, 1633, 1369, 1246, 1147, 695 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₀H₂₃NO₂Na: 332.1626, observed: 332.1634.

tert-butyl (E)-2-(benzylimino)-2-(3-methoxyphenyl)acetate (1c)

MeO OtBu = 0 OtBu

(s, 3H), 1.62 (s, 9H). ¹³C NMR (101 MHz, CDCl3) δ 165.12, 160.91, 159.76, 138.90, 135.84, 129.54, 128.46, 128.05, 127.04, 120.18, 117.46, 111.66, 84.22, 57.96, 55.37, 28.33. **IR** (**KBr**) γ 3063, 3029, 2978, 2932, 1724, 1255, 1147, 1041, 695 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₀H₂₃NO₃Na: 348.1576, observed: 348.1591.

tert-butyl (E)-2-(benzylimino)-2-(3-chlorophenyl)acetate (1d)

Pale yellow oil. Yield: 51%.¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.81 (m, 1H), 7.64 – 7.58 (m, 1H), 7.44 – 7.39 (m, 2H), 7.39 – 7.37 (m, 2H), 7.37 – 7.33 (m, 2H), 7.30 –

7.26 (m, 1H), 4.78 (s, 2H), 1.63 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ 164.55, 159.62, 138.60, 136.24, 134.77, 130.91, 129.77, 128.53, 128.04, 127.31, 127.17, 125.60, 84.63, 58.07,

28.32. **IR** (**KBr**) γ 3065, 3029, 2979, 2930, 1725, 1632, 1369, 1297, 1151, 696 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₁₉H₂₀NO₂NaCl: 352.1080, observed: 352.1094.

tert-butyl (E)-2-(benzylimino)-2-(p-tolyl)acetate (1e)

NBn OtBu

CDCl₃) δ 165.32, 160.95, 141.28, 139.09, 131.80, 129.27, 128.43, 128.02, 127.32, 126.96, 84.06, 57.85, 28.33, 21.50. **IR** (**KBr**) γ 3028, 3002, 2979, 2930, 1724, 1368, 1300, 1243, 1151, 697 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₀H₂₃NO₂Na: 332.1626, observed: 332.1638.

tert-butyl (E)-2-(benzylimino)-2-(4-methoxyphenyl)acetate (1f)

 $\begin{array}{c} \mbox{NBn} \\ \mbox{OtBu} \\ \mbox{MeO} \end{array} \begin{array}{c} \mbox{Pale yellow solid. Yield: 89\%.}^{1}\mbox{H NMR } (400\mbox{ MHz, CDCl}_3) \, \delta \\ \mbox{7.44} - 7.37\mbox{ (m, 3H)}, 7.37 - 7.29\mbox{ (m, 4H)}, 7.29 - 7.26\mbox{ (m, 1H)}, \\ \mbox{7.05} - 6.95\mbox{ (m, 1H)}, 4.78\mbox{ (s, 2H)}, 3.83\mbox{ (s, 3H)}, 1.62\mbox{ (s, 9H)}. \end{array}$

¹³C NMR (101 MHz, CDCl₃) δ 164.36, 160.76, 159.34, 138.17, 127.95, 127.37, 126.95, 126.17, 125.88, 112.87, 82.98, 56.70, 54.34, 27.28. **IR** (**KBr**) γ3029, 3003, 2978, 2934, 1723, 1604, 1512, 1257, 1173, 1151, 1029 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₀H₂₃NO₃Na: 348.1576, observed: 348.1592

tert-butyl (E)-2-(benzylimino)-2-(4-fluorophenyl)acetate (1g)

Pale yellow solid. Yield: 76%. ¹**H** NMR (400 MHz, CDCl₃) δ 7.84 – 7.74 (m, 2H), 7.43 – 7.32 (m, 4H), 7.31 – 7.26 (m, 1H), 7.13 – 7.03 (m, 2H), 4.76 (s, 2H), 1.62 (s, 9H). ¹³C NMR (101

MHz, CDCl₃) δ 164.94, δ 164.47 (d, J = 251.4 Hz), 159.69, 138.86, 130.74 (d, J = 3.1 Hz), 129.45 (d, J = 8.7 Hz), 128.50, 128.02, 127.09, 115.66 (d, J = 21.9 Hz), 84.42, 57.92, 28.33. **IR (KBr)** γ 3064, 3030, 2980, 2933, 1724, 1508, 1370, 1231, 1150, 835 cm⁻¹. **HRMS (ESI)** m/z (M+Na)⁺ calculated for C₁₉H₂₀NO₂NaF: 336.1376, observed:

336.1391.

tert-butyl (E)-2-(benzylimino)-2-(4-chlorophenyl)acetate (1h)

Pale yellow oil. Yield:
$$85\%$$
.¹H NMR (400 MHz, CDCl₃) δ 7.76
- 7.65 (m, 2H), 7.40 - 7.32 (m, 6H), 7.30 - 7.27 (m, 1H), 4.77
(s, 2H), 1.62 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.74,

159.78, 138.73, 137.06, 132.96, 128.82, 128.66, 128.51, 128.02, 127.12, 84.51, 58.01, 28.32. **IR** (**KBr**) γ 3063, 3029, 2979, 2929, 2854, 1724, 1490, 1369, 1151, 1091, 1014 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₁₉H₂₀NO₂NaCl: 352.1080, observed: 352.1098.

tert-butyl (E)-2-(benzylimino)-2-(4-bromophenyl)acetate (1i)

CDCl₃) δ 164.68, 159.90, 138.70, 133.41, 131.78, 128.87, 128.51, 128.02, 127.13, 125.55, 84.52, 58.04, 28.33. **IR** (**KBr**) γ 3063, 3029, 2979, 2932, 1728, 1487, 1369, 1154, 1010, 697 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₁₉H₂₀NO₂NaBr: 396.0575, observed: 396.0586.

tert-butyl (E)-2-(benzylimino)-2-(naphthalen-2-yl)acetate (1j)

(m, 1H), 4.85 (s, 2H), 1.66 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.25, 161.09, 139.00, 134.63, 132.82, 131.94, 128.95, 128.49, 128.42, 128.40, 128.07, 127.78, 127.42, 127.06, 126.50, 123.74, 84.30, 58.10, 28.38. **IR** (**KBr**) γ 3061, 3029, 2978, 2932, 1732, 1624, 1369, 1250, 1151, 1132 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₃H₂₃NO₂Na: 368.1626, observed: 368.1642.

