Catalytic Stereospecific O-Glycosylation

Karolina Kowalska and Christian Marcus Pedersen*

Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.

cmp@chem.ku.dk

Table of contents

General nformation	S2
Glycosylation procedures	S3
Compounds Characterization Data	S8
Plausible pathway for the formation of side product 22	S9
Compounds characterization data	S10
References	S14
¹ H-NMR and ¹³ C-NMR spectra of compounds	S15

General Information:

All reagents were used as purchased without further purification. Dry solvents were taken from a purification solvent systems. All inert reactions were carried out under argon atmosphere using flame-dried flasks. Columns were packed with pre-neutralized silica gel LC-60A (40 – 63 μ M, pre-neutralized from the manufacturer to a pH of 6.0 to 8.0). TLC analysis was performed on plates (Merck 60, F254) and visualized by spraying with 10% sulphuric acid in ethanol followed by charring at \approx 300 °C. ¹H and ¹³C NMR spectra were acquired using a 500 MHz Avance III HD equipped with a cryogenically cooled 5 mm observe probe optimized for ¹³C. Chemical shifts are reported in parts per million (ppm) relative to residual solvents signals (δ = 7.26 for ¹H-NMR and 77.16 for ¹³C-NMR) as the internal standard. High resolution mass spectral (HRMS) data were obtained by MALDI – MS using a SolariX XR 7 T ESI/MALDI – FT – ICR MS instrument. Optical rotation data were obtained on an Anton-Paar Polarimeter.

Trichloroacetamidates 1^1 , 2^1 , 3^2 , 4^2 , 5^3 , 6^3 , 7^4 were prepared according to the literature procedures.

Glycosylation procedures:

General procedure A for glycosylations:

A mixture of glycosyl donor (0.2 mmol) and acceptor (0.3 mmol) were dissolved in dry (0.05)М with respect donor), containing freshly CH_2Cl_2 to activated 3 Å molecular sieves (~200 mg), and stirred under an inert atmosphere for 1h. Subsequently, the reaction mixture was cooled to -78°C and TMSNTf₂ (0.02 mmol) was added. Upon completion (judged by TLC), the reaction was quenched with Et₃N. The solid was filtered off and the filtrate was washed with brine. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography to afford the corresponding glycoside. Anomeric ratios were measured by comparison of integral intensities of the anomeric protons from ¹H-NMR spectra of crude reaction mixtures.

General procedure B for glycosylations:

A mixture of acceptor (0.3 mmol) and freshly activated 3 Å molecular sieves (~200 mg) were storred in dry CH_2Cl_2 (0.05 M with respect to donor) under an inert atmosphere for 1h. Subsequently, the reaction mixture was cooled to $-78^{\circ}C$ and $TMSNTf_2$ (0.02 mmol) was added followed by dropwise addition of the donor (0.2 mmol in 1 mL of CH_2Cl_2) by a syringe pump over 1h. Upon completion (judged by TLC), the reaction was quenched with Et_3N . The solid was filtered off and the filtrate was washed with brine. The organic layer was dried over MgSO₄, filtrated and concentrated in vacuo. The residue was purified by flash column chromatography to afford the corresponding glycoside. Anomeric ratios were measured by comparison of integral intensities of the anomeric protons from ¹H-NMR spectra of the crude reaction mixtures.

General procedure C for glycosylations:

A mixture of glycosyl donor (0.2 mmol), acceptor (0.3 mmol) and freshly activated 3 Å molecular sieves (~200 mg) were stirred in dry CH₂Cl₂ (0.05 M with respect to donor) under an inert atmosphere for 1h. Subsequently, the reaction mixture was cooled to -78°C and Tf₂NH (0.02)mmol in CH₂Cl₂) was added. Upon completion (judged by TLC), the reaction was quenched with Et₃N. The solid was filtered off and the filtrate was washed with brine. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography to afford the corresponding glycoside. Anomeric ratios were measured by comparison of integral intensities of the anomeric protons from ¹H-NMR spectra of crude reaction mixtures.

