Electronic Supporting Information (ESI)

for

Two microporous Fe-based MOFs with multiple active sites for selective gas

adsorption

Yun-Wu Li,^{a,b} Hui Yan,^a Tong-Liang Hu,^b Hui-Yan Ma,^a Da-Cheng Li,^a Su-Na Wang,^a Qing-Xia

Yao,^a Jian-Min Dou,^{*a} Jian-Xu^{*b} and Xian-He Bu^{*b}

^aSchool of Chemistry and Chemical Engineering, School of Materials Science and Engineering, School of Pharmacy, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China.

^bSchool of Materials Science and Engineering, College of Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Nankai University, Tianjin 300071, P. R. China.

*To whom correspondence should be addressed.

E-mail: <u>dougrou@163.com</u> (J. M. Dou); <u>jxu@nankai.edu.cn</u> (J. Xu); <u>buxh@nankai.edu.cn</u> (X. H. Bu).

S1. Experimental Section

Materials and methods.

All chemicals were commercially purchased and used as received.

Elemental analyses (C, H and N) were performed on a Perkin-Elmer 2400 II analyzer (Perkin-Elmer, USA). The X-ray powder diffraction (XRPD) was obtained on a D/MAX-rA (Rigaku) diffractometer with Cu K_{α} radiation ($\lambda = 1.542$ Å) with a scan rate of 4° min⁻¹. The tube voltage and current are 36 kV and 20 mA, respectively. FT-IR spectra were recorded on a FT6700 spectrometer (USA) using KBr disc method in the range of 400–4000 cm⁻¹. Simulation of the XRPD spectra were carried out by the single-crystal data and diffraction-crystal module of the Mercury (Hg) program available free of charge *via* the Internet at http://www.iucr.org.

Syntheses of LCU-101 and LCU-102:

[Fe₂(BPDC)(DMAC)₃]_n (LCU-101): A mixture of FeCl₃ (65 mg, 0.4 mmol), H₄BPDC (66 mg, 0.2 mmol), and 2,6-dimethylpyridine (0.20 mL) in 10 mL DMAC (10 mL) was sealed in a Teflon-lined stainless steel vessel (23 mL), which was heated at 160 °C for 4 days and then cooled to room temperature at a rate of 10 °C·h⁻¹. Block-like yellow crystals of LCU-101 were collected. Yield: 22% for LCU-101 based on Fe, respectively. Elemental analysis (%) for activated sample LCU-101a, C₁₆H₆O₈Fe₂ (M = 437.90): *Calcd*.: C, 43.88; H, 1.38; *Found*: C, 43.15; H, 1.22. IR (KBr disk, cm⁻¹) see Fig. S6 in ESI.

{[H₂N(CH₃)₂][Fe₂Na₃(BPDC)₂(DMAC)₂(H₂O)]·DMAC}_n (LCU-102): A mixture of FeCl₃·6H₂O (65 mg, 0.24 mmol), H₄BPDC (66 mg, 0.2 mmol), NaOH (40 mg, 1 mmol) and 2,6-dimethylpyridine (0.20 mL) in 10 mL DMAC (10 mL) was sealed in a Teflon-lined stainless steel vessel (23 mL), which was heated at 160 °C for 4 days and then cooled to room temperature at a rate of 10 °C·h⁻¹. Block-like yellow crystals of LCU-102 were collected. Yield: 20% for LCU-102 based on Fe, respectively. Elemental analysis (%) for LCU-102, C₄₆H₄₉O₂₀N₄Na₃Fe₂ (M = 1158.56): *Calcd*.: C, 47.69; H, 4.26; N, 4.84; *Found*: C, 47.21; H, 3.85; N, 4.32. IR (KBr disk, cm⁻¹) see Fig. S7 in ESI.

X-ray Crystallography.

