Chemical Communications

Supporting Information

An Anionic Nucleophilic d⁴ Carbyne Complex

Anthony F. Hill* and Richard Y. Kong

General Considerations

All manipulations of air-sensitive compounds were carried out at room temperature under a dry oxygen-free nitrogen atmosphere using standard Schlenk, vacuum line, or inert atmosphere (argon) glovebox techniques with dried and degassed solvents. NMR spectra were obtained on a Bruker Avance 400 (¹H at 400.1 MHz, ¹³C at 100.5 MHZ, ³¹P at 162.0 MHz), Bruker Avance 700 (¹H at 700.1 MHz, ¹³C at 176.1 MHz, ³¹P at 283.5 MHz), or Bruker Avance 800 with cryoprobe (¹H at 800.1 MHz, ¹³C at 200.2 MHz) spectrometer. Chemicals shifts (δ) are reported in ppm and referenced to the solvent peak (¹H, ¹³C) or external 85% H₃PO₄. The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), sep (septet), m (multiplet), and combinations thereof for more highly coupled systems and ⁿJ_{ab} reported in Hz. Assignments of phenyl ring resonances are denoted C_i for <code>ipso, C_o</code> for <code>ortho, C_m</code> for <code>meta</code> and $C_{\scriptscriptstyle D}$ for <code>para</code> carbon environments. Whilst ${}^{13}C{}^{1}H$ for carbon nuclei of the $(C_6H_{11})_2P(CH_2CH_2)P(C_6H_{11})_2$ ligand were observed, their narrow spectral range precluded unequivocal assignment for the dcpe carbon environments. Similarly, proton environments within the dcpe ligand could not be uniquely identified due to the complex multiplicities and similar chemical shifts encountered. Infrared spectra were obtained using a Perkin-Elmer Spectrum One FT-IR spectrometer. Elemental microanalysis has been performed at the London Metropolitan University. Electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or methanol as the matrix. Data for X-ray crystallography were collected on either an Oxford Diffraction SuperNova or Oxford Diffraction Xcalibur diffractometer.

Synthesis of $W(\equiv C^tBu)(SnMe_3)(dcpe)(CO)_2$

To a yellow solution of W(≡CH)(Br)(dcpe)(CO)₂ (151 mg, 0.200 mmol) in THF (10 mL) at -78°C (dry ice/acetone), 0.38 mL of a 1.6 M solution of ^tBuLi in hexanes (0.60 mmol) was added via syringe. The resultant dark red solution was allowed to stir for 30 minutes at this temperature before 0.60 mL of a 1.0 M solution of SnMe₃Cl in THF (0.60 mmol) was added via syringe. The reaction was allowed to stir at this temperature for a further 30 minutes before removal of the cooling bath. THF was removed in vacuo and the product was extracted using toluene (2 x 10 mL) via cannula filtration from the insoluble LiBr precipitate. Removal of the toluene in vacuo followed by washing with Et₂O (2 x 5mL) afforded the product as a yellow powder. Yield: 54 mg, 30%. IR (toluene) v/cm⁻¹: 1961 (CO), 1899 (CO). IR (Nujol) v/cm⁻ ¹: 1951 (CO), 1886 (CO). ¹H NMR (C₆D₆, 25°C): δ_H 2.09 (m, 2H, CH in dcpe), 2.01-1.87 (m, 4 H, P(CH₂)₂P), 1.79-1.04 (m, 42 H, 21 x CH₂, 1.30 (s, 9 H, C(CH₃)₃), 0.44 (s, ²J_{SnH} = 27.2, 9 H, Sn(C<u>H</u>₃)₃). ¹³C NMR (C₆D₆, 25°C): δ_{C} 317.2 (t, W=<u>C</u>, ²J_{CP} = 7.47 Hz), 219.5 (dd, ²J_{CP(cis)} = 7.00 Hz, ²J_{CP(trans)} = 26.2, W(<u>C</u>O)₂), 53.3 pm ($\underline{C}(CH_3)$), 42.0 (d, $\underline{C}H[C_6H_{11}]$, J_{CP} = 21.0), 40.8 (d, $\underline{C}H[C_6H_{11}]$, $J_{CP} = 18.7$), 30.8 ($\underline{C}H_2[C_6H_{11}]$), 30.0 ($\underline{C}H_2[C_6H_{11}]$), 29.3 (d, $J_{CP} =$ 4.1, $\underline{C}H_2[C_6H_{11}])$, 28.8 ($\underline{C}H_2[C_6H_{11}]$), 28.7 (C($\underline{C}H_3$)₃), 27.7 (d, $J_{CP} =$ 8.0, $\underline{C}H_2[C_6H_{11}])$, 27.6 (d, $J_{CP} = 4.2$) $\underline{C}H_2[C_6H_{11}])$, 27.5 (d, $J_{CP} =$ 11.22, $\underline{C}H_2[C_6H_{11}])$, 27.2 (d, $J_{CP} = 11.0$, $\underline{C}H_2[C_6H_{11}])$, 26.3. ($\underline{C}H_2[C_6H_{11}]$), 26.0 ($\underline{C}H_2[C_6H_{11}]$), 23.6 (dd, ${}^{1}J_{CP} = 22.7$, ${}^{2}J_{CP} = 13.4$, $P(\underline{C}H_2)_2P$, -3.7 (${}^{1}J_{C^{119}Sn} = 91.4$, ${}^{1}J_{C^{117}Sn} = 88.4$, $Sn\underline{C}H_3$). ${}^{31}P{}^{1}H$ NMR (C₆D₆, 25°C): δ_P 51.7 (¹J_{PW} = 220, ²J_{P¹¹⁹Sn} = 151, ²J_{P¹¹⁷Sn} = 145). Crystals suitable for crystallographic analysis were obtained slow evaporation of a solution in benzene under a nitrogen atmosphere. MS-ESI(+): 731.36 [M-SnMe₃]⁺. Accurate mass: found 731.3367 [M-SnMe₃]. Calcd for C₃₃H₅₇O₂P₂¹⁸⁴W 731.3343. Anal. found: C, 48.18; H, 7.50; N, 0.00%. Calcd. for C₃₆H₆₆O₂P₂SnW: C, 48.29; H, 7.43; N, 0.00%.