Entry	Donor	Acceptor	Product	β/α (yield%)
1		но 10	$\frac{Ph O OBn}{BnO} $	>10:1 ^{5, 6} (93)
2	Ph O OBn BnO 1 NH CCl ₃	BnO BnO BnO BnO OMe 11	Ph 0 0Bn Bn0 13 Ac0 0 Ac0 Bn0 0Me	4:1 ⁶ (n.d.)
3		H0 8	Ph 0 00 0Bn Bno 0 0	4:1 ⁶ (n.d.)
4	AcO AcO BnO 3 CCl ₃	OH J 9	AcO AcO BnO 15	>10:1 (85)
5	AcO AcO BnO 3 CCl ₃	но 10	AcO ACO BnO 16	4:1 (81)
6	Aco Aco Bno 3 CCl ₃	BnO BnO BnO BnO BnO OMe	Aco Aco Bno 17 Bno Bno Bno OMe	>10:1 (70)
7	ACO N ₃ O NH 5 CCl ₃	OH J 9	Aco 18 N ₃ VOAc	>10:1 (71)
8	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	но 10	$Ac0 \xrightarrow{OAc} 0$ $Ac0 \xrightarrow{N_3} 0$ 19	>10:1 (90)
9	ACO N ₃ O N ₃ O NH 5 CCl ₃	BnO BnO BnO BnO OMe	Aco N3 Bno Bno Bno Bno OMe	>10:1 (68)
10	ACO ACO N ₃ O NH 7 CCl ₃	OH J 9	ACO ACO N ₃ 21	>10:1 (77)

Table 1. Glycosylations according to the procedure A

Entry	Donor	Acceptor	Product	β/α (yield%)
11	Ph O OBn BnO 2 CCl ₃	но 10	$\frac{Ph O OBn}{O BnO}$	1:5 ^{5, 6} (n.d.)
12	Ph O OBn BnO 2 O NH CCl ₃	HO BnO BnO BnO OMe 11	Ph O OBn BnO 13 AcO AcO BnO OMe	1:7 ⁶ (n.d.)
13	Ph O OBn BnO 2 CCl ₃	HO 8	Ph O OBn BnO 10 14	1:10 ⁶ (n.d.)
14	AcO AcO ACO 4 OBn CCl ₃	OH 9	AcO AcO BnO 15	1:4 (71)
15	AcO AcO ACO 4 OBn CCI ₃	но-СД 10	Aco Aco BnO 16	2:1 (82)
16	Aco Aco Aco 4 OBn CCl ₃	HO BNO BNO BNO BNO OMe 11	AcO AcO BnO 17 BnO BnO BnO O BnO O Me	2:1 (69)
17	$\begin{array}{c} OAc OAc \\ AcO \\ \hline 0 \\ 6 \\ \hline N_3 \\ CCI_3 \\ \end{array} \\ OAc OAc \\ NH \\ CCI_3 \\ \end{array}$	ОН 9	Aco 18 N ₃ N ₃ O	2:17 (72)
18	$\begin{array}{c} OAC OAC \\ ACO \\ 6 \\ N_3 \\ CCI_3 \end{array}$	но 10	Aco N _{N3} N ₃	1:1 (78)
19	$AcO \xrightarrow{OAc} OAc \\ AcO \xrightarrow{O} O \\ 6 \\ N_3 \\ CCI_3$	HO BNO BNO BNO BNO OMe 11	AcO 20 BnO BnO BnO OMe	2:1 ⁸ (50)

Table 1 (continued). Glycosylations according to the procedure A

Entry	Donor	Acceptor	Product	β/a (yield%)
1	AcO AcO BnO 3 CCl ₃	OH J 9	Aco Aco Bno 15	4:1 (59)
2	AcO AcO BnO 3 CCl ₃	но 10	Aco Aco Bno 16	2:1 (61)
3	AcO AcO BnO 3 CCl ₃	BnO BnO BnO BnO OMe	AcO AcO BnO 17 BnO BnO BnO BnO OMe	5:1 (46)
4	AcO AcO 4 OBn CCl ₃	ОН 9	AcO AcO BnO 15	2:1 (68)
5	AcO AcO ACO 4 OBn CCl ₃	но-СД 10	$ \begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ BnO \\ 16 \end{array} $	2:1 (74)
6	AcO AcO ACO 4 OBn CCl ₃	BnO BnO BnO BnO BnO OMe	AcO AcO BnO 17 BnO BnO BnO BnO OMe	5:1 (61)

