Electronic Supplementary Information

Enhancing optical anisotropy of crystals by optimizing bonding electron distribution in anionic groups

Bing-Hua Lei^{1,2}, Zhihua Yang^{1*}, Shilie Pan^{1*}

¹Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. ²University of Chinese Academy of Sciences, Beijing 100049, China

Methods

During the calculation, geometry optimization was performed using the BFGS minimization technique in CASTEP module. The converged criterions for the geometry optimization are that the residual forces on the atoms, the displacements of atoms and the energy change are less than 0.01 eV/Å, 5×10^{-4} Å, 5.0×10^{-6} eV/atom, respectively. The exchange-correlation functional and pseudopotential for BPO₄ and KBBF all are generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional and norm-conserving pseudopotential (NCP). The valence electrons are B-2s²2p¹, P-3s²3p³ and O-2s²2p⁴ respectively. The energy cutoff of plane wave's basis sets of them are all 830 eV. Monkhorst-Pack k-point of them are sampled with a separation of 0.050 Å⁻¹, respectively. We kept the default values of the CASTEP code on the aspect of the other calculation parameters and convergent criteria. For WIEN2k, the converged criterions were that the energy change, the force and the charge are less 0.0001 Ry, 1 mRy/au and 0.001 e respectively. The Monkhorst-Pack k-point is 10×10×10.

Figure S1. The partial density of states of YVO₄.

Figure S2. The birefringence of BPO₄ at a series of pressure along x- axis (a) and z- axis (b).

Figure S3. Change of (a) lattice and (b) bandgap as the increasing stress along x-axis and z-axis.

Table S1. The larger rotation angle θ and bond angle φ of BO₄ and PO₄ in BPO₄ under pressure along z-axis.

Groups		BO_4			PO ₄	
Function	$\cos heta$	$\cos \varphi$	Δho^{c}	$\cos \theta$	$\cos \varphi$	Δho^{c}
No stress	0.915	0.565	-0.066	0.921	0.557	-0.072
2 Gpa	0.915	0.557	-0.030	0.921	0.550	-0.014
4 Gpa	0.913	0.548	0.010	0.919	0.541	0.047
6 Gpa	0.921	0.538	0.038	0.926	0.532	0.091
8 Gpa	0.911	0.528	0.098	0.917	0.522	0.187
10 Gpa	0.910	0.517	0.147	0.916	0.512	0.266
12 Gpa	0.908	0.505	0.198	0.915	0.500	0.352
14 Gpa	0.907	0.492	0.255	0.914	0.487	0.443
15 Gpa	0.907	0.485	0.284	0.914	0.480	0.492

Table S2. The B-O and P-O bond length (Å) of BPO₄ under pressure along x-axis.

BPO ₄	B-O(1)	B-O(2)	β _{zzz}	P-O(1)	P-O(2)	β _{zzz}
No stress	1.472	1.472	0.00	1.517	1.517	0.00
2 Gpa	1.471	1.471	0.00	1.517	1.517	0.00
4 Gpa	1.475	1.465	-2.96	1.518	1.515	5.01
6 Gpa	1.476	1.463	-4.57	1.518	1.515	7.50
8 Gpa	1.478	1.461	-6.18	1.519	1.515	9.85
10 Gpa	1.479	1.459	-7.89	1.519	1.514	12.24
12 Gpa	1.480	1.458	-9.22	1.519	1.514	14.44
14 Gpa	1.481	1.458	-10.93	1.520	1.515	16.63
15 Gpa	1.482	1.457	-11.64	1.520	1.515	17.75

Table S3. The hyperpolarizabilities (a.u.) of BO₄ and PO₄ groups (Gr.) under pressure along z-axis and x-axis.