Crystal data for $C_{36}H_{66}O_2P_2SnW$: $M_w = 895.41$, triclinic, space group $\rho \vec{1}$ (no. 2), a = 9.1646(3) Å, b = 12.5454(5) Å, c = 17.8461(3) Å, $\alpha = 87.399(2)^\circ$, $\beta = 77.495(2)^\circ$, $\gamma = 75.600(3)^\circ$, V = 1940.14(3) Å³, Z = 2, T = 150(2) K, μ (Cu K α) = 11.499 mm⁻¹, ρ_{calc}

^a Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia ACT 2601. Email. a.hill@anu.edu.au

= 1.533 Mgm⁻³, 36372 reflections measured (8.91° $\leq 2\Theta \leq$ 144.81°), 7638 unique ($R_{int} = 0.043$) which were used in all calculations. The final R_1 was 0.0322 ($I > 2.0\sigma(I)$) and wR_2 was 0.0838 (all data). CCDC 1515542

Synthesis of $W(\equiv C^t Bu)(Br)(dcpe)(CO)_2$

To a yellow solution of W(=CH)(Br)(dcpe)(CO)₂ (151 mg, 0.200 THF mmol) in (10 mL) at -78°C (dry ice/acetone), 0.38 mL of a 1.6 M solution of ^tBuLi in hexanes (0.60 mmol) was added via syringe. The resultant dark red solution was allowed to stir for 30 minutes at this temperature before 0.30 mL of neat ^tBuBr (0.366 g, 2.7 mmol) was added via syringe. The reaction was allowed to stir at -78°C for a further 30 minutes before removal of the cooling bath. THF was removed in vacuo and the product was extracted using DCM (2x 10 mL) via filtration through a glass frit from the insoluble LiBr precipitate. Removal of the DCM in vacuo followed by washing with a mixture of pentane and ether (5:1, 2x 5mL) afforded the product as a beige powder. Yield: 152 mg, 94%. IR (CH₂Cl₂) v/cm⁻¹: 1978 (CO), 1908 (CO). IR (Nujol) v/cm⁻¹: 1985 (CO), 1913 (CO) ¹H NMR (CDCl₃, 25°C): δ_H 2.25-2.10 (m, 4 H, dcpe), 2.03-1.96 (m, 2 H, dcpe), 1.93-1.20 (m, 42 H, dcpe, 1.08 (s, 9 H, C(CH₃)₃). ¹³C NMR (CDCl₃, 25°C): δ_C 290.4 (t, W=<u>C</u>, ²J_{CP} = 7.47 Hz), 213.9 (dd, W(<u>C</u>O)₂, ²J_{CP(cis)} = 7.00 Hz, ${}^{2}J_{CP(trans)}$ = 26.2 Hz), 51.2 pm (d, ${}^{2}J_{WC}$ = 35.3, <u>C</u>(CH₃)₃), 40.4 (d, $J_{CP} = 20.5$, <u>C</u>H[C₆H₁₁], 34.8 (d, $J_{CP} = CH[C_6H_{11}]$), 30.4 $(\underline{C}H_2[C_6H_{11}]), 29.8 (\underline{C}H_2[C_6H_{11}]), 29.3 (\underline{C}H_2[C_6H_{11}]), 29.3$ $(\underline{C}H_2[C_6H_{11}])$, 28.6 $(C(\underline{C}H_3)_3)$, 27.7 (d, $J_{CP} = 12.4 \text{ Hz } \underline{C}H_2[C_6H_{11}])$, 27.6 (d, J_{CP} = 13.8, $\underline{C}H_2[C_6H_{11}]$), 27.4 (d, J_{CP} = 11.1, $\underline{C}H_2[C_6H_{11}]$), 27.4 (d, J_{CP} = 9.34 Hz, $\underline{C}H_2[C_6H_{11}]$), 26.3 ($\underline{C}H_2[C_6H_{11}]$), 26.1 $(\underline{C}H_2[C_6H_{11}])$, 22.2 (dd, ${}^{1}J_{CP} = 21.9$, ${}^{2}J_{CP} = 11.9$, $P(\underline{C}H_2)_2P$. ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 25°C): δ_P 42.37 (¹J_{PW} = 222). MS-ESI(+): 1541.5686 [2M-Br]⁺, 835.2462 [M+Na]⁺, 731.3343 [M-Br]⁺. Accurate mass: found 731.3344 [M-Br]⁺. Calcd for C₃₃H₅₇O₂P₂¹⁸⁴W 731.3343. Anal. found: C, 48.59; H, 7.24; N: 0.00%. Calcd. for C33H57BrO2P2W: C, 48.84; H, 7.08; N, 0.00%. Crystals suitable for crystallographic analysis were obtained via diffusion of pentane into a concentrated solution of **3** in DCM at -20°C.