Table 2. Glycosylations according to the procedure B

Entry	Donor	Acceptor	Product	α/β (yield%)
1		но 10	Ph 0 0Bn Bn0 0 0Bn 12	>10:1 ^{5, 6} (91)
2	Ph O OBn Bno 1 NH CCl ₃	HO BNO BNO BNO OMe 11	Ph O OBn BnO 13 AcO BnO OMe	4:1 ⁶ (74)
3		H0~~0~ 8	Ph 0 00 0Bn Bn0 10 14	4:1 ⁶ (82)
4	ACO ACO BNO 3 CCI ₃	OH J 9	Aco Aco Bno 15	>10:1 (87)
5	ACO ACO BnO 3 O NH CCl ₃	но-СД 10	Aco Aco Bno 16	5:1 (81)
6	ACO ACO BnO 3 CCl ₃	Bno Bno Bno Bno OMe 11	AcO AcO BnO 17 BnO BnO BnO BnO OMe	>10:1 (71)
7	ACO N3 O NH 5 CCI3	OH J 9	ACO 18 N ₃ N ₃ O	>10:17 (81)
8	ACO S CCI ₃ ACO NH CCI ₃	но-	$AcO \xrightarrow{OAc} OAc \\ AcO \xrightarrow{O} O \\ 19^{N_3}$	>10:1 (91)
9	ACO N3 O NH 5 CCI3	HO BnO BnO BnO OMe 11	Aco N ₃ BnO BnO BnO BnO OMe	>10:1 (70) ⁷

Table 3. Glycosylations according to the procedure C

Entry	Donor	Acceptor	Product	β/α (yield%)
10	Ph O OBn BnO 2 ONH CCl ₃	но 10	Ph O OBn Bno 00 12	2:1 ^{5, 6} (88%)
11	$\frac{Ph O O OBn}{BnO 2 O O O OBn}$	Bno Bno Bno Bno OMe 11	Ph O OBn BnO 13 AcO BnO OMe	>1:10 ⁶ (79)
12	Ph O OBn BnO 2 CCl ₃	H0 8	Ph 0 0Bn Bn0 10 14	>1:10 ⁶ (88)
13	AcO AcO 4 OBn CCl ₃	OH J 9	AcO AcO BnO 15	1:4.5 (67)
14	AcO AcO 4 OBn CCI ₃	но-10	Aco Aco BnO 16	2:1 (86)
15	AcO AcO 4 OBn CCl ₃	BnO BnO BnO BnO OMe	AcO AcO BnO 17 BnO BnO BnO BnO OMe	2:1 (66)
16	$\mathbf{A_{CO}} \xrightarrow{\mathbf{O} \mathbf{A_C}}_{\mathbf{N_3}} \xrightarrow{\mathbf{O} \mathbf{A_C}}_{\mathbf{CCI_3}} NH$	ОН 9	Aco 18 N ₃ N ₃ O	3:1 (71) ⁶
17	$AcO \rightarrow CCI_3$	но-	$Ac0 \xrightarrow{0}_{N_3} 0$	1:1 (80)
18	$\begin{array}{c} OAc OAc \\ AcO \\ \hline 6 \\ N_3 \\ CCI_3 \end{array}$	Bno Bno Bno Bno Bno OMe 11	Aco N ₃ BnO BnO BnO OMe	2:18 (52)

Table 3 (continued). Glycosylations according to the procedure C

When the donor 4 was activated in the presence of c-hexanol a side product, 22, was isolated besides the expected glycosides. In this product the benzyl group has exchanged place with the acetyl at the 4-O-position. A plausible reaction pathway for the formation of 1-cyclohexyl 2,3,6-tri-O-acetyl-4-O-benzyl- D-glucopyranoside 22 is shown below. Participation of an 4-O-acetyl in the glycosylation reaction has been observed before and proposed to be responsible for increased β -selectivity in glycosylations.⁹

Scheme 1 Proposed mechanism for the formation of 22 from 4.

Compounds Characterization Data

1-cyclohexyl 3,4,6-tri-O-acetyl-2-O-benzyl-D-glucopyranoside (15)

AcO AcO BnO

The α anomer could not be separated from α/β mixture. α -anomer: ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.27 (m, 5H, Ph), 5.44 (t, J = 9.7 Hz, 1H, H-3), 4.96 (d, J = 9.5 Hz, 1H, H-4), 4.95 (d, J = 3.7Hz, 1H, H-1), 4.62 (d, J = 12.1 Hz, 1H, PhC(H)H) 4.58 (d, J = 12.1 Hz,

1H, PhC(*H*)H), 4.24 (dd, J = 12.1, 4.7 Hz, 1H, H-6), 4.11-4.06 (m, 1H, H-5), 4.04 (dd, J = 12.1, 2.3 Hz, 1H, H-6), 3.55 (dd, J = 9.8, 3.7, 1H, H-2), 3.53– 3.48 (m, 1H, CH_{-cyclohexanol}), 2.06 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 2.01 (s, CH₃), 1.28–1.23 (m, 10H, H_{-cyclohexanol}).