The crystallographic data of LCU-101 and LCU-102 were collected on a Rigaku SCX-mini diffractometer and Bruker SMART at 298(2) K with Mo-K α radiation ($\lambda = 0.71073$ Å), respectively. The crystal data were solved by direct methods and refined by a full-matrix least-square method on F^2 using the *SHELXL-97* crystallographic software package.^{S1} Fe and Na atoms in LCU-101 and LCU-102 were found from *E*-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. The final refinement was performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F^2 . The hydrogen atoms of organic ligands were added theoretically, riding on the concerned atoms and refined with fixed thermal factors.

During the refinement of the two compounds, the command "omit -3 50" was used to omit some disagreeable reflections. The command "dfix" was used to fix some bonds. For LCU-101, the command "delu" was used to solve the alert of "Large Hirshfeld Difference...". The atoms C40, C50, C51, C52, C54, C64 and C65 were restrained using thermal restraints (isor) to sovle ADP or NDP alerts and make the displacement parameters more reasonable. It should be noted that some guest molecules (DMAC) in the channels of LCU-101 are highly disordered and could not be modeled properly, so the diffused electron densities resulting from them were removed by the SQUEEZE routine in PLATON^[S2] and the results were appended to the bottom of the CIF file. For LCU-102, the command "simu" was used to solve the alert of "Large Hirshfeld Difference...". The atoms N3, O19, C37, C44, C45, C46, C47, C51, C39 and C49 were restrained using thermal restraints (isor and simu) to sovle ADP or NDP alerts and make the displacement parameters more reasonable. The H atoms of the coordinated water molecules in LCU-102 cannot be added in the calculated positions, and they were directly included in the final molecular formula. Due to the limited crystal quality, the more solvents, and the relatively high "restraints" in the LCU-102, which all result the higher R value. Further details of crystal data and structure refinement for LCU-101 and LCU-102 were summarized as follows in Table S1. Selected bond lengths of 1 and 2 were given in Table S2 and Table S3. Full crystallographic data for LCU-101 and LCU-102 have been deposited with the CCDC (1486513 for LCU-101, and 1486514 for LCU-102). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.^{S3}

References

- S1. (a) G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997.
- S2. A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Untrecht University, 2003.
- S3. The checkcif program available at: <u>http://journals.iucr.org/services/cif/checkcif.html</u>.

Crystal data for LCU-101 and LCU-102

Compounds	LCU-101	LCU-102	
Formula	$C_{28}H_{33}O_{11}N_3Fe_2$	$C_{46}H_{49}O_{20}N_4Na_3Fe_2$	
$F_{ m w}$	699.27	1158.56	
λ/Å	0.71073	0.71073	
<i>T</i> /K	298(2)	298(2)	
Crystal system	Monoclinic	Monoclinic	
Space group	<i>P</i> 21/ <i>c</i>	<i>P</i> 21/ <i>c</i>	
<i>a</i> [Å]	18.698(7)	13.5430(12)	
<i>b</i> [Å]	19.292(7)	19.3401(17)	
<i>c</i> [Å]	19.383(7)	23.223(2)	
α[°]	90	90	
β [°]	91.045(4)	123.452(3)	
γ[°]	90	90	
V(Å ³)	6991(4)	5075.0(8)	
Ζ	4	4	
$D_c/\mathrm{Mg}\cdot\mathrm{m}^{-3}$	1.329	1.514	
<i>F</i> (000)	2895	2384	
Reflections collected/unique	52502/12280	24197/8926	
$R_{ m int}$	0.1799	0.1569	
Data/Restraints/Parameters	12280/53/811	8926/190/716	
$R_1/wR_2 [I > 2\sigma(I)]^a$	0.1307/0.3411	0.0891/0.2247	
R_1/wR_2 [(all data)] ^{<i>a</i>}	0.1715/0.3758	0.2013/0.2693	
GOF on F^2	1.097	0.917	
^{<i>a</i>} $R_I = \Sigma(F_0 - F_C) / \Sigma F_0 wR_2 = [\Sigma w(F_0 ^2 - F_C ^2)^2 / (\Sigma w F_0 ^2)^2]^{1/2}.$			

Table S1. Crystal Data and Structure Refinement Parameters forCompounds LCU-101 and LCU-102.