4. General Experimental Procedures

To a flame-dried and Ar-purged schlenk tube (25 mL) was added $[Ir(cod)Cl]_2(3.4 mg, 0.005 mmol)$, **L6** (0.010 mmol), **PTC1** (3.2 mg, 0.010 mmol), KOH (8.4 mg, 0.15 mmol) and a stir bar. The schlenk tube was then evacuated and filled with argon. This cycle was repeated three times and followed by addition of imino ester (0.20 mmol), allylic acetate (0.1 mmol) in fluorobenzene (1 mL) via syringe. The mixture was stirred at 25 °C until the full conversion of the allylic acetate (monitored by TLC). Then the reaction mixture was added 2 ml THF and 2 ml 1N HCl and stirred at 25 °C for 1 h. The mixture was brought to pH 10 with Na₂CO₃ (aq), extracted with Et₂O (4 x 15 mL), dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography on silica gel (petroleum/ethyl acetate = 30/1 to 15/1).

5. Characterization Data for the Products

tert-butyl (2S,3S)-2-amino-2,3-diphenylpent-4-enoate (3aa)

Colorless oil. Yield: 61%. dr: 4:1. Enantiomeric excess: **major**: 93%, **minor**: 71%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 92/8, flow rate 1.0 mL/min, T = 30°C, 220 nm), **major**: t_R = 4.756 min, t_R = 6.299 min (major); **minor**: t_R =

4.974 min, t_R = 5.334 min (major). [α]_D²⁰ = -15.2 (c 0.29, CHCl₃) (major); [α]_D²⁰ = -387.2 (c 0.07, CHCl₃)(minor) . ¹**H NMR** (400 MHz, CDCl₃) δ **major**: 7.51 – 7.43 (m, 2H), 7.22 – 7.12 (m, 3H), 7.07 (s, 5H), 6.36 (ddd, *J* = 17.1, 10.4, 8.0 Hz, 1H), 5.21 (ddd, *J* = 10.4, 1.7, 0.9 Hz, 1H), 5.18 – 5.09 (m, 1H), 4.31 (d, *J* = 8.0 Hz, 1H), 1.87 (brs, 2H), 1.47 (s, 9H); **minor :** 7.76 – 7.71 (m, 2H), 7.52 – 7.44 (m, 2H), 7.38 – 7.27 (m, 5H), 7.25 – 7.21 (m, 1H), 5.98 (ddd, J = 17.2, 10.4, 7.9 Hz, 1H), 5.00 – 4.87 (m, 1H), 4.85 – 4.73 (m, 1H), 4.40 (d, J = 7.9 Hz, 1H), 1.73 (brs, 2H), 1.27 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ major: 173.35, 141.83, 139.14, 137.56, 129.89, 127.74, 127.60, 127.08, 126.45, 126.17, 118.17, 82.06, 67.59, 57.51, 27.93. minor: 173.28, 141.90, 140.36, 136.95, 129.98, 128.13, 128.00, 127.24, 126.95, 126.42, 117.94, 81.90, 67.11, 56.55, 27.68. IR (KBr) γ (major) 3061, 3028, 2976, 2926, 2853, 1724, 1682, 1368, 1247, 1153, 701 cm⁻¹. HRMS (ESI) m/z (M+Na)⁺ calculated for C₂₁H₂₅NO₂Na: 346.1783, observed: 346.1799.

ethyl (E)-2-amino-2,5-diphenylpent-4-enoate (3aa'')

Ph H_2 CooEt Colorless oil. Yield: 41%. Enantiomeric excess: 6%, determined by HPLC (CHIRALPAK OD, hexane/isopropanol = 33.3/66.7, flow rate 1.0 mL/min, T = 30°C, 254 nm): t_R= 6.990min, t_R= 8.683 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.5 Hz, 1H), 7.37 (m, 1H), 7.29 (m, 1H), 7.21 (m, 1H), 6.54 (d, *J* = 15.8 Hz, 1H), 6.20 – 6.04 (m, 1H), 4.21 (m, 1H), 3.23 – 3.09 (m, 1H), 2.78 (dd, *J* = 13.9, 7.8 Hz, 1H), 2.04 (br, 1H), 1.25 (t, *J* = 7.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.11, 142.90, 137.03, 134.95, 128.54, 128.47, 128.41, 127.56, 127.49, 126.26, 125.39, 124.38, 63.51, 61.57, 44.01, 14.18. HRMS (ESI) m/z (M+H)⁺ calculated for C₁₉H₂₂NO₂: 296.1645, observed: 296.1651.

tert-butyl (2S,3S)-2-amino-2-phenyl-3-(o-tolyl)pent-4-enoate (3ab)

Colorless oil. Yield: 74%. dr: >20:1. Enantiomeric excess: 90%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 97/3, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R = 4.615min, t_R = 7.837 min (major). [α]_D²⁰ = 23.7 (c 0.21, CHCl₃). ¹H NMR (400 MHz,

CDCl₃) δ 7.68 (dd, J = 7.8, 1.2 Hz, 1H), 7.50 – 7.29 (m, 2H), 7.11 – 7.02 (m, 3H), 6.99 – 6.79 (m, 3H), 6.11 (ddd, J = 17.3, 10.3, 7.1 Hz, 1H), 5.09 (ddd, J = 10.3, 1.8, 1.2 Hz, 1H), 4.95 – 4.83 (m, 1H), 4.65 (d, J = 7.1 Hz, 1H), 1.99 (s, 3H), 1.79 (brs, 2H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.41, 140.54, 136.80, 136.45, 135.89, 128.88, 128.49, 126.58, 125.98, 125.15, 124.93, 124.31, 117.17, 81.03, 66.84, 50.12, 26.90, 18.84. **IR** (**KBr**) γ 3371, 3057, 3004, 2972, 2926, 2853, 1720, 1263, 1154, 735 cm⁻¹. **HRMS (ESI)** m/z (M+Na)⁺ calculated for C₂₂H₂₇NO₂Na: 360.1939, observed:

360.1954.

tert-butyl (2S,3S)-2-amino-3-(2-methoxyphenyl)-2-phenylpent-4-enoate (3ac)

Colorless oil. Yield: 81%. dr: 17:1. Enantiomeric excess: 92%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 97/3, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R = 6.656 min, t_R = 13.004 min (major). $[\alpha]_D^{20}$ = 20.7 (c 0.51, CHCl₃). ¹H NMR