¹³C NMR (126 MHz, CDCl₃) δ 170.8 (C = O), 170.3 (C = O), 170.0 (C = O), 138.0 (C_{Ph}), 128.6 (C_{Ph}), 128.1 (C_{Ph}), 128.0 (C_{Ph}), 94.9 (C-1), 76.7 (CH-O), 76.7 (C-2), 72.7 (C_{Bn}), 72.1 (C-3), 69.1. (C-4), 62.4 (C-5), 62.1 (C-6), 33.4 (CH_{2-cyclohexanol}), 31.6 (CH_{2-cyclohexanol}), 29.9 (CH_{2-cyclohexanol}), 25.7 (CH_{2-cyclohexanol}), 21.0 (CH₃), 20.9 (2 x CH₃).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₂₅H₃₄O₉Na⁺ 501.2101; found 501.2107.

β-anomer:¹H NMR (500 MHz, CDCl₃) δ 7.34-7.27 (m, 5H, Ph), 5.13 (t, J = 9.5 Hz, 1H, H-3), 4.95 (t, J = 9.5 Hz, 1H, H-4), 4.86 (d, J = 11.8 Hz, 1H, PhC(*H*)H), 4.62 (d, J = 11.8 Hz, 1H, PhC(*H*)H), 4.59 (d, J = 7.8 Hz, 1H, H-1), 4.26 (dd, J = 12.2, 5.1 Hz, 1H, H-6), 4.07 (dd, J = 12.1, 2.5 Hz, 1H, H-6), 3.73–3.67 (m, 1H, CH_{-cyclohexanol}), 3.64 (ddd, J = 10.1, 5.1, 2.5 Hz, 1H, H-5), 3.41 (dd, J = 9.5, 7.8 Hz, 1H, H-2), 2.06 (s, 3H, CH₃), 1.99 (s, 3H, CH₃), 1.89 (s, CH₃), 1.34–1.18 (m, 10H, H_{-cyclohexanol}).

¹³C NMR (126 MHz, CDCl₃) δ 170.9 (C = O), 170.4 (C = O), 169.8 (C = O), 138.2 (C_{Ph}), 128.5 (C_{Ph}), 128.3 (C_{Ph}), 127.9 (C_{Ph}), 102.1 (C-1), 78.7 (C-2), 78.5 (CH-O), 74.5 (C_{Bn}), 74.1 (C-3), 71.6 (C-5), 69.0 (C-4), 62.5 (C-6), 33.7 (CH_{2-cyclohexanol}), 32.0 (CH_{2-cyclohexanol}), 29.8 (CH_{2-cyclohexanol}), 25.7 (CH_{2-cyclohexanol}), 20.9 (CH₃), 20.9 (CH₃), 20.8 (CH₃).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₂₅H₃₄O₉Na⁺ 501.2101; found 501.2108.

 $[\alpha]_{D=+18.1}^{25}$ (c = 1.0 CHCl₃)

1-adamantanyl 3,4,6-tri-O-acetyl-2-O-benzyl-D-glucopyranoside (16)

α-anomer: ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.26 (m, 4H, Ph), 7.18-7.14 (m, 1H, Ph), 5.44 (t, J = 9.7 Hz, 1H, H-3), 5.29 (d, J = 3.7 Hz, 1H, H-1), 4.93 (d, J = 9.7 Hz, 1H, H-4), 4.60 (d, J = 11.9 Hz, 1H, PhC(*H*)H), 4.54 (d, J = 12.1 Hz, 1H, PhC(*H*)H), 4.26 (dd, J = 12.1,

4.8 Hz, 1H, H-6), 3.99 (dd, *J* = 12.1, 2.2 Hz, 1H, H-6), 4.22-4.17 (m, 1H, H-5), 3.53 (dd, *J* = 9.7, 3.7 Hz, 1H, H-2), 2.19-2.13 (m, 3H, H_{-adamantanol}), 2.05 (s, 3H, Ac), 2.01 (s, 3H, Ac), 1.99 (m, 3H,

H-adamantanol), 1.87 (s, 3H, Ac), 1.84-1.76 (m, 3H, H-adamantanol), 1.68-1.60 (m, 6H, H-adamantanol).