Crystal Data for $C_{33}H_{56}BrO_2P_2W$: $M_w = 810.47$, monoclinic, space group $P2_1/n$ (no. 14), a = 10.8206(5) Å, b = 14.4920(5) Å, c = 22.3551(9) Å, $6 = 96.561(4)^\circ$, V = 3482.6(2) Å³, Z = 4, T = 150(2) K, μ (Mo K α) = 4.583 mm⁻¹, $\rho_{calc} = 1.546$ Mgm⁻³, 51350 reflections measured (6.71° $\leq 2\Theta \leq 50.05^\circ$), 6134 unique ($R_{int} = 0.1066$) which were used in all calculations. The final R_1 was 0.0410 ($I > 2\sigma(I)$) and wR_2 was 0.1091 (all data). CCDC 1515560.

Synthesis of $W(\equiv C^t Bu)(Cl)(dcpe)(CO)_2$

To a yellow solution of $W(\equiv CH)(Br)(dcpe)(CO)_2$ (151 mg, 0.200 mmol) in THF (10 mL) at -78°C (dry ice/acetone), 0.38 mL of a 1.6 M solution of ^tBuLi in hexanes (0.60 mmol) was added *via* syringe. The resultant dark red solution was allowed to stir for 30 minutes at -78°C before the addition of 0.30 mL of neat ^tBuCl (0.25g, 2.7 mmol) was added *via* syringe. The reaction was allowed to stir at -78°C for a further 30 minutes before removal of the cooling bath. THF was removed *in vacuo* and the product was extracted using

DCM (2x 10mL) via filtration through a glass frit from the insoluble LiCl precipitate. Recrystallization of this product via vapour diffusion of pentane into DCM afforded the product as large orange crystals. Yield: 56 mg, 37%. IR (CH₂Cl₂) v/cm⁻¹: 1991 (CO), 1915 (CO). IR (Nujol) v/cm⁻¹: 1984 (CO), 1913 (CO). ¹⁻ H NMR (CDCl₃, 25°C): δ_H 2.23-1.17 (m, 48 H, dcpe), 1.05 (s, 9 H, C(CH₃)₃). ¹³C NMR (CDCl₃, 25°C): δ_{C} 289.5 (t, W= \underline{C} , ²J_{CP} = 7.64 Hz), 219.5 (dd, W($\underline{C}O$)₂, ²J_{CP(cis)} = 6.78 Hz, ²J_{CP(trans)} = 41.6 Hz), 52.0 (²J_{CW} = 35.7, <u>C</u>(CH₃)₃, 39.9 (d, ¹J_{CP} = 21.3, <u>C</u>H[C₆H₁₁]), 33.9 (d, ${}^{1}J_{CP} = 18.39$, $\underline{C}H[C_{6}H_{11}]$), 30.4 ($\underline{C}H_{2}[C_{6}H_{11}]$), 29.6 ($\underline{C}H_{2}[C_{6}H_{11}]$), 29.4 (CH₂[C₆H₁₁]), 29.3 (CH₂[C₆H₁₁]), 28.77 (WCCCH₃), 27.76 (d, J_{CP} = 12.4 Hz <u>C</u>H₂[C₆H₁₁]), 27.6 (d, J_{CP} = 12.0, <u>C</u>H₂[C₆H₁₁]), 27.5 (d, $J_{CP} = 9.18$, $\underline{C}H_2[C_6H_{11}]$), 27.4 (d, $J_{CP} = 9.32$, $\underline{C}H_2[C_6H_{11}]$), 26.3. $(\underline{C}H_2[C_6H_{11}])$, 26.1 $(\underline{C}H_2[C_6H_{11}])$, 22.1 (dd, ${}^{1}J_{CP} = 22.2$, ${}^{2}J_{CP} = 12.0$, $Cy_2P(\underline{C}H_2)_2PCy_2$). ³¹P{¹H} NMR (CDCl₃, 25°C): δ_P 46.01 (¹J_{PW} = 224 Hz). MS-ESI(+): 1555.5898 [2M+Na]⁺, 791.2923 [M+Na]⁺, 731.3340 [M-Cl]⁺ Accurate mass: found 731.3340 [M-Cl]⁺. Calcd for C33H57O2P2184W 731.3343. Anal. found: C, 50.69; H, 7.66; N, 0.00. Calcd. for C₃₃H₅₇ClO₂P₂W: C, 51.67; H, 7.49; N, 0.00%. NB: Calcd. for C₃₃H₅₇ClO₂P₂W.(CH₂Cl₂)_{0.25}: C, 50.66; H, 7.35; N, 0.00%. Crystals suitable for crystallographic analysis were obtained via diffusion of pentane into a solution of 4 in DCM at -20°C.