(400 MHz, CDCl3) δ 7.49 (m, 1H), 7.43 – 7.33 (m, 2H), 7.10 – 6.92 (m, 4H), 6.72 (m, 1H), 6.53 – 6.45 (m, 1H), 6.22 – 6.12 (m, 1H), 5.10 (ddd, J = 2.9, 1.9, 1.4 Hz, 1H), 5.06 – 4.95 (m, 2H), 3.43 (s, 3H), 1.86 (brs, 2H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl3) δ 173.01, 155.99, 140.73, 136.77, 129.51, 126.70, 126.35, 126.12, 125.68, 125.06, 118.83, 116.82, 109.25, 80.84, 66.71, 54.18, 46.31, 26.89. **IR** (**KBr**) γ 3390, 3059, 2976, 2930, 2853, 2835, 1720, 1490, 1240, 1151, 754 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₂H₂₇NO₃Na: 376.1889, observed: 376.1905.

tert-butyl (2S,3S)-2-amino-3-(2-bromophenyl)-2-phenylpent-4-enoate (3ad)

Colorless oil. Yield: 68%. dr: 6:1. Enantiomeric excess: **major**: 95%, **minor**: 83%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 98/2, flow rate 1.0 mL/min, T = 30°C, 220 nm), **major**: t_R = 4.517 min, t_R = 6.367 min (major); **minor**: t_R =

5.044 min (major), t_R = 5.538 min. [α]_D²⁰ = 92.5 (c 0.22, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (m, 1H), 7.57 – 7.45 (m, 2H), 7.33 (m, 1H), 7.17 – 7.04 (m, 4H), 6.92 – 6.81 (m, 1H), 6.07 (ddd, *J* = 17.1, 10.3, 6.6 Hz, 1H), 5.31 (d, *J* = 6.6 Hz, 1H), 5.25 (dt, *J* = 10.3, 1.4 Hz, 1H), 4.98 (dt, J = 17.1, 1.5 Hz, 1H), 2.10 (brs, 2H), 1.48 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.54, 140.57, 138.36, 136.55, 132.39, 131.44, 127.79, 127.66, 127.00, 126.70, 126.30, 125.95, 119.26, 82.23, 67.46, 53.40, 27.87. IR (KBr) γ 3056, 3004, 2980, 2927, 2854, 1720, 1265, 1155, 738, 703 cm⁻¹. HRMS (ESI) m/z (M+Na)⁺ calculated for C₂₁H₂₄NO₂NaBr: 424.0888, observed: 424.0891.

tert-butyl (2S,3S)-2-amino-3-(3-chlorophenyl)-2-phenylpent-4-enoate (3ae)

Colorless oil. Yield: 50%. dr: 5:1. Enantiomeric excess: **major**: 90%, **minor**: 69%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 98.5/1.5, flow rate 1.0 mL/min, T = 30°C, 220 nm), **major**: t_R = 5.872 min, t_R = 7.280 min (major); **minor**:

t_R= 6.921 min, t_R= 7.704 min (major). [α]_D²⁰ = -25.2 (c 0.10, CHCl₃). ¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 7.24 – 7.12 (m, 4H), 6.99 (m, 3H), 6.33 – 6.19 (m, 1H), 5.23 (dd, J = 10.3, 1.0 Hz, 1H), 5.12 (dd, J = 17.1, 1.2 Hz, 1H), 4.29 (d, J = 7.9 Hz, 1H), 1.75 (brs, 3H), 1.47 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 173.32, 141.28, 136.96, 133.35, 130.00, 128.71, 128.18, 127.89, 127.28, 126.58, 125.99, 118.76, 82.27, 67.45, 57.08, 27.91. **IR (KBr)** γ 3360, 3057, 2979, 2924, 2852, 1722, 1265, 1154, 739, 702 cm⁻¹. **HRMS (ESI)** m/z (M+Na)⁺ calculated for C₂₁H₂₄NO₂NaCl: 380.1393, observed: 380.1411.

tert-butyl (2S,3S)-2-amino-2-phenyl-3-(p-tolyl)pent-4-enoate (3af)

Colorless solid. Yield: 56%. dr: 8:1. Enantiomeric excess: **major**: 91%, **minor**: 59%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 96/4, flow rate 1.0 mL/min, T = 30°C, 220 nm), **major**: t_R = 5.257 min, t_R = 6.102 min (major); **minor**: t_R =

5.759 min, t_R = 6.466 min (major). [α]_D²⁰ = -28.4 (c 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.44 (m, 2H), 7.25 – 7.11 (m, 3H), 7.00 – 6.83 (m, 4H), 6.35 (ddd, J = 17.1, 10.3, 8.1 Hz, 1H), 5.24 – 5.06 (m, 2H), 4.28 (d, J = 8.1 Hz, 1H), 2.20 (s, 3H), 1.85 (s, 2H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.28, 141.93, 137.72, 136.03, 135.95, 129.68, 128.39, 127.73, 127.05, 126.29, 117.91, 82.03, 67.55, 57.14, 27.92, 20.94. IR (KBr) γ 3408, 3056, 2980, 2926, 2854, 1716, 1368, 1264, 1156, 742, 700 cm⁻¹. HRMS (ESI) m/z (M+Na)⁺ calculated for C₂₂H₂₇NO₂Na: 360.1939, observed: 360.1956.

tert-butyl (2S,3S)-2-amino-3-(4-fluorophenyl)-2-phenylpent-4-enoate (3ag)

Colorless solid. Yield: 56%. dr: 4:1. Enantiomeric excess: **major**: 91%, **minor**: 70%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 98.5/1.5, flow rate 1.0 mL/min, T = 30° C,

H₂N Ph 220 nm), **major**: t_R= 5.465 min, t_R=6.850 min (major); **minor**: t_R= 5.720 min (major), t_R= 6.426 min.[α]_D²⁰ = -33.2 (c 0.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 7.22 – 7.12 (m, 3H), 7.08 – 6.99 (m, 2H), 6.80 – 6.72 (m, 2H), 6.29 (ddd, J = 17.2, 10.4, 7.7 Hz, 1H), 5.28 – 5.19 (m, 1H), 5.17 – 5.06 (m, 1H), 4.32 (d, J = 7.7 Hz, 1H), 1.77 (brs, 2H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃)

δ 173.43, 161.53 (d, J = 244.7 Hz), 141.48, 137.41, 134.79(d, J = 3.29 Hz), 131.35 (d, J = 7.8 Hz), 127.83, 127.17, 126.00, 118.44, 114.33 (d, J = 21.0 Hz), 82.16, 67.50, 56.53, 27.91. **IR** (**KBr**) γ 3360, 3057, 2962, 2923, 2851, 1277, 1508, 1264, 1155, 1016, 802, 739 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₁H₂₄NO₂NaF: 364.1689, observed: 364.1707.

tert-butyl (2S,3S)-2-amino-3-(4-chlorophenyl)-2-phenylpent-4-enoate (3ah)