¹³C NMR (126 MHz, CDCl₃) δ 170.8 (C = O), 170.4 (C = O), 170.1 (C = O), 137.9 (C_{Ph}), 128.6 (C_{Ph}), 128.1 (C_{Ph}), 128.0 (C_{Ph}), 89.8 (C-1), 76.6 (C-2), 75.4 (CH-O), 72.6 (C_{Bn}), 72.2 (C-3), 69.3 (C-4), 66.8 (C-5), 62.2 (C-6), 42.5 (C_{-adamantanol}), 36.2 (C_{-adamantanol}), 30.7 (C_{adamantanol}), 21.0 (CH₃), 20.8 (CH₃), 20.8 (CH₃).

B-anomer: $^{1}\mathrm{H}$ **NMR** (500 MHz, CDCl₃) δ 7.34-7.26 (m, 4H. Ph). 7.18-7.14 (m, 1H, Ph) 5.13 (t, J = 9.5 Hz, 1H, H-3), 4.90 (t, J = 9.7 Hz, 1H, H-4), 4.84 (d, J = 11.9 Hz, 1H, PhC(H)H), 4.76 (d, J = 7.9 Hz, 1H, H-1), 4.62 (d, J = 11.9 Hz, 1H, PhC(H)H), 4.22 (dd, J = 12.0, 5.9 Hz, 1H, H-6), 4.05 (dd, J = 12.0, 2.5 Hz, 1H, H-6), 3.64 (ddd, J = 10.1, 5.9, 2.5 Hz, 1H, H-5), 3.39 (dd, J = 9.6, 7.8 Hz, 1H, H-2), 2.19-2.13 (m, 3H, 1H, 1H, 2H)H_{-adamantanol}), 2.04 (s, 3H), 1.99 (s, 3H), 1.94-1.98 (m, 2H, H_{-adamantanol}), 1.87 (s, 3H), 1.83-1.78 (m, 2H, H-adamantanol), 1.94-1.98 (m, 3H, H-adamantanol), 1.87 (s, 3H), 1.84-1.76 (m, 3H, Hadamantanol), 1.68-1.60 (m, 6H, H-adamantanol).

¹³C NMR (126 MHz, CDCl₃) δ 170.8 (C = O), 170. (C = O), 169.8 (C = O), 138.2 (C_{Ph}), 128.5 (C_{Ph}), 128.3 (C_{Ph}), 127.9 (C_{Ph}), 96.5 (C-1), 78.7 (C-2), 76.1 (CH-O), 74.5 (C_{Bn}), 74.2 (C-3), 71.4 (C-5), 69.2 (C-4), 62.7 (C-6), 42.8 (C_{-adamantanol}), 36.3 (C_{-adamantanol}), 30.8 (C_{-adamantanol}), 20.9 (CH₃), 20.8 (CH₃), 20.8 (CH₃).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₂₉H₃₈O₉Na⁺ 553.2414; found 553.2421.

Methyl 2,3,4-tri-O-benzyl-6-O-(3,4,6-tri-O-acetyl-2-O-benzyl-D-glucopyranosyl)-

α-D-glucopyranoside (17)

The α -anomer could not be separated from α/β mixture.

α-anomer: ¹H NMR (500 MHz,CDCl₃) δ 7.38-7.28 (m, 13H, Ph), 7.27-7.21 (m, 5H, Ph), 7.21-7.14 (m, 2H, Ph), 6.35 (d, J = 3.6 Hz,

BnO $_{OMe}$ 1H, H-1'), 5.40 (t, J = 9.6 Hz, 1H, H-3'), 5.03 (t, J = 9.6 Hz, 1H, H-4'), 4.82–4.70 (m, 1H, PhC(*H*)H), 4.72–4.58 (m, 5H, PhC(*H*)H), 4.55 (d, J = 3.7 Hz, 1H, H-1) 4.54 (d, J = 11.4 Hz, 1H, PhC(*H*)H), 4.28 (dd, J = 12.3, 4.0 Hz, 1H, H-6'), 4.06 (dd, J = 11.2, 2.4 Hz, 1H, H-6), 4.02 (dd, J = 12.3, 2.4 Hz, 1H, H-6'), 4.02–3.98 (m, 1H, H-5'), 3.93 (t, 1H, J = 9.5 Hz, H-3), 3.76 (ddd, 1H, J = 10.1, 4.9, 2.1, H-5), 3.74–3.67 (m, 2H, H-6, H-2'), 3.54-3.45 (m, 2H, H-4, H-2), 3.37 (s, 3H, OCH₃), 2.19 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.02 (s, CH₃).