Crystal Data for $C_{33}H_{57}ClO_2P_2W$: (M = 767.02 g/mol): monoclinic, space group $P2_1/n$ (no. 14), a = 10.90249(14) Å, b = 14.24490(18) Å, c = 22.5025(3) Å, $b = 97.8393(13)^\circ$, V = 3462.09(8) Å³, Z = 4, T = 150.(2) K, μ (Cu K α) = 7.962 mm⁻¹, $\rho_{calc} = 1.472$ Mgm⁻³, 45483 reflections measured (7.36° $\leq 20 \leq 144.89^\circ$), 6760 unique ($R_{int} = 0.0442$) which were used in all calculations. The final R_1 was 0.0613 ($I > 2\sigma(I)$) and wR_2 was 0.1507 (all data). CCDC 1515559.

Synthesis of $W(\equiv C^tBu)(SPh)(CO)_2(dcpe)$

To a yellow solution of $W(\equiv CH)(Br)(dcpe)(CO)_2$ (151 mg, 0.200 mmol) in THF (10 mL) at -78°C (dry ice/acetone), 0.38 mL of a 1.6 M solution of ^tBuLi in hexanes (0.60 mmol) was added via syringe. The resultant dark red solution was allowed to stir for 30 minutes at -78°C before the addition of PhSSPh (0.131 mg, 0.600 mmol) as a solid under a positive flow of nitrogen. The reaction was allowed to stir at -78°C for a further 30 minutes before removal of the cooling bath. THF was removed in vacuo and the product was extracted using DCM (2 x 10mL) via filtration through a glass frit from the insoluble lithium salt precipitate. The DCM was removed in vacuo and the subsequent residue washed with a mixture of Et₂O and pentane (2 x 5 mL, 1:10) to afford the product as a fine yellow powder. Yield: 120 mg, 71%. %. IR (CH₂Cl₂) v/cm⁻¹: 1997 (CO), 1928 (CO). IR (Nujol) v/cm⁻¹: 1993 (CO), 1928 (CO). ¹H NMR (CDCl₃, 25°C): δ_{H} 7.50 (d, 2 H, ³J_{HH} = 7.7, C_0H in SC_6H_5), 7.07 (d, 2 H, ${}^3J_{HH} = 8.0$, ${}^3J_{HH} = 7.3$, $2xC_mH$ in SC_6H_5), 6.91 (t, 1 H, ${}^{3}J_{HH}$ = 7.3, C_pH), 2.21 (m, 6 H, dcpe), 2.00 (m, 2 H, dcpe), 1.92-1.19 (m, 40 H, dcpe), 1.09 (s, 9 H, C(CH₃)₃). ¹³C NMR (CDCl₃, 25°C): δ_{C} 297.3 (t, ²J_{CP} = 9.2, W= \underline{C}), ¹J_{WC} = 176.14), 216.3 (dd, $^{cis}J_{CP}$ = 7.7 $^{trans}J_{CP}$ = 37.3, W(<u>C</u>O)₂), 147.4 (t, ${}^{3}J_{CP}$ = 2.86, C_i in SC₆H₅), 134.5 (C_m in SC₆H₅), 127.4 (C_o in SC₆H₅), 122.5 (C_p in SC₆H₅), 52.4 (²J_{CW} = 34.2, <u>C</u>(CH₃)₃), 40.9 (d, ¹J_{CP} = 19.3 Hz, $\underline{C}H[C_6H_{11}]$) 34.4 (d, ${}^{1}J_{CP}$ = 18.5 Hz, $\underline{C}H[C_6H_{11}]$), 30.5 $(\underline{C}H_2[C_6H_{11}]), 30.1 (\underline{C}H_2[C_6H_{11}]), 29.4 (\underline{C}H_2[C_6H_{11}]), 29.3 (d, J_{CP} = 3.0, \underline{C}H_2[C_6H_{11}]), 28.9 (W \equiv CC\underline{C}H_3), 27.9 (d, J_{CP} = 12.3, \underline{C}H_2[C_6H_{11}]), 27.8 (d, J_{CP} = 11.5, \underline{C}H_2[C_6H_{11}]), 27.6 (d, J_{CP} = 5.3, \underline{C}H_2[C_6H_{11}]), 27.6 (d, J_{CP} = 4.6, \underline{C}H_2[C_6H_{11}]), 26.5 (\underline{C}H_2[C_6H_{11}]), 26.3 (\underline{C}H_2[C_6H_{11}]), 22.3 (dd, ^{1}J_{CP} = 22.2, ^{2}J_{CP} = 11.9, P(\underline{C}H_2)_2P). ^{31}P\{^{1}H\} NMR (CDCl_3, 25^{\circ}C): \delta_P 41.18 (^{1}J_{PW} = 218 Hz). MS-ESI(+): 840.3453 [M]^{+}, 731.3386 [M-SPh]^{+}. Accurate mass: found 888.3453 [M]^{+}. Calcd for C_{39}H_{62}O_2P_2S^{184}W 840.3455. Anal. found: C, 55.66; H, 7.53; N, 0.00%. Calcd. for C_{39}H_{62}O_2P_2SW: C, 55.71; H, 7.43; N, 0.00%. Crystals suitable for crystallographic analysis were obtained$ *via*diffusion of pentane into a solution of the complex in DCM at -20°C.