Colorless solid. Yield: 57%. dr: 8:1. Enantiomeric excess: **major**: 90%, **minor**: 67%, determined by HPLC (CHIRALPAK IB, hexane/isopropanol = 99.55/0.45, flow rate 1.0 mL/min, T = 30°C, 220 nm), **major**: t_R = 6.699 min, t_R = 7.184 min (major); **minor**: t_R =

5.879 min, t_R = 6.148 min (major). [α]_D²⁰ = -22.4(c 0.12, CHCl₃). ¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 2H), 7.24 – 7.12 (m, 3H), 7.05 – 6.99 (m, 4H), 6.28 (ddd, *J* = 17.2, 10.4, 7.7 Hz, 1H), 5.29 – 5.17 (m, 1H), 5.17 – 5.07 (m, 1H), 4.32 (d, *J* = 7.7 Hz, 1H), 1.72 (brs, 2H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.36, 141.34, 137.66, 137.16, 132.25, 131.27, 127.88, 127.68, 127.23, 125.98, 118.64, 82.21, 67.39, 56.63, 27.90. **IR** (**KBr**) γ 3359, 2962, 2922, 2851, 1724, 1260, 1154, 1092, 1016, 800 cm⁻¹. **HRMS (ESI)** m/z (M+Na)⁺ calculated for C₂₁H₂₄NO₂NaCl: 380.1393, observed: 380.1407.

tert-butyl (2S,3S)-2-amino-3-(4-bromophenyl)-2-phenylpent-4-enoate (3ai)

Colorless solid. Yield: 62%. dr: 4:1. Enantiomeric excess: **major**: 91%, **minor**: 71%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 98.5/1.5, flow rate 1.0 mL/min, T = 30°C, 220 nm), **major**: t_R = 5.390 min, t_R = 6.026 min (major); **minor**: t_R = 5.720 min (major), t_R = 6.482 min. [α]_D²⁰ = 19.7(c 0.12, CHCl₃). ¹H

NMR (400 MHz, CDCl₃) δ 7.54 – 7.38 (m, 2H), 7.23 – 7.13 (m,

5H), 7.01 - 6.89 (m, 2H), 6.27 (ddd, J = 17.2, 10.4, 7.7 Hz, 1H), 5.23 (ddd, J = 10.4, 1.6, 1.1 Hz, 1H), 5.17 - 5.06 (m, 1H), 4.30 (d, J = 7.7 Hz, 1H), 1.75 (brs, 2H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.34, 141.31, 138.20, 137.09, 131.66, 130.63, 127.90, 127.25, 125.98, 120.47, 118.68, 82.22, 67.33, 56.68, 27.90. IR (KBr) γ 3395, 3053, 2962, 2926, 2853, 1721, 1264, 1011, 805, 741, 704 cm⁻¹. HRMS (ESI) m/z

 $(M+Na)^+$ calculated for $C_{21}H_{24}NO_2NaBr$: 424.0888, observed: 424.0898.

tert-butyl (2S,3R)-2-amino-3-(furan-2-yl)-2-phenylpent-4-enoate (3aj)

Colorless solid. Yield: 47%. dr: 5:1. Enantiomeric excess: **major**: 81%, **minor**: 36%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 97/3, flow rate 1.0 mL/min, $T = 30^{\circ}C$, 220

nm), **major**: t_R = 7.340 min, t_R = 13.103 min (major); **minor**: t_R = 6.288 min(major), t_R =8.938 min. [α]_D²⁰ = 37.7(c 0.12, CHCl₃). ¹H NMR (400 MHz, CDCl3) δ 7.62 – 7.49 (m, 2H), 7.29 – 7.23 (m, 2H), 7.23 – 7.16 (m, 2H), 6.24 – 6.15 (m, 1H), 6.15 – 6.12 (m, 1H), 5.92 (d, *J* = 3.2 Hz, 1H), 5.31 – 5.20 (m, 1H), 5.19 – 5.08 (m, 1H), 4.52 (d, *J* = 7.6 Hz, 1H), 2.09 (brs, 2H), 1.44 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ 172.41, 152.79, 141.53, 141.34, 134.97, 127.87, 127.27, 126.07, 118.82, 110.00, 108.41, 82.33, 67.20, 51.46, 27.84. IR (KBr) γ 3359, 3060, 2978, 2922, 2852, 1728, 1369, 1252, 1154, 736 cm⁻¹. HRMS (ESI) m/z (M+Na)⁺ calculated for C₁₉H₂₃NO₃Na: 336.1576, observed: 336.1591.

tert-butyl (2S,3R)-2-amino-2-phenyl-3-vinylhexanoate (3ak-b)

Colorless oil. Yield: 50%. dr: 2:1. Enantiomeric excess: major: OtBu 81%, minor: 70%, determined by HPLC (CHIRALPAK IC, H₂N Ph hexane/isopropanol = 98.5/1.5, flow rate 1.0 mL/min, T = 30° C, 220 nm), major: $t_R = 6.664 \text{ min}$, $t_R = 8.403 \text{ min}$ (major); minor: $t_R = 5.986 \text{ min}$ (major), $t_{\rm R}=9.726 \text{ min.} [\alpha]_{\rm D}^{20}=-85.4(c\ 0.07,\ {\rm CHCl}_3).$ ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.60 (m, 2H), 7.57 (m, 1H), 7.36 - 7.30 (m, 3H), 7.30 - 7.20 (m, 1.5H), 5.78 (ddd, J = 16.7, 10.8, 8.7 Hz, 1H), 5.45 (ddd, J = 17.2, 10.4, 8.9 Hz, 0.5H), 5.24 (m, 1H), 5.22 – 5.18 (m, 1H), 4.93 (m, 0.5H), 4.87 – 4.80 (m, 0.5H)., 3.07 – 2.98 (m, 1H), 2.93 (m, 0.5H), 1.74 (brs, 3H),1.45 (s, 4.5H), 1.37 (s, 9H), 1.34 – 1.14 (m, 4H), 1.12 – 0.99 (m, 12H), 0.91 (t, J = 7.2 Hz, 1.5H), 0.75 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.18, 173.89, 142.37, 142.03, 137.61, 137.06, 128.02, 127.90, 127.04, 127.00, 126.26, 126.16, 118.45, 117.93, 81.71, 81.52, 67.27, 66.91, 51.40, 50.38, 32.11, 29.66, 27.89, 27.83, 21.01, 20.66, 14.02, 13.88. **IR** (**KBr**) γ 3359, 3059, 2958, 2926, 2856, 1726, 1265, 1248, 1153, 740 cm⁻¹. HRMS (ESI) m/z (M+Na)⁺ calculated for C₁₈H₂₇NO₂Na: 312.1939, observed: 312.1956.