Sorption measurements.

Gas adsorption/desorption measurements were carried out using a Micrometrics ASAP 2020M volumetric gas adsorption instrument. UHP-grade gases were used in measurements. Before the measurement, the samples of LCU-101 and LCU-102 were soaked in anhydrous methanol (CH₃OH) for 3 days to remove DMAC solvent molecules in the channels, and then filtrated, and activation of the methanol-exchanged LCU-101 and LCU-102 at 120 °C under high vacuum (less than 10^{-5} Torr) overnight led to the formation of activated sample LCU-101a and LCU-102a. About 180 mg (for LCU-101) and 190 mg (for LCU-102) of the desolvated samples were used for the entire adsorption/desorption measurements. The Ar adsorption/desorption isotherm measurements were proceeded at 77 K in a liquid nitrogen bath. The H₂ adsorption/desorption isotherms were collected at 77 K in a liquid nitrogen bath and 87 K in a liquid argon bath. The CO₂, CH₄ and N₂ adsorption/desorption isotherm measurements were carried out at 273 K in an ice-water bath, respectively.

S2. Figures in Supporting Information

Fig. S1 The different Fe…Fe distances of the two adjacent dimeric Fe-clusters for LCU-101.

Fig. S2 The coordination mode of the ligand for LCU-101.

Fig. S3 The coordination mode of the ligand for LCU-102.

Fig. S4 XRPD patterns for LCU-101 and LCU-101a.

Fig. S5 XRPD patterns for LCU-102 and LCU-102a.

Fig. S6 IR spectra of compound LCU-101.

Fig. S7 IR spectra of compound LCU-102.

Fig. S8 Pore size distribution of LCU-101a and LCU-102a.

The study of hydrogen storage.

As one of energy carrier gas of interest, the H₂ adsorption of LCU-101a and LCU-102a should also be examined. The results show that the H₂ uptake of LCU-101a and LCU-102a at 77 K reaches *ca.* 88.8 cm³/g (STP) and 80.5 cm³/g (STP), respectively, see Fig. 3a and 3b. This storage capacity can be comparable to that of many previously reported MOFs under similar conditions.⁸⁴⁻⁸⁵ In addition, the H₂ adsorption enthalpies were also estimated using the H₂ isotherms at 77 and 87 K by virial equation. ⁸⁴⁻⁸⁵ The calculated Q_{st} values are 9.2~10.6 kJ/mol for LCU-101a (Fig. S9a) and 8.5~6.9 kJ/mol for LCU-102a (Fig. S9b), which are also comparable to many reported MOFs. ⁸⁴⁻⁸⁵

Fig. S9 H_2 adsorption enthalpy for LCU-101a and LCU-102a calculated from the H_2 adsorption isotherms at 77 K and 87 K.

Fig. S10 CO₂ adsorption enthalpy for **LCU-101a** and **LCU-102a** calculated from the CO₂ adsorption isotherms at 273 K, 283 K and 298 K.

- S4 X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness and M. Schröder, *J. Am. Chem. Soc.*, 2009, **131**, 2159–2171.
- S5 (a) A. J. Lan, K. H. Li, H. H. Wu, L. Z. Kong, N. Nijem, D. H. Olson, T. J. Emge, Y. J. Chabal, D. C. Langreth, M. C. Hong and J. Li, *Inorg. Chem.*, 2009, 48, 7165–7173; (b) D. C. Zhong, J. B. Lin, W. G. Lu, L. Jiang and T. B. Lu, *Inorg. Chem.*, 2009, 48, 8656–8658.

S3. IAST adsorption selectivity calculation:^{S5-S7}

The experimental isotherm data for pure CO_2 , CH_4 and N_2 (measured at 273 K) were fitted using a Langmuir-Freundlich (L-F) model:

$$q = \frac{a * b * p^c}{1 + b * P^c}$$

Where q and p are adsorbed amounts and pressures of component i, respectively. Using the pure component isotherm fits, the adsorption selectivity is defined by

Where q_i is the amount of *i* adsorbed and p_i is the partial pressure of *i* in the mixture.