¹³C NMR (126 MHz, CDCl₃) δ 170.7 (C = O), 169.8 (C = O), 169.2 (C = O), 138.8 (C_{Ph}), 138.4 (C_{Ph}), 138.2 (C_{Ph}), 137.2 (C_{Ph}), 128.7 (C_{Ph}), 128.6 (C_{Ph}), 128.5 (C_{Ph}), 128.5 (C_{Ph}), 128.4 (C_{Ph}), 128.3 (C_{Ph}), 128.22 (C_{Ph}), 128.11 (C_{Ph}), 128.0 (C_{Ph}), 127.9 (C_{Ph}), 127.897 (C_{Ph}), 127.8 (C_{Ph}), 98.2 (C-1), 89.3 (C-1'), 82.1 (C-3), 79.9 (C-2), 78.1 (C-4), 75.9 (C_{Bn}), 75.1 (C_{Bn}), 73.5 (C_{Bn}), 73.1 (C_{Bn}), 71.7 (C-3'), 70.0 (C-5), 69.8 (C-5'), 68.7 (C-6), 68.1 (C-4'), 62.2 (C-6'), 55.3 (OCH₃), 21.1 (CH₃), 20.9 (CH₃), 20.7 (CH₃).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₄₇H₅₄O₁₄Na⁺865.3411; found 865.3430.

β-anomer: ¹H NMR (500 MHz,CDCl₃) δ 7.37-7.27 (m, 15H, Ph), 7.25-7.18 (m, 5H, Ph), 5.13 (t, *J* = 9.5 Hz, 1H, H-3'), 4.97 (d, 1H, *J* = 11.2 Hz, PhC(*H*)H), 4.95 (d, 1H, *J* = 9.6 Hz, H-4'),

4.84 (d, J = 11.6 Hz, 1H, PhC(*H*)H), 4.79 (d, J = 10.8 Hz, 1H, PhC(*H*)H), 4.78 (d, J = 12.1 Hz, 1H, PhC(*H*)H), 4.76 (d, J = 11.2 Hz, 1H, PhC(*H*)H), 4.66 (d, J = 12.1 Hz, 1H, PhC(*H*)H), 4.62 (d, J = 3.7 Hz 1H, H-1), 4.60 (d, J = 11.2 Hz, 1H, PhC(*H*)H), 4.51 (d, J = 11.2 Hz, 1H, PhC(*H*)H), 4.41 (d, J = 7.8 Hz, 1H, H-1'), 4.13 (dd, J = 10.9, 2.0 Hz, 1H, H-6'), 4.09 (dd, J = 12.3, 2.4 Hz, 1H, H-6), 3.99 (t, J = 9.3 Hz, 1H, H-3), 3.83 (ddd, 1H, J = 10.1, 4.9, 2.0, H-5), 3.69 (dd, J = 11.0, 4.8 Hz, 1H, H-6), 3.59 (ddd, J = 10.0, 4.7, 2.5 Hz, 1H, H-5'), 3.51 (dd, J = 9.6, 3.5 Hz, 1H, H-2), 3.47 (t, J = 9.5 Hz, 1H, H-4), 3.51 (dd, J = 9.6, 3.5 Hz, 1H, H-2), 3.47 (t, J = 9.5 Hz, 1H, H-4), 3.204 (s, 3H, CH₃), 2.00 (s, 3H, CH₃), 1.88 (s, CH₃).