tert-butyl (S,E)-2-amino-2-phenyloct-4-enoate (3ak-l)

Colorless oil. Yield: 24%. Enantiomeric excess: 8%, H_2N Ph determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 98.5/1.5, flow rate 1.0 mL/min, T =

30°C, 220 nm): t_R = 9.750 min (major), t_R = 14.007 min. [α] $_D^{20}$ = 2.2(c 0.20, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.36 – 7.30 (m, 2H), 7.28 – 7.22 (m, 1H), 5.61 (dt, *J* = 14.9, 6.8 Hz, 1H), 5.50 – 5.24 (m, 1H), 2.92 (ddd, *J* = 13.5, 6.4, 1.0 Hz, 1H), 2.52 (dd, *J* = 13.5, 8.0 Hz, 1H), 1.98 (q, *J* = 7.1 Hz, 2H), 1.89 (brs, 2H), 1.43 (s, 9H), 1.41 – 1.30 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.53, 143.56, 136.15, 128.20, 127.14, 125.47, 124.32, 81.51, 63.40, 43.32, 34.80, 27.90, 22.48, 13.65. **IR** (**KBr**) γ 3377, 3059, 3026, 2960, 2928, 2872, 1724, 1368, 1157, 738, 699 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₁₈H₂₇NO₂Na: 312.1939, observed: 312.1954.

tert-butyl (2S,3S)-2-amino-3-(2-methoxyphenyl)-2-(m-tolyl)pent-4-enoate (3bc)

Colorless oil. Yield: 88%. dr: >20:1. Enantiomeric excess: 92%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R= 5.837 min, t_R= 10.844 min (major). $[\alpha]_{D}^{20}$ = -198.9(c 0.37, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.26

(s, 1H), 7.22 (dd, J = 7.9, 0.5 Hz, 1H), 7.09 – 6.96 (m, 2H), 6.89 (d, J = 7.5 Hz, 1H), 6.80 (m, 1H), 6.59 (dd, J = 8.2, 0.9 Hz, 1H), 6.25 (ddd, J = 17.4, 10.3, 7.2 Hz, 1H), 5.16 (ddd, J = 10.2, 1.7, 1.1 Hz, 1H), 5.08 (dtd, J = 4.5, 3.2, 1.4 Hz, 2H), 3.51 (s, 3H), 2.22 (s, 3H), 2.08 (brs, 2H), 1.48 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.01, 157.08, 141.63, 137.87, 136.52, 130.51, 127.83, 127.42, 127.38, 127.03, 126.96, 123.13, 119.90, 117.76, 110.28, 81.84, 67.78, 55.22, 47.35, 27.93, 21.52. **IR** (**KBr**) γ 3390, 3325, 2976, 2928, 2855, 1720, 1491, 1368, 1243, 1154, 755 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₃H₂₉NO₃Na: 390.2045, observed: 390.2061.

tert-butyl (2S,3S)-2-amino-3-(2-methoxyphenyl)-2-(3-methoxyphenyl)pent-4enoate (3cc)

Colorless oil. Yield: 85%. dr: >20:1. Enantiomeric excess: 91%, determined by HPLC (CHIRALPAK OD, hexane/isopropanol = 97/3, flow rate 0.8 mL/min, $T = 30^{\circ}C$, 220

(s, 911). C HWIK (101 MHz, CDC13) 6 173.94, 138.78, 137.08, 143.43, 137.71, 130.30, 128.01, 127.75, 127.41, 119.89, 118.52, 117.92, 112.84, 111.78, 110.33, 81.92, 67.81, 55.27, 55.07, 47.36, 27.94. **IR** (**KBr**) γ 3388, 3324, 3077, 2975, 2931, 1720, 1599, 1491, 1463, 1246, 1154 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₃H₂₉NO₄Na: 406.1994, observed: 406.2006.

tert-butyl (2S,3S)-2-amino-2-(3-chlorophenyl)-3-(2-methoxyphenyl)pent-4-enoate (3dc)

Colorless oil. Yield: 82%. dr: >20:1. Enantiomeric excess: 83%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R= 4.859 min, t_R= 11.481 min (major). $[\alpha]_D^{20} = 9.1(c \ 0.47, CHCl_3)$. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (t, *J* = 1.8 Hz, 1H), 7.52 (dd, *J* = 7.7,

1.7 Hz, 1H), 7.38 – 7.27 (m, 1H), 7.13 – 6.95 (m, 3H), 6.80 (td, J = 7.5, 1.0 Hz, 1H), 6.59 (dd, J = 8.2, 0.9 Hz, 1H), 6.22 (ddd, J = 17.1, 10.3, 7.5 Hz, 1H), 5.30 – 5.03 (m, 3H), 3.55 (s, 3H), 1.95 (brs, 2H), 1.48 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.48, 156.81, 143.92, 137.25, 133.10, 130.40, 128.28, 127.63, 127.13, 127.02, 126.85, 124.22, 119.91, 118.28, 110.21, 82.30, 67.62, 55.19, 47.18, 27.90. IR (KBr) γ 3388, 3325, 3074, 2977, 2931, 2854, 2836, 1724, 1491, 1243, 1154, 755 cm⁻¹. HRMS (ESI) m/z (M+Na)⁺ calculated for C₂₂H₂₆NO₃NaCl: 410.1499, observed: 410.1513.

tert-butyl (2S,3S)-2-amino-3-(2-methoxyphenyl)-2-(p-tolyl)pent-4-enoate(3ec)

Colorless oil. Yield: 84%. dr: >20:1. Enantiomeric excess: 93%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R= 6.144 min, t_R= 23.511 min (major). $[\alpha]_D^{20}$ = 21.0(c 0.41, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.39 – 7.29

(m, 2H), 7.04 (ddd, J = 8.2, 7.4, 1.7 Hz, 1H), 6.92 (d, J = 8.0 Hz, 2H), 6.79 (m, 1H),

6.60 (dd, J = 8.2, 1.0 Hz, 1H), 6.24 (ddd, J = 10.3, 9.4, 7.1 Hz, 1H), 5.15 (ddd, J = 10.6, 1.7, 1.1 Hz, 1H), 5.10 – 5.01 (m, 2H), 3.52 (s, 3H), 2.36 – 2.16 (s, 3H), 2.16 – 2.01 (brs, 2H), 1.47 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.08, 157.10, 138.73, 137.91, 136.18, 130.56, 127.94, 127.90, 127.35, 125.99, 119.92, 117.73, 110.39, 81.82, 67.56, 55.27, 47.42, 27.92, 20.87. **IR** (**KBr**) γ 3391, 3325, 3076, 2976, 2929, 2855, 1720, 1491, 1368, 1246, 1154, 755 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₃H₂₉NO₃Na: 390.2045, observed: 390.2062.