We used the following written codes to simulate the adsorption selectivity of CO_2 over CH_4 or N_2 in Fig. 4 and S11, S12:

28 # No. of Pressure Point

y1, y2 # Molar fraction of binary mixture (y1 and y2, y1 + y2 = 1)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107,

108, 109 #The unit is same parameter b, kPa

a1, a2 # fitting parameter Nsat (A1) for both component (Unit: mmol/g)

b1, b2 # fitting parameter b1 for both components (Unit: kPa⁻¹)

c1, c2 # fitting parameter c1 for both components

0, 0 # fitting parameter Nsat2(A2) for both component(Unit: mmol/g)

0, 0 # fitting parameter b2 for both components (Unit: kPa^{-1})

1, 1 # fitting parameter c2 for both components

S6 F. Daniels, R. A. Alberty, J. W. Williams, C. D. Cornwell, P. Bender and J. E. Harriman,

Experimental Physical Chemistry, 6th Ed, McGraw-Hill Book Co. Inc., New York, 1962.

S7 M. Dincă and J. R. Long, J. Am. Chem. Soc., 2005, 127, 9376-9377.

Fig. S11 N₂, CO₂ and CH₄ adsorption isotherms of LCU-101a with fitting by L-F model.

Fig. S12 N₂, CO₂ and CH₄ adsorption isotherms of LCU-102a with fitting by L-F model.

Fig. S14 IAST adsorption selectivities of (a) **LCU-101a** and (b) **LCU-102a**; (c) (d) preferential CO₂ binding sites simulated with GCMC.

S4 The computational simulation studies of gases adsorption

To further investigate interactions between CO_2 molecules and the LCU- 101 and LCU-102, grand canonical Monte Carlo (GCMC) simulations were carried out using the Sorption module of Materials Studio 5.0 package.^{S7} The Locate and Metropolis methods^{S8} were used to predict the possible binding sites of CO_2 molecules onto the frameworks. The unit cell frameworks of LCU-101 and LCU-102 were constructed from experimental crystal X-ray diffraction data. The loading number of CO_2 adsorbed onto each unit cell of the two kinds of frameworks was choose as 20 based on our experimental data. During the simulation, the CO_2 and dimethylamine molecules including the frameworks were considered as rigid, and periodic boundary conditions were applied in all three directions. The interaction energy between CO_2 and frameworks were calculated by the Coulomb and Lennard-Jones 6-12 (LJ) potentials. A cutoff radius of 12.5 Å for the LJ potentials was used throughout the simulation. All parameters including the partial charges were assigned by the COMPASS force field^{S9} embedded in the Sorption module.

S8 Accelrys, Materials Studio Getting Started, release 5.0; Accelrys Software, Inc.: San Diego,

CA, 2009.

S9 N. Metropolis and S. Ulam, J. Am. Stat. l Assoc., 1949, 60, 115-129.

S10 H. Sun, J. Phys. Chem. B, 1998, 102, 7338-7364.

S5. The selected bond lengths [Å] and angles [°] of compounds LCU-101 and LCU-102.

2.124(6)

2.156(6)

2.200(7)

2.017(6)

2.075(6)

2.102(6)

2.102(6)

2.259(8)

2.326(7)

2.059(6)

2.082(7)

95.6(3)

96.6(2)

101.6(3)

157.3(3)

94.7(3)

97.3(2)

97.3(3)

100.0(3)

153.4(3)

60.9(2)

94.5(3)

155.4(2)

59.3(2)

84.3(3)

93.4(3)

94.5(2)

100.9(3)

104.3(3)

100.4(3)

111.9(3)

142.4(3)

160.5(3)

96.5(3)

91.7(3)

60.3(3)