Gr.	z	β _{xxx}	β_{xxy}	β_{xyy}	β_{yyy}	β_{xxz}	β_{xyz}	β_{yyz}	β_{xzz}	β_{yzz}	β _{zzz}
	0	0.00	0.00	0.00	0.00	-7.90	-8.62	7.90	0.00	0.00	0.00
	2	0.00	0.00	0.00	0.00	-7.95	-8.75	7.93	0.00	0.00	-0.03
	4	-0.00	0.00	-0.00	-0.01	-7.95	-8.85	7.95	-0.00	0.00	-0.00
	6	-0.02	0.01	-0.00	0.03	-7.92	-8.93	7.90	-0.00	0.01	-0.03
BO_4	8	-0.03	0.00	-0.01	-0.02	-7.85	-8.96	7.88	-0.01	0.00	0.03
	10	0.02	0.00	0.00	0.00	-7.77	-8.96	7.74	0.00	0.00	-0.03
	12	0.00	-0.00	0.00	-0.02	-7.58	-8.89	7.60	0.00	0.00	0.03
	14	-0.02	0.00	-0.00	-0.00	-7.37	-8.73	7.37	0.00	0.00	0.00
	15	0.00	0.00	0.00	0.00	-7.23	-8.62	7.23	0.00	0.00	0.00
	0	0.00	0.00	0.00	0.00	15.60	-15.96	-15.62	0.00	0.00	-0.02
	2	0.00	0.00	0.00	0.00	15.51	-16.00	-15.51	0.00	0.00	0.00
	4	0.00	0.00	0.00	-0.02	15.38	-16.02	-15.38	0.00	0.00	0.00
PO ₄	6	0.01	0.00	0.00	0.02	15.18	-16.02	-15.17	0.00	0.00	-0.02
	8	0.00	0.00	0.00	0.00	14.98	-15.95	-14.97	0.00	0.00	-0.02
	10	0.02	0.00	0.00	0.01	14.70	-15.85	-14.68	0.00	0.00	-0.02
	12	-0.01	0.00	0.00	-0.01	14.35	-15.67	-14.37	0.00	0.00	-0.02
	14	-0.01	0.00	0.00	0.00	13.99	-15.42	-13.99	-0.00	0.00	0.00
	15	0.00	0.00	0.00	0.00	13.77	-15.27	-13.77	0.00	0.00	0.00
Gr.	х	β_{xxx}	β_{xxy}	β_{xyy}	β_{yyy}	β_{xxz}	β_{xyz}	β_{yyz}	β_{xzz}	β_{yzz}	β _{zzz}
	0	0.00	0.00	0.00	0.00	-7.90	-8.62	7.90	0.00	0.00	0.00
	2	0.00	-0.02	0.00	0.04	-7.65	-8.97	7.65	0.04	0.00	0.00
	4	0.01	-0.00	0.00	-0.01	-8.08	-9.31	6.65	0.00	0.00	-2.96
	6	0.03	-0.00	0.01	0.00	-8.21	-9.62	5.94	0.01	0.00	-4.57
BO_4	8	-0.03	0.01	-0.01	0.03	-8.36	-9.90	5.23	-0.01	0.01	-6.18
	10	0.03	-0.00	0.01	0.00	-8.54	-10.15	4.46	0.01	0.00	-7.89
	12	0.01	0.01	0.00	0.03	-8.65	-10.36	3.84	0.00	0.01	-9.22
	14	0.02	0.00	0.00	0.00	-8.83	-10.55	3.05	0.00	0.00	-10.93
	15	0.00	0.00	0.00	0.00	-8.89	-10.63	2.69	0.00	0.00	-11.64

	0	0.00	0.00	0.00	0.00	15.60	-15.96	-15.62	0.00	0.00	0.00
	2	0.03	-0.02	-0.05	-0.06	15.05	-16.53	-15.05	0.00	0.06	0.00
	4	-0.02	-0.00	-0.00	0.00	15.62	-17.03	-13.43	0.00	0.00	5.01
	6	0.00	0.00	0.00	0.02	15.59	-17.53	-12.33	0.00	0.00	7.50
PO_4	8	0.00	0.00	0.00	0.02	15.54	-17.96	-11.29	0.00	0.00	9.85
	10	-0.02	0.00	0.00	0.01	15.50	-18.36	-10.24	0.00	0.00	12.24
	12	0.00	0.00	0.00	0.02	15.47	-18.69	-9.30	0.00	0.00	14.44
	14	0.01	0.00	0.00	0.02	15.37	-19.02	-8.30	0.00	0.00	16.63
	15	0.01	0.00	0.00	-0.00	15.34	-19.16	-7.80	0.00	0.00	17.75

Table S4.The calculated nonzero SHG coefficients (pm/V) of BPO₄ under pressure along x-axis and z-axis.

BPO ₄ —	d_{14}		4	1	d	d_{15}		
	x-axis	z-axis	u_{16}	u_{22}	a_{25}	x-axis	z-axis	
No stress	0.803	0.830	0.000	0.000	0.000	-0.026	-0.026	
2 Gpa	0.825	0.807	0.000	0.000	0.000	-0.028	-0.027	
4 Gpa	0.842	0.810	0.034	-0.041	0.029	0.000	-0.030	
6 Gpa	0.845	0.814	0.035	-0.063	0.029	0.000	-0.035	
8 Gpa	0.846	0.814	0.035	-0.084	0.028	0.000	-0.040	
10 Gpa	0.845	0.812	0.035	-0.105	0.027	0.000	-0.046	
12 Gpa	0.842	0.806	0.033	-0.126	0.025	0.000	-0.054	
14 Gpa	0.841	0.797	0.031	-0.146	0.024	0.000	-0.060	
15 Gpa	0.839	0.789	0.03	-0.157	0.023	0.000	-0.064	