tert-butyl (2S,3S)-2-amino-3-(2-methoxyphenyl)-2-(4-methoxyphenyl)pent-4enoate (3fc)

Colorless oil. Yield: 80%. dr: >20:1. Enantiomeric excess: 96%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R= 5.661 min, t_R= 10.279 min (major). $[\alpha]_D^{20}$ = 12.5(c 0.39, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.41 – 7.34

(m, 2H), 7.09 - 7.01 (m, 1H), 6.79 (td, J = 7.6, 0.9 Hz, 1H), 6.70 - 6.57 (m, 3H), 6.32 - 6.17 (m, 1H), 5.16 (dt, J = 4.0, 1.7 Hz, 1H), 5.12 - 5.02 (m, 2H), 3.70 (s, 3H), 3.55 (s, 3H), 2.21 (brs, 2H), 1.47 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.06, 158.32, 157.03, 137.76, 133.72, 130.55, 127.77, 127.40, 127.33, 119.93, 117.85, 112.52, 110.39, 81.90, 67.32, 55.29, 55.09, 47.49, 27.93. **IR** (**KBr**) γ 3385, 3076, 2975, 2930, 2853, 2836, 1720, 1509, 1491, 1246, 1155, 1033 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₃H₂₉NO₄Na: 406.1994, observed: 406.2009.

tert-butyl (2S,3S)-2-amino-2-(4-fluorophenyl)-3-(2-methoxyphenyl)pent-4-enoate (3gc)

Colorless oil. Yield: 77%. dr: >20:1. Enantiomeric excess: 88%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R= 4.872 min, t_R= 5.705 min (major). $[\alpha]_D^{20}$ = 19.3(c 0.42, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.47 – 7.39

(m, 2H), 7.09 - 7.01 (m, 1H), 6.84 - 6.74 (m, 3H), 6.59 (d, J = 8.1 Hz, 1H), 6.29 - 6.15 (m, 1H), 5.19 (dd, J = 6.4, 5.2 Hz, 1H), 5.09 (ddd, J = 3.6, 3.0, 1.6 Hz, 2H), 3.53 (s, 3H), 2.00 (brs, 2H), 1.48 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.95, 161.73 (d, J

= 245.2 Hz), 156.88, 137.42, 130.52, 127.92 (d, J = 8.0 Hz), 127.52, 127.37, 119.89, 118.18, 114.36, 113.78 (d, J = 21.1 Hz), 110.25, 82.08, 67.34, 55.16, 47.34, 27.91. **IR** (**KBr**) γ 3389, 3326, 3077, 2977, 2930, 2854 2837, 1724, 1507, 1491, 1243, 1154 cm⁻¹. **HRMS (ESI)** m/z (M+Na)⁺ calculated for C₂₂H₂₆NO₃NaF: 394.1794, observed: 394.1808.

tert-butyl (2S,3S)-2-amino-2-(4-chlorophenyl)-3-(2-methoxyphenyl)pent-4-enoate (3hc)

(m, 2H), 7.11 – 7.01 (m, 3H), 6.79 (m, 1H), 6.59 (dd, J = 8.2, 0.9 Hz, 1H), 6.21 (ddd, J = 17.1, 10.3, 7.5 Hz, 1H), 5.22 – 5.15 (m, 1H), 5.08 (ddd, J = 7.3, 4.5, 2.8 Hz, 2H), 3.53 (s, 3H), 1.99 (brs, 2H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.73, 156.86, 140.34, 137.32, 132.59, 130.50, 127.72, 127.59, 127.23, 127.19, 119.92, 118.27, 110.29, 82.19, 67.41, 55.15, 47.26, 27.90. **IR** (**KBr**) γ 3362, 3052, 2979, 2927, 2851, 1720, 1491, 1265, 1244, 1155, 739 cm⁻¹. **HRMS (ESI)** m/z (M+Na)⁺ calculated for C₂₂H₂₆NO₃NaCl: 410.1499, observed: 410.1519.

tert-butyl (2S,3S)-2-amino-2-(4-bromophenyl)-3-(2-methoxyphenyl)pent-4enoate(3ic)

MeO

Colorless oil. Yield: 81%. dr: >20:1. Enantiomeric excess: 85%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R= 4.890 min, t_R= 6.306 min (major). $[\alpha]_D^{20} = 9.3$ (c 0.48, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.39 – 7.31

(m, 2H), 7.29 - 7.18 (m, 2H), 7.05 (m, 1H), 6.79 (m, 1H), 6.59 (dd, J = 8.2, 0.9 Hz, 1H), 6.21 (ddd, J = 17.1, 10.3, 7.4 Hz, 1H), 5.19 (ddd, J = 10.3, 1.7, 1.2 Hz, 1H), 5.14 - 5.03 (m, 2H), 3.52 (s, 3H), 1.97 (brs, 2H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.64, 156.86, 140.90, 137.29, 130.50, 130.14, 128.11, 127.61, 127.20, 120.87,

119.93, 118.29, 110.30, 82.21, 67.47, 55.15, 47.23, 27.90. **IR** (**KBr**) γ 3387, 3076, 2976, 2930, 2853, 1726, 1490, 1244, 1155, 1009, 754 cm⁻¹. **HRMS** (**ESI**) m/z (M+Na)⁺ calculated for C₂₂H₂₆NO₃NaBr: 454.0994, observed: 454.1004.

tert-butyl (2S,3S)-2-amino-3-(2-methoxyphenyl)-2-(naphthalen-2-yl)pent-4enoate(3jc)

Colorless oil. Yield: 82%. dr: >20:1. Enantiomeric excess: 82%, determined by HPLC (CHIRALPAK IA, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30°C, 220 nm): t_R= 5.727 min (major), t_R= 7.552 min. $[\alpha]_D^{20}$ = 9.0(c 0.29, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 1.7 Hz, 1H), 7.69 (m, 3H), 7.64 – 7.57 (m, 2H), 7.37 (dd, J = 6.2, 3.2 Hz, 2H), 6.97 (ddd, J

= 8.2, 7.5, 1.7 Hz, 1H), 6.77 (td, J = 7.5, 1.1 Hz, 1H), 6.49 (dd, J = 8.2, 0.9 Hz, 1H), 6.30 (ddd, J = 17.5, 10.3, 7.4 Hz, 1H), 5.21 (ddd, J = 11.5, 5.9, 4.3 Hz, 2H), 5.16 – 5.08 (m, 1H), 3.41 (s, 3H), 2.06 (brs, 2H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.87, 156.96, 139.35, 137.74, 132.77, 132.36, 130.51, 128.28, 127.57, 127.46, 127.16, 126.41, 125.62, 125.50, 125.11, 124.81, 119.94, 118.00, 110.32, 82.08, 67.94, 55.16, 47.29, 27.94. **IR (KBr)** γ 3369, 3057, 2977, 2929, 2853, 1720, 1491, 1368, 1253, 1153, 741 cm⁻¹. **HRMS (ESI)** m/z (M+Na)⁺ calculated for C₂₆H₂₉NO₃Na: 426.2045, observed: 426.2058.