Fe(1)-O(8)#1

Fe(1)-O(15)#2

Fe(1)-O(16)#2

Fe(2)-O(11)#4

Fe(2)-O(4)#3

Fe(2)-O(13)

Fe(2)-O(5)#5

Fe(2)-O(6)#5

Fe(2)-O(14)

Fe(3)-O(17)

Fe(3)-O(1)

O(10)-Fe(1)-O(2)

O(10)-Fe(1)-O(8)#1

O(10)-Fe(1)-O(15)#2

O(8)#1-Fe(1)-O(15)#2

O(8)#1-Fe(1)-O(16)#2

O(10)-Fe(1)-O(16)#2

O(2)-Fe(1)-O(16)#2

O(10)-Fe(1)-O(7)#1

O(8)#1-Fe(1)-O(7)#1

O(15)#2-Fe(1)-O(7)#1

O(16)#2-Fe(1)-O(7)#1

O(4)#3-Fe(2)-O(11)#4

O(4)#3-Fe(2)-O(13)

O(11)#4-Fe(2)-O(13)

O(4)#3-Fe(2)-O(5)#5

O(13)-Fe(2)-O(5)#5

O(4)#3-Fe(2)-O(6)#5

O(11)#4-Fe(2)-O(6)#5 O(13)-Fe(2)-O(6)#5

O(5)#5-Fe(2)-O(6)#5

O(11)#4-Fe(2)-O(5)#5

O(2)-Fe(1)-O(7)#1

O(15)#2-Fe(1)-

O(16)#2

O(2)-Fe(1)-O(15)#2

O(2)-Fe(1)-O(8)#1

Table S2 The selected bond lengths [Å] and angles [°] of compound LCU-101.			
O(8)-Fe(1)#1	2.124(6)	Fe(3)-O(9)	2.113(6)
O(8)-Fe(3)#1	2.184(6)	Fe(3)-O(8)#1	2.184(6)
O(22)-Fe(3)	2.169(9)	Fe(3)-O(18)	2.204(8)
O(7)-Fe(1)#1	2.360(8)	Fe(4)-O(21)	2.093(7)
Fe(1)-O(10)	1.998(6)	Fe(4)-O(12)#4	2.096(7)
Fe(1)-O(2)	2.014(7)	Fe(4)-O(3)#3	2.107(6)

Fe(4)-O(26)

Fe(4)-O(20)

Fe(4)-O(13)

O(3)-Fe(4)#6

O(4)-Fe(2)#6

O(5)-Fe(2)#7

O(11)-Fe(2)#4

O(15)-Fe(1)#2

O(12)-Fe(4)#4

O(16)-Fe(1)#2

O(4)#3-Fe(2)-O(14)

O(13)-Fe(2)-O(14)

O(5)#5-Fe(2)-O(14)

O(6)#5-Fe(2)-O(14)

O(17)-Fe(3)-O(1)

O(17)-Fe(3)-O(9)

O(17)-Fe(3)-O(22)

O(1)-Fe(3)-O(22)

O(9)-Fe(3)-O(22)

O(17)-Fe(3)-O(8)#1

O(1)-Fe(3)-O(8)#1

O(9)-Fe(3)-O(8)#1

O(22)-Fe(3)-O(8)#1

O(17)-Fe(3)-O(18)

O(1)-Fe(3)-O(18)

O(9)-Fe(3)-O(18)

O(22)-Fe(3)-O(18)

O(8)#1-Fe(3)-O(18)

O(21)-Fe(4)-O(3)#3

O(21)-Fe(4)-O(26)

O(21)-Fe(4)-O(12)#4

O(12)#4-Fe(4)-O(3)#3

O(12)#4-Fe(4)-O(26)

O(1)-Fe(3)-O(9)

O(11)#4-Fe(2)-O(14)

O(6)-Fe(2)#7

2.139(8)

2.179(8)

2.187(7)

2.107(6)

2.017(6)

2.102(6)

2.075(6)

2.156(6)

2.259(8)

2.096(7)

2.200(7)