¹³C NMR (126 MHz, CDCl₃) δ 170.8 (C = O), 170.3 (C = O), 169.8 (C = O), 138.9 (C_{Ph}), 138.2 (C_{Ph}), 137.9 (C_{Ph}), 128.6 (C_{Ph}), 128.6 (C_{Ph}), 128.5 (C_{Ph}), 128.5 (C_{Ph}), 128.3 (C_{Ph}), 128.1 (C_{Ph}), 128.1 (C_{Ph}), 128.0 (C_{Ph}), 127.9 (C_{Ph}), 127.8 (C_{Ph}), 127.8 (C_{Ph}), 127.7 (C_{Ph}), 103.8 (C-1'), 98.3 (C-1), 82.1 (C-3), 79.9 (C-2), 78.8 (C-2'), 78.1 (C-4), 75.9 (C_{Bn}), 75.1 (C_{Bn}), 74.8 (C_{Bn}), 74.1 (C-3'), 73.7 (C_{Bn}), 71.7 (C-5'), 70.0 (C-5), 68.9 (C-4'), 68.8 (C-6), 62.2 (C-6'), 55.4 (OCH₃), 20.9 (CH₃), 20.8 (CH₃), 20.8 (CH₃).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₄₇H₅₄O₁₄Na⁺865.3411; found 865.3427.

 $[\alpha]_{D=+25.1}^{25}$ (c = 1.0 CHCl₃)

1-adamantanyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-galactopyranoside (19)

Aco N₃ O

α-anomer: ¹H NMR (500 MHz, CDCl₃): δ 5.45 (dd, 1H, J = 3.4 Hz, H-4), 5.42 (dd, 1H, J = 11.0, 3.4 Hz, H-3), 5.41 (dd, 1H, J = 3.5 Hz, H-1), 4.42 (td, J = 6.7, 1.4 Hz, 1H, H-5), 4.07 (dd, J = 6.7, 4.6 Hz, 2H, H-6), 3.47 (dd, J = 11.1, 3.6 Hz, 1H, H-2), 2.18 (s, 4H, H_{-adamantanol}),

2.13 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 2.03 (s, 3H, CH₃), 1.91-1.82 (m, 6H, H_{-adamantanol}), 1.67-1.60 (m, 5H, H_{-adamantanol}).

¹³C NMR (126 MHz, CDCl₃): δ 170.8 (C = O), 170.6 (C = O), 170.4 (C = O), 92.0 (C-1), 76.4 (CH-O), 68.3 (C-3), 68.3 (C-4), 66.7 (C-5), 62.2 (C-6), 57.6 (C-2), 42.7 (C_{-adamantanol}), 36.6 (C_{-adamantanol}), 31.1 (C_{-adamantanol}), 21.1 CH₃), 21.1 (CH₃), 21.1 (CH₃).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₂₂H₃₁N₃O₉Na⁺ 488.2009; found 488.2006.

 $[\alpha]_{D=+42.2}^{25}$ (c = 0.9 CHCl₃)

β-anomer: ¹H NMR (500 MHz, CDCl₃) δ 5.31 (d, J = 3.5 Hz, 1H, H-4), 4.76 (dd, J = 10.9, 3.4 Hz, 1H, H-3), 4.66 (d, J = 7.9 Hz, 1H, H-1), 4.17 (dd, J = 11.2, 6.9 Hz, 1H, H-6), 4.07 (dd, J = 11.3, 6.6 Hz, 1H, H-6), 3.83 (t, J = 6.8 Hz, 1H, H-5), 3.67 (dd, J = 10.9, 8.0 Hz, 1H, H-2), 2.18 (s, 4H, H_{-adamantanol}), 2.14 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.03 (s, 3H, CH₃), 1.94 – 1.89 (m, 3H, H_{-adamantanol}), 1.84–1.79 (m, 3H, H_{-adamantanol}).

¹³C NMR (126 MHz, CDCl₃) δ 170.8 (C = O), 170.4 (C = O), 170.1 (C = O), 137.9 (C_{Ph}), 128.6 (C_{Ph}), 128.1 (C_{Ph}), 128.0 (C_{Ph}), 89.8 (C-1), 76.6 (C-2), 75.4 (CH-O), 72.6 (C_{Bn}), 72.2 (C-3), 69.3 (C-4), 66.9 (C-5), 62.2 (C-6), 42.5 (C_{-adamantanol}), 36.2 (C_{-adamantanol}), 30.7 (C_{adamantanol}), 21.0 (CH₃), 20.8 (CH₃), 20.8 (CH₃).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₂₂H₃₁N₃O₉Na⁺ 488.2009; found 488.2006.