6. Synthesis and Characterization of 5

MeC

To a solution of **3fc** (38.3 mg, 0.1 mmol) in DCM (1 mL) was added TFA (1 mL), and the mixture was stirred at room temperature for 4 h. After evaporation, pure **5** was

obtained. Colorless solid. Yield: 95% $[\alpha]_D{}^{20} = -115.4(c \ 0.63, CHCl_3)^1$ **H NMR** (400 MHz, MeOD) δ 7.55 – 7.45 (m, 2H), 7.32 – 7.14 (m, 2H), 7.06 – 6.95 (m, 1H), 6.95 – 6.81 (m, 3H), 6.53 – 6.35 (m, 1H), 5.19 – 4.85 (m, 6H), 3.84 (s, 3H), 3.79 (s, 3H). ¹³C **NMR** (101 MHz, MeOD) δ 170.35, 159.99, 156.96, 135.48, 130.53, 128.91, 128.20, 126.79, 125.10, 120.66, 118.20, 113.34, 111.00, 54.55, 54.39, 49.16, 26.74. **HRMS** (**ESI**) m/z (M-CF₃COOH+Na)⁺calculated for C₁₉H₂₁NNaO₄: 350.1363, observed: 350.1345.

7. Synthesis and Characterization of 6

To a solution of **3fc** (114.9 mg, 0.3 mmol) and pyridine (242 μ L, 1.5 mmol) in DCM (3 mL) was added slowly the acetyl chloride (107 μ L, 1.5 mmol) at 0 °C. The reaction was continued for 2 h. Water (10 mL) was added to the reaction mixture and this solution was extracted with DCM (10 mL × 3). The organic layer was washed with 1N HCl, NaHCO₃ solution and brine .After drying of the organic layer over Na₂SO₄, the mixture was concentrated in vacuo and the obtained residue was purified by column chromatography (AcOEt/Hexane = 1/10). To a solution of tert-butyl (2S,3S)-2-acetamido-3-(2-methoxyphenyl)-2-(4-methoxyphenyl)pent-4-enoate in *i*PrOAc/H₂O (5 ml) was added I₂ (228.4 mg, 0.9 mmol), and the mixture was stirred at room temperature for 1 h. Na₂SO₃ saturated solution (3 ml) was added to the reaction mixture and this solution was extracted with DCM (10 ml×3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was subjected to a flash column chromatography on silica gel (ethyl acetate/petroleum ether) to afford product **6** as colorless oil. Yield: 82%. dr: 8:1. Enantiomeric excess: 92%, determined by HPLC (CHIRALPAK IC, hexane/isopropanol = 94/6, flow rate 1.0

mL/min, T = 30°C, 220 nm): t_R = 13.192 min (major), t_R = 14.434 min. [α]_D²⁰ = 85.4(c 0.63, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ major: 7.31 – 7.17 (m, 2H), 7.03 – 6.88 (m, 2H), 6.68 – 6.61 (m, 2H), 6.60 – 6.53 (m, 2H), 5.19 – 5.13 (m, 1H), 4.86 (s, 1H), 3.73 (s, 3H), 3.69 (dd, *J* = 10.6, 4.8 Hz, 1H), 3.68 – 3.60 (s, 3H), 3.17 (dd, *J* = 12.0, 2.5 Hz, 1H), 2.05 (s, 3H), 1.43 (s, 9H). minor: 7.25 – 7.17 (m, 2H), 7.07 (d, *J* = 6.8 Hz, 1H), 7.02 – 6.93 (m, 1H), 6.68 (d, *J* = 8.2 Hz, 1H), 6.65 – 6.53 (m, 3H), 5.46 (dd, *J* = 13.8, 7.5 Hz, 1H), 5.21 (d, *J* = 7.4 Hz, 1H), 3.77 (s, 3H), 3.68 (m, 4H), 3.53 (dd, *J* = 10.7, 8.1 Hz, 1H), 3.13 (dd, *J* = 10.6, 5.8 Hz, 1H), 1.70 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ major: 174.48, 170.36, 158.15, 156.81, 131.55, 130.06, 128.21, 127.61, 126.95, 120.18, 112.40, 110.07, 81.76, 81.11, 75.32, 55.42, 55.00, 51.37, 27.82, 21.33. minor: 174.90, 170.19, 158.15, 158.04, 132.31, 131.60, 127.98, 127.17, 123.99, 119.49, 112.64, 109.76, 82.14, 74.94, 73.61, 55.60, 55.01, 48.57, 44.05, 29.71, 27.83, 27.73, 20.69. HRMS (ESI) m/z (M+Na)⁺ calculated for C₂₅H₃₁NO₆Na: 464.2049, observed: 464.2056

8. X-ray Single Crystal Data - Determination of the Absolute Configuration

$\begin{array}{c} c_{22} \\ c_{18} \\ c_{17} \\ c_{16} \\ c_{16$	$= \underbrace{\begin{array}{c} & & \\ &$
Empirical formula	C ₂₂ H ₂₇ NO ₂
Formula weight	337.44
Space group	P 1 21 1

Determination of the Absolute Configuration of product 3af

Z	2		
a/Å	11.8823(2)		
b/Å	99.1510(10)		
c/Å	13.2198(2)		
α/°	90		
β/°	107.684(7)		
γ/°	90		
Volume/Å ³	955.40(3)		
Temperature/K	130		
$ ho_{calc}mg/mm^3$	1.173		

9. References

[1] S. D. Paget, C. M. Boggs, B. D. Foleno, R. M. Goldschmidt, D. J. Hlasta, M. A. Weidner-Wells,H. M. Werblood, K. Bush, M. J. Macielag, *Bioorg. Med. Chem. Lett.* 2006, *16*, 4537-4542.