Crystal Data for C₃₉H₆₂O₂P₂SW: *M*_w =840.73, monoclinic, space group *P*2₁/c (no. 14), *a* = 21.70419(20) Å, *b* = 20.77394(16) Å, *c* = 18.14956(16) Å, *β* = 106.3363(10)°, *V* = 7852.92(12) Å³, *Z* = 8, *T* = 150(2) K, μ(Cu Kα) = 6.946 mm⁻¹, *ρ_{calc}* = 1.422 Mgm⁻³, 158756 reflections measured (6.00° ≤ 2Θ ≤ 148.20°), 15875 unique (*R*_{int} = 0.0715) which were used in all calculations. The final *R*₁ was 0.0478 (*I* > 2σ(*I*)) and *wR*₂ was 0.1094 (all data). CCDC 1515561.

Synthesis of $W(\equiv C^{t}Bu)(SePh)(dcpe)(CO)_{2}$

To a yellow solution of W(≡CH)(Br)(dcpe)(CO)₂ (151 mg, 0.200 THF mmol) in (10 mL) at -78°C (dry ice/acetone), 0.38 mL of a 1.6 M solution of ^tBuLi in hexanes (0.60 mmol) was added via syringe. The resultant dark red solution was allowed to stir for 30 minutes at -78°C before the addition of PhSeSePh (0.085 g, 0.27 mmol) was added via syringe. The reaction was allowed to stir at -78°C for a further 30 minutes before removal of the cooling bath. THF was removed in vacuo and the product was extracted using DCM (2x 10mL) via filtration through a glass frit from the insoluble LiCl precipitate. The DCM was removed in vacuo and the subsequent product washed with a mixture of ether and pentane (2 x 5 mL, 1:10) to afford the product as an off-white powder. Yield: 71 mg, 40%. IR (C₆H₆) v/cm⁻¹: 1984 (CO), 1915 (CO). IR (Nujol) v/cm⁻¹: 1977 (CO), 1908 (CO). ¹H NMR (CDCl₃, 25°C): δ_{H} 7.71 (d, ³J_{HH} = 7.8, 2 H, C_oH in SeC₆H₅), 7.08-7.01 (m, 3 H, 2 x C_mH, 1 x C_pH in SeC₆H₅), 2.26-2.13 (m, 6 H, dcpe), 2.04-2.00 (m, 2H, dcpe), 1.94-1.25 (m, 40 H, dcpe), 1.13 (s, 9 H, $C(CH_3)_3$). ¹³C NMR (CDCl₃, 25°C): δ_C 298.8 (t, ²J_{CP} = 8.73, W=<u>C</u>), ${}^{1}J_{WC}$ = 176.1), 216.3 (dd, ${}^{cis}J_{CP}$ = 7.2 ${}^{trans}J_{CP}$ = 36.5, W(<u>C</u>O)₂), 136.3 (C_o in SC₆H₅), 136.0 (t, ${}^{3}J_{CP}$ = 2.92, C_i in SeC₆H₅), 127.4 (C_o in SC₆H₅), 123.5 (C_p in SC₆H₅), 52.2 (${}^{2}J_{CW}$ = 33.6, <u>C</u>(CH₃)₃), 41.1 (d, ${}^{1}J_{CP} = 19.5$, $\underline{C}H[C_{6}H_{11}]$) 34.4 (d, ${}^{1}J_{CP} = 18.7$ Hz, $\underline{C}H[C_{6}H_{11}]$), 30.4 (<u>C</u>H₂[C₆H₁₁]), 30.1 (<u>C</u>H₂[C₆H₁₁]), 29.2 (<u>C</u>H₂[C₆H₁₁]), 29.1 (d, $J_{CP} = 3.9, \ \underline{C}H_2[C_6H_{11}]), \ 28.6 \ (C(\underline{C}H_3)_3), \ 27.9 \ (d, \ J_{CP} = 12.3,$ $\underline{\textbf{C}}\textbf{H}_2[\textbf{C}_6\textbf{H}_{11}]), \; \textbf{27.7} \; (\textbf{d}, \; \textbf{J}_{\text{CP}} = \textbf{12.8}, \; \underline{\textbf{C}}\textbf{H}_2[\textbf{C}_6\textbf{H}_{11}]), \; \textbf{27.4} \; (\textbf{d}, \; \textbf{J}_{\text{CP}} = \textbf{9.4}, \;$ $\underline{C}H_2[C_6H_{11}])$, 27.6 (d, $J_{CP} = 8.4$, $\underline{C}H_2[C_6H_{11}])$, 26.3 ($\underline{C}H_2[C_6H_{11}]$), 26.1 ($\underline{C}H_2[C_6H_{11}]$), 22.6 (dd, ¹J_{CP} = 22.5, ²J_{CP} = 12.0). ³¹P{¹H} NMR (CDCl₃, 25°C): δ_P 41,18 (¹J_{PW} = 218 Hz). MS-ESI(+): 888.2941 [M]+, 731.3422 [M-SePh]+. Accurate mass: found 888.2941 [M]⁺. Calcd for C₃₉H₆₂O₂P₂⁸⁰Se¹⁸⁴W 888.2900. Anal. found: C, 52.64; H, 7.11; N, 0.00%. Calcd. for $C_{39}H_{62}O_2P_2TeW$: C, 52.77; H, 7.04; N, 0.00%. Crystals suitable for crystallographic analysis were obtained via slow evaporation of a solution of the complex in Et₂O at -20°C.