 $[\alpha]_{D=+9.8}^{25}$ (c = 1.0 CHCl₃)

1-cyclohexyl 2-azido-3,4-di-*O*-acetyl-6-*O-tert*-butyldiphenylsilyl-2-deoxy-β-D-glucopyranoside (21)

β-anomer: ¹H NMR (500 MHz, CDCl₃) δ 7.76–7.72 (m, 2H, Ph), 7.71–7.67 (m, 2H, Ph), 7.48–7.36 (m, 12H, Ph), 7.32–7.28 (m, 2H, Ph), 7.19-7.15 (m, 2H, Ph), 4.91 (d, J = 10.7 Hz, 1H, PhC(*H*)H), 4.87 (d, J = 10.7 Hz, 1H, PhC(*H*)H), 4.82 (d, J = 10.7 Hz, 1H, PhC(*H*)H), 4.67 (d, J = 10.8 Hz, 1H, PhC(*H*)H), 4.42 (d, J = 7.6 Hz, 1H, H-1), 3.90 (dd,

J = 4.6, 3.1 Hz, 2H, H-6), 3.74 (t, J = 9.2 Hz, 1H, H-4), 3.49 – 3.39 (m, 2H, H-2, H-3), 3.33 (ddd, J = 9.7, 4.0, 2.1 Hz, 1H, H-5), 2.07-1.92 (m, 2H, H_{-cyclohexanol}), 1.84-1.77 (m, 2H, H_{-cyclohexanol}), 1.58-1.53 (m, 3H, H_{-cyclohexanol}), 1.34-1.25 (m, 5H, H_{-cyclohexanol}), 1.06 (s, 9H, CH₃).

¹³C NMR (126 MHz, CDCl₃) δ 138.2 (C_{Ph}), 138.1 (C_{Ph}), 136.0 (C_{Ph}), 135.7 (C_{Ph}), 133.7 (C_{Ph}), 133.2 (C_{Ph}), 129.8 (C_{Ph}), 128.6–127.5 (9 x C_{Ph}), 100.7 (C-1), 83.4 (C-3), 78.0 (CH-O), 77.8 (C-4), 76.0 (C_{Bn}), 75.7 (C-5), 75.3 (C_{Bn}), 66.7 (C-2), 62.8 (C-6), 33.9 (CH_{2-cyclohexanol}), 31.9 (CH_{2-cyclohexanol}), 26.9 (3 x CH₃), 25.8 (CH_{2-cyclohexanol}), 24.2 (CH_{2-cyclohexanol}), 24.0 (CH_{2-cyclohexanol}), 19.4 (C_q).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₄₂H₅₁N₃O₅SiNa⁺ 728.3496; found 728.3480.

 $[\alpha]_{D=-11.5}^{25}$ (c = 1.0 CHCl₃)

1-cyclohexyl 2,3,6-tri-O-acetyl-4-O-benzyl-β-D-glucopyranoside (22)

β-anomer: ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.27 (m, 4H, Ph), 7.25–7.21 (m, 1H, Ph), 5.25 (t, 1H, J = 9.5 Hz, H-3), 4.87 (dd, 1H, J =9.7, 8.0, H-2), 4.60 (d, J = 11.2 Hz, 1H, PhC(*H*)H), 4.56 (d, 1H, J =7.8 Hz, H-1), 4.55 (d, J = 11.2 Hz, 1H, PhC(*H*)H), 4.35 (dd, J = 11.9,

2.3 Hz, 1H, H-6), 4.21 (dd, *J* = 11.9, 4.8 Hz, 1H, H-6), 3.66 (t, *J* = 9.4 Hz, 1H, H-4), 3.62 – 3.55 (m, 2H, CH-O, H-5), 2.06 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 2.01 (s, 3H, CH₃), 1.43-1.28 (m, 10H, H_{-cyclohexanol}),

¹³C NMR (126 MHz, CDCl₃) δ 170.8 (C = O), 170.3 (C = O), 169.8 (C = O), 137.4 (C_{Ph}), 128.7 (C_{Ph}), 128.3 (C_{Ph}), 128.2 (C_{Ph}), 99.4 (C-1), 78.1 (CH-O), 76.0 (C-4), 75.3 (C-3), 74.9 (C_{Bn}), 72.9 (C-5), 72.2 (C-2), 62.9 (C-6), 33.4 (CH_{2-cyclohexanol}), 32.1 (CH_{2-cyclohexanol}), 29.9 (CH_{2-cyclohexanol}), 21.0 (2 x CH₃), 20.9 (CH₃), 20.8 (CH₃).

HRMS (MALDI) *m/z*: [M+Na⁺] Calcd for C