10. NMR Data

11. HPLC Data

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	4.517	vv	0.1003	425.78748	62.16889	1.9697
2	5.044	vv	0.1111	2905.27417	392.72418	13.4397
3	5.331	vv	0.1102	275.07199	38.19458	1.2725
4	6.367	vv	0.1416	1.80110e4	1970.43469	83.3182

Ŧ	[min]		[min]	mAU	*3	[mAU	1	*
1	5.585	vv	0.1215	7874.	87402	994.2	7972	38.3641
2	6.445	vv	0.1335	2345.	31470	269.6	8839	11.4257
3	6.783	vv	0.1437	7909.	11719	848.6	6016	38.5309
4	7.403	vv	0.1572	2397.	38989	234.3	6644	11.6794

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	5.872	vv	0.1279	906.29004	107.02917	3.6983
2	6.921	vv	0.1486	858.31659	88.07263	3.5025
3	7.280	vv	0.1591	1.79942e4	1753.07129	73.4283
4	7.704	vv	0.1673	4746.97559	432.74091	19.3709

Peak 1	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	mAU *s	[mAU]	육	
1	5.257	vv	0.1107	892.76685	121.15079	3.8952	
2	5.759	vv	0.1171	704.91785	91.97272	3.0756	
3	6.102	vv	0.1279	1.85729e4	2260.57446	81.0350	
4	6.466	vv	0.1337	2749.03418	315.52789	11.9942	

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU	1	卡
1	5.465	BV	0.1529	304	.77878	30.	90909	3.2925
2	5.720	VB	0.1574	2000	.72241	197.	58469	21.6134
3	6.426	BV	0.1670	341	.25531	30.	82786	3.6865
4	6.850	vv	0.1689	6610	.11475	608.	76031	71.4077

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	5.974	BV	0.1319	1275.63196	146.81128	8.9444
2	6.267	vv	0.1380	1362.85522	150.07509	9.5560
3	6.811	vv	0.1496	5787.04297	589.10675	40.5772
4	7.496	VB	0.1682	5836.26953	528.37860	40.9224

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	卡
1	5.879	vv	0.1263	449.76904	54.01993	2.1906
2	6.148	vv	0.1313	2297.90479	266.12900	11.1918
3	6.699	vv	0.1345	823.63245	92.46188	4.0114
4	7.184	VB	0.1494	1.69608e4	1729.08691	82.6062

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	卡
1	5.400	vv	0.1049	1.03339e4	1532.03418	39.8029
2	5.718	vv	0.1128	2512.32739	344.28156	9.6767
3	6.022	vv	0.1194	1.05906e4	1369.24255	40.7917
4	6.480	VB	0.1277	2525.80981	303.38721	9.7286

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	응
1	5.390	vv	0.1168	715.28308	92.13207	3.5564
2	5.720	vv	0.1196	3629.34229	467.91174	18.0453
3	6.026	vv	0.1284	1.51419e4	1834.03418	75.2867
4	6.482	VB	0.1363	625.81006	70.03636	3.1116

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	卡
1	6.288	BV	0.1269	1513.	.81641	183.	39919	15.6213
2	7.340	BV	0.1542	677.	.14215	67.	06628	6.9875
3	8.938	BV	0.1982	704.	49597	54.	73976	7.2698
4	13.103	VB	0.2674	6795.	.28271	395.	57550	70.1214

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	5.983	BB	0.1206	782.88062	99.89395	16.6220
2	6.644	BB	0.1299	1564.46655	183.84996	33.2165
3	8.371	BB	0.1690	1588.11646	144.53581	33.7186
4	9.689	BB	0.1994	774.44617	59.68591	16.4429

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU	1	卡
1	5.986	VB	0.1250	3407.	38428	421.3	21509	32.2533
2	6.664	BB	0.1346	610.	.31421	70.	42142	5.7770
3	8.403	BB	0.1733	5960.	.13281	530.	31769	56.4168
4	9.726	BB	0.2168	586.	63013	41.3	26667	5.5529

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*3	[mAU	1	*	
1	9.705	BB	0.1956	1158.	90149	90.	71311	51.0564	
2	13.964	BB	0.2860	1110.	94299	59.	96161	48.9436	

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU '	*s	[mAU	1	卡
1	9.750	BB	0.1983	3497.63	3647	271.	62146	54.1641
2	14.007	BB	0.2869	2959.84	4521	159.	14784	45.8359

10

12

mir

0-
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	육
1	5.837	BV	0.1323	1002.32806	114.93716	4.0449
2	10.844	VB	0.2423	2.37776e4	1531.71509	95.9551

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	응
1	6.769	vv	0.1425	1002.95630	107.34361	4.3980
2	8.282	VB	0.2079	2.18020e4	1620.30066	95.6020

Peak	RetTime	Type	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*3	[mAU	1	8
1	4.863	vv	0.1249	1.828	308e4	2261.4	16069	49.7436
2	11.456	VB	0.2714	1.846	593e4	1069.1	17224	50.2564

0.6052 1.46701e4 379.61639 50.3587

2 23.504 BB

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	卡
1	6.144	VB	0.1429	466.34137	49.06750	3.5551
2	23.511	BB	0.5852	1.26513e4	340.28830	96.4449

reax	Retlime	Type	Width	Area	Height	Area	
#	[min]		[min]	mAU *s	[mAU]	8	
1	5.661	BB	0.1244	492.59399	60.31541	1.9673	
2	10.279	VB	0.2332	2.45469e4	1637.21631	98.0327	

Peak	RetTime	Type	Width	Ar	rea	Heig	ght	Area	
#	[min]		[min]	mAU	*s	[mAU]	÷	
1	4.905	BV	0.1042	1.243	805e4	1826.5	51672	51.1292	
2	5.726	vv	0.1167	1.188	814e4	1582.2	23828	48.8708	

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	4.872	vv	0.1013	1842.19214	275.53305	6.3717
2	5.705	vv	0.1492	2.70700e4	2874.46729	93.6283

Peak	RetTime	Type	Width	Are	ea	Heig	ht	Area	
#	[min]		[min]	mAU	*s	[mAU	1	8	
1	4.850	vv	0.1047	1.7775	57e4	2642.8	0127	48.6234	
2	6.088	VB	0.1274	1.8782	22e4	2297.5	0830	51.3766	

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %	
1	4.831	vv	0.1006	1858.49329	280.59793	7.9534	
2	6.071	VB	0.1331	2.15089e4	2519.54443	92.0466	

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	4.890	vv	0.1003	1708.87817	258.97928	7.4308
2	6.306	BB	0.1323	2.12884e4	2513.95313	92.5692

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	5.727	BB	0.2345	4.04985e4	2615.38062	91.2244
2	7.552	BB	0.2895	3895.86304	201.59706	8.7756

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU	1	8
1	13.144	BB	0.3374	1871.8	89612	85.3	34509	49.9235
2	14.182	BB	0.3037	1877.	63269	96.7	72069	50.0765

2 14.434 BB 0.3883 212.90292 8.29300 3.7893

S8	0
----	---