94.7(3)

154.1(2)

59.6(2)

90.7(3)

83.6(3)

92.1(3)

93.5(3)

88.6(3)

178.6(3)

85.7(3)

89.5(2)

88.0(2)

92.8(2)

93.2(3)

83.4(3)

92.2(3)

94.2(3)

86.7(4)

172.9(2)

177.0(3)

89.8(3)

92.0(3)

89.5(3)

177.3(3)

174.0(3)

O(21)-Fe(4)-O(20)	82.7(3)	O(3)#3-Fe(4)-O(26)	88.7(3)
O(12)#4-Fe(4)-O(20)	93.1(4)	O(12)#4-Fe(4)- $O(13)$	86.9(3)
O(3)#3-Fe(4)-O(20)	94.9(3)	O(3)#3-Fe(4)-O(13)	93.9(3)
O(26)-Fe(4)-O(20)	89.5(4)	O(26)-Fe(4)-O(13)	90.4(3)
O(21)-Fe(4)-O(13)	88.5(3)	O(20)-Fe(4)-O(13)	171.2(3)
Symmetry transformations used to generate equivalent atoms: $\#1: -x+2, -y+2, -z+1;$			
#2: -x+1, -y+2, -z+1; #3: -x+1, y-1/2, -z+3/2; #4 -x+1, -y+1, -z+1; #5: x-1, -y+3/2,			
z-1/2; #6: -x+1, y+1/2, -z+3/2; #7: x+1, -y+3/2, z+1/2.			

 Table S3 The selected bond lengths [Å] and angles [°] of compound LCU-102.

Fe(2)-O(3)	1.949(6)	Fe(1)-O(14)#6	2.144(6)
Fe(2)-O(15)#1	1.975(7)	Fe(1)-O(2)	2.150(6)
Fe(2)-O(11)	2.119(6)	Fe(1)-O(13)#6	2.186(6)
Fe(2)-O(5)#2	2.165(6)	Fe(1)-O(1)	2.196(6)
Fe(2)-O(6)#2	2.170(6)	O(13)-Fe(1)#7	2.186(6)
Fe(2)-O(12)	2.228(6)	O(14)-Fe(1)#7	2.144(6)
O(7)-Fe(1)#4	2.006(6)	O(6)-Fe(2)#8	2.170(6)
Fe(1)-O(10)	1.980(7)	O(5)-Fe(2)#8	2.165(6)
Fe(1)-O(7)#5	2.006(6)	O(15)-Fe(2)#9	1.975(7)
O(3)-Fe(2)-O(15)#1	98.7(3)	O(10)-Fe(1)-O(7)#5	95.3(3)
O(3)-Fe(2)-O(11)	114.1(3)	O(10)-Fe(1)-O(14)#6	96.4(3)
O(15)#1-Fe(2)-O(11)	87.8(3)	O(7)#5-Fe(1)-O(14)#6	110.7(3)
O(3)-Fe(2)-O(5)#2	150.3(3)	O(10)-Fe(1)-O(2)	104.4(3)
O(15)#1-Fe(2)-O(5)#2	92.5(3)	O(7)#5-Fe(1)-O(2)	92.0(2)
O(11)-Fe(2)-O(5)#2	93.6(2)	O(14)#6-Fe(1)-O(2)	147.6(2)
O(3)-Fe(2)-O(6)#2	90.9(3)	O(10)-Fe(1)-O(13)#6	154.3(3)
O(15)#1-Fe(2)-O(6)#2	112.7(3)	O(7)#5-Fe(1)-O(13)#6	86.4(2)
O(11)-Fe(2)-O(6)#2	145.4(2)	O(14)#6-Fe(1)-	59.5(2)
		O(13)#6	
O(5)#2-Fe(2)-O(6)#2	59.4(2)	O(2)-Fe(1)-O(13)#6	101.1(2)
O(3)-Fe(2)-O(12)	96.2(3)	O(10)-Fe(1)-O(1)	95.9(3)
O(15)#1-Fe(2)-O(12)	146.9(3)	O(7)#5-Fe(1)-O(1)	150.5(3)
O(11)-Fe(2)-O(12)	59.1(2)	O(14)#6-Fe(1)-O(1)	95.0(3)
O(5)#2-Fe(2)-O(12)	88.9(3)	O(2)-Fe(1)-O(1)	58.8(2)
O(6)#2-Fe(2)-O(12)	96.4(2)	O(13)#6-Fe(1)-O(1)	94.9(3)
Symmetry transformations used to generate equivalent atoms: #1: x, -y+1/2, z+1/2;			
#2: -x+1, y-1/2, -z+1/2; #3: x-1, y, z; #4: -x+2, y+1/2, -z+1/2; #5: -x+2, y-1/2, -			
z+1/2; #6: x+1, -y+1/2, z+1/2; #7: x-1, -y+1/2, z-1/2; #8: -x+1, y+1/2, -z+1/2; #9: x,			
-y+1/2, z-1/2.			