Crystal Data for C₃₉H₆₂O₂P₂SeW: M_w =887.63: monoclinic, space group $P2_1/n$ (no. 14), *a* = 10.5933(3) Å, *b* = 15.6299(5) Å, *c* = 24.1696(6) Å, *β* = 99.630(3)°, *V* = 3945.44(19) Å³, *Z* = 4, *T* = 150(2) K, µ(Cu Kα) = 7.473 mm⁻¹, ρ_{calc} = 1.494 Mgm⁻³, 61798 reflections measured (6.76° ≤ 2Θ ≤ 147.67°), 7980 unique (R_{int} = 0.0725) which were used in all calculations. The final R_1 was 0.0473 ($I > 2\sigma(I)$) and wR_2 was 0.1163 (all data). CCDC 1515557.

Synthesis of $W(\equiv C^t Bu)(TePh)(dcpe)(CO)_2$

To a yellow solution of $W(\equiv CH)(Br)(dcpe)(CO)_2$ (151 mg, 0.200 THF mmol) in (10 mL) at -78°C (dry ice/acetone), 0.38 mL of a 1.6 M solution of ^tBuLi in hexanes (0.60 mmol) was added *via* syringe. The resultant dark red solution was allowed to stir for 30 minutes at -78°C before the addition of PhTeTePh (0.10 g, 0.27 mmol). The reaction was allowed to stir at -78°C for a further 30 minutes before removal of the cooling bath. THF was removed in vacuo and the product was extracted using DCM (2x 10mL) via filtration through a glass frit from the insoluble LiCl precipitate. The DCM was removed in vacuo and the subsequent product washed with a mixture of ether and penatne (2x5mL, 1:10) to afford the product as an orange powder. Yield 112 mg, 60%. IR (C₆H₆) v/cm⁻¹: 1981 (CO), 1914 (CO). IR (Nujol) v/cm⁻¹: 1973 (CO), 1907 (CO). ¹H NMR (CDCl₃, 25°C): δ_{H} 8.37 (d, ³J_{HH} = 7.5, 2 H, C_0H in TeC_6H_5), 7.07 (t, 1 H, ${}^{3}J_{HH} = 7.2$, C_pH in TeC_6H_5), 7.01 (dd, ${}^{3}J_{HH} = 7.5$, ${}^{3}J_{HH} = 7.2$, 2 H, $2xC_{m}H$ in $TeC_{6}H_{5}$), 2.54-2.49 (m, 2 H, dcpe), 2.19-2.11 (m, 4 H, dcpe) 1.88-1.02 (m, 40 H, dcpe), 1.19 (s, 9 H, C(C<u>H_3</u>)₃). ¹³C NMR (CDCl₃, 25°C): δ_{C} 301.4 (t, ²J_{CP} = 8.36, $W \equiv \underline{C}$), 215.0 (dd, ^{cis}J_{CP} = 7.3 ^{trans}J_{CP} = 34.5, W(\underline{C} O)₂), 141.1 (C_m in TeC₆H₅), 128.0 (C_o in TeC₆H₅), 125.3 (C_p in SC₆H₅), 108.5 (t, ${}^{3}J_{CP} = 3.00$, C_i in TeC₆H₅), 51.8 (${}^{2}J_{CW} = 35.5$, W=C<u>C</u>CH₃), 41.7 (d, ${}^{1}J_{CP} = 19.2$, <u>C</u>H[C₆H₁₁]), 38.0 (d, ${}^{1}J_{CP} = 19.2$, <u>C</u>H[C₆H₁₁]), 30.8 $(\underline{C}H_2[C_6H_{11}])$, 30.2 $(\underline{C}H_2[C_6H_{11}])$, 29.4 (d, $J_{CP} = 3.74$, $\underline{C}H_2[C_6H_{11}])$, 29.1 ($\underline{C}H_2[C_6H_{11}]$), 