Table S4 The bond val	ence sum calcula	ations of Fe for LCU-101.
Fe(1)-O(2)	2.014	0.469186
Fe(1)-O(7)	2.36	0.184171
Fe(1)-O(8)	2.124	0.348522
Fe(1)-O(10)	1.998	0.48992
Fe(1)-O(15)	2.156	0.319646
Fe(1)-O(16)	2.2	0.283807
$V_{\rm Fe(1)} = 2.10$		
Fe(2)-O(4)	2.017	0.465397
Fe(2)-O(5)	2.102	0.369873
Fe(2)-O(6)	2.259	0.241975
Fe(2)-O(11)	2.075	0.397873
Fe(2)-O(13)	2.102	0.369873
Fe(2)-O(14)	2.326	0.201897
$V_{\rm Fe(2)} = 2.05$		
Fe(3)-O(1)	2.082	0.390417
Fe(3)-O(8)	2.184	0.296349
Fe(3)-O(9)	2.113	0.359039
Fe(3)-O(17)	2.059	0.415456
Fe(3)-O(18)	2.204	0 280756
Fe(3)-O(22)	2.169	0 30861
$V_{\rm Fe(3)} = 1.74$		
Fe(4)-O(3)	2.107	0 364909
Fe(4)-O(12)	2.096	0 37592
Fe(4)-O(13)	2.187	0.293956
Fe(4)-O(20)	2.179	0.300381
Fe(4)-O(21)	2.093	0.378981
Fe(4)-O(26)	2.139	0.334675
$V_{\rm Fe(4)} = 1.71$		0.001070

S6. The bond valence sum calculations of Fe for LCU-101 and LCU-102.

 $V_M = \sum_j S_{M-O_j} = \sum_j \exp(\frac{r_0 - r_{M-O_j}}{0.37}); r_{\text{Fe}}^{\text{II}} = 1.734 \text{ Å}.$

Fe(1)-O(1)	2.196	0.286892
Fe(1)-O(2)	2.15	0.324872
Fe(1)-O(7)	2.006	0 479441
Fe(1)-O(10)	1.98	0 514343
Fe(1)-O(13)	2.186	0.294752
Fe(1)-O(14)	2.144	0.330183
$V_{\rm Fe(1)} = 2.23$		0.550105
Fe(2)-O(3)	1.949	0 550203
Fe(2)-O(5)	2.165	0.311965
Fe(2)-O(6)	2.17	0.307777
Fe(2)-O(11)	2.119	0.357764
Fe(2)-O(12)	2.228	0.353204
Fe(2)-O(15)	1.975	0.203125
$V_{\rm Fe(2)} = 2.32$		0.321341

 Table S5 The bond valence sum calculations of Fe for LCU-102.

$$V_M = \sum_j S_{M-O_j} = \sum_j \exp(\frac{r_0 - r_{M-O_j}}{0.37}); r_{\text{Fe}}^{\text{II}} = 1.734 \text{ Å}.$$