28.4 (W=CC $\underline{C}H_3$), 27.6 (d, J_{CP} = 12.0, $\underline{\mathbf{C}}H_2[C_6H_{11}]), \ 27.5 \ (d, \ J_{CP} = 13.2, \ \underline{\mathbf{C}}H_2[C_6H_{11}]), \ 27.3 \ (d, \ J_{CP} = 6.0,$ $\underline{C}H_2[C_6H_{11}])$, 27.3 (d, $J_{CP} = 4.2$, $\underline{C}H_2[C_6H_{11}])$, 26.3 ($\underline{C}H_2[C_6H_{11}]$), 26.0 ($\underline{C}H_2[C_6H_{11}]$), 23.1 (dd, ¹J_{CP} = 22.4 ²J_{CP} = 12.5, P($\underline{C}H_2)_2$ P). ${}^{31}P\{1H\}$ NMR (CDCl₃, 25°C): δ_P 37.99 (${}^{1}J_{PW}$ = 218 Hz). MS-ESI: 731.3342 [M-TePh]*. Accurate mass: found 731.3342 [M-TePh]⁺. Calcd for C₃₃H₅₇O₂P₂¹⁸⁴W 731.3343. Anal. found: C, 49.92 ; H, 6.65; N, 0.00%. Calcd. for C₃₉H₆₂O₂P₂TeW: C, 50.03; H, 6.67; N, 0.00%. Crystals suitable for crystallographic analysis were obtained via slow evaporation of a solution of the complex in benzene at room temperature.

Crystal Data for C₃₉H₆₂O₂P₂TeW: $M_w = 936.27$, monoclinic, space group $P2_1/n$ (no. 14), a = 10.62715(11) Å, b = 15.6401(2) Å, c = 24.3392(3) Å, $\theta = 100.1600(11)^\circ$, V = 3981.98(9) Å³, Z = 4, T = 150(2) K, μ (CuK α) = 12.026 mm⁻¹, $\rho_{calc} = 1.562$ Mgm⁻³, 41443 reflections measured (6.75° $\leq 2\Theta \leq 147.97^\circ$), 8049 unique ($R_{int} = 0.0428$) which were used in all calculations. The final R_1 was 0.0356 ($I > 2\sigma(I)$) and wR_2 was 0.0975 (all data). CCDC 1515558.

Figure S1. Molecular Structure of [W(≡C'Bu)(SPh)(CO)₂(dcpe)] (Hydrogen atoms omitted, cyclohexyl groups simplified, 60% displacement ellipsoids). One of two independent molecules shown. Selected bond lengths (Å) and angles (deg.): W1–P3 2.5622(13), W1–P4 2.5515(12), W1–S7 2.6008(12), W1–C16 1.821(5), W1–C7 2.003(6), W2–P5 2.5498(12), S7–C39 1.777(5), C15–C16 1.502(7), P3–W1–S7 88.96(4), P4–W1–P3 78.70(4), P4–W1–S7 85.90(4), C15–C16–W1 168.2(4), C39–S7–W1 107.36(17).

Figure S2. Molecular Structure of [W(≡C'Bu)(TePh)(CO)₂(dcpe)] (Hydrogen atoms omitted, cyclohexyl groups simplified, 60% displacement ellipsoids). Selected bond lengths (Å) and angles (deg.): W1–Te2 2.9393(3), W1–P3 2.5464(10), W1–P4 2.5730(11), W1–C3 1.823(5), Te2–C14 2.131(4), C3–C3AA 1.496(6), P3–W1–Te2 84.71(2), P3–W1–P4 78.33(3), P4–W1–Te2 95.46(2), C3–W1–Te2 165.47(14), C3–W1–P3 101.78(13), C3–W1–P4 98.58(14), C14–Te2–W1 104.84(12), C3AA–C3–W1 167.5(4).

Figure S3. Crystal packing for $[W(\equiv C'Bu)(TePh)(CO)_2(dcpe)]$ (3c) showing incipient π -stacking between adjacent molecules (pale blue).

Figure S4. Molecular Structure of $[W(\equiv C^{2}Bu)(Cl)(CO)_{2}(dcpe)]$ (Hydrogen atoms omitted, cyclohexyl groups simplified, 60% displacement ellipsoids). Selected bond lengths (Å) and angles (deg.): W1–Cl1 2.582(2), W1–P1 2.557(2), W1–P2 2.5429(19), W1–C1 1.734(9), C1–C6 1.527(12), P1–W1–Cl1 85.39(8), P2–W1–Cl1 90.54(7), P2–W1–P1 79.79(6), C1–W1–Cl1 168.2(3), C1–W1–P1 104.6(3), C1–W1–P2 97.3(2), C6–C1–W1 170.2(7).

Figure S5. HOMO for the anionic model complex $[W(\equiv CMe)(CO)_2(dmpe)]^-$ (DFT: B3LYP-LACVP) indicating likely site of orbital controlled electrophilic attack *trans* to carbyne ligand. Views (a) Along P...W vector; (b) Normal to the P–W vector.

Figure S6. Atom labelling for Computational Results.

Table S1. Calculated Atomic Cartesian Coordinates (Å) for the model anionic Complex $[W(\equiv\!CMe)(CO)_2(dmpe)]^-$

Atom	x	Y	z
W1	-0.6667451	0.2676392	-0.0016996
C1	-1.4172092	1.1726645	-1.4303085
C2	-2.2028512	1.9507866	-2.4311130
H1	-1.9602192	1.6950072	-3.4761016
H6	-2.0579121	3.0381777	-2.3149794
H7	-3.2800630	1.7591669	-2.2938187
C3	-0.8473371	1.2078019	1.7236614
01	-1.0243562	1.8992105	2.7034380
C4	-2.2981001	-0.7763166	0.4225128
02	-3.2748884	-1.4310856	0.6794109
P1	1.7483234	1.0560140	-0.0342062
P2	0.5748178	-1.9400371	-0.1002710
C5	2.5205690	1.7540379	-1.6396885
H4	1.9552090	2.6454509	-1.9249782
H10	2.4001813	1.0052832	-2.4268145
H11	3.5812641	2.0051999	-1.5126256
C6	2.4171394	2.3507100	1.1932581
H3	2.0494854	2.0977121	2.1895629
H12	2.0179608	3.3301995	0.9162686
H13	3.5129114	2.3851972	1.1846736
C7	2.9636971	-0.4077071	0.3235686
H5	2.9817145	-0.5135927	1.4141641
H14	3.9721256	-0.1300605	-0.0150239
C8	2.4823838	-1.7014630	-0.3395680
H16	2.6532380	-1.6665956	-1.4226700
H17	3.0071262	-2.5810837	0.0565313
C9	0.2166492	-3.1279347	-1.5568058
H8	0.2884847	-2.5518248	-2.4821893
H18	-0.8098977	-3.4914226	-1.4539279
H19	0.9092146	-3.9795202	-1.5780337
C10	0.5263577	-3.2426733	1.3104491
H9	-0.5241703	-3.4821431	1.4984627
H20	0.9402307	-2.7798313	2.2096432
H21	1.0813012	-4.1547110	1.0561959

Table [W(≡Cl	S2. Calculated Me)(CO) ₂ (dmpe)] ⁻	Atomic Charges	for Inner	Coordination	Sphere	of
Atom	Electrostatic	Mulliken	Natural			
W1	+0.423	-0.162	+0.410			
C1	-0.781	-0.154	-0.507			
C2	+0.123	-0.532	-0.778			
C3	-0.317	+0.143	+0.090			
01	-0.259	-0.481	-0.572			
C4	+0.193	+0.140	+0.187			
02	-0.396	-0.465	-0.551			
P1	+0.482	+0.645	+0.822			
P2	-0.004	+0.629	+0.779			

Figure S7. Local Ionisation Potential Surface for $[W(\equiv CMe)(CO)_2(dmpe)]^-$, two views indicating likely sites of attack in charge-controlled electrophilic attack trans to carbyne. NB: Although there is considerable negative charge in the vicinity of the W=C bond, in the real complex $[W(\equiv C'Bu)(CO)_2(dcpe)]^-$ this region is sterically protected from direct attack by larger electrophiles.

COMMUNICATION

Figure S8. $^{1}\text{H}^{-13}\text{C}$ HMBC NMR Spectrum of the intermediate B showing correlation of $\delta_{\text{H}}(\text{CH}_{3})$ with $\delta_{\text{C}}(\text{W}{=}\text{C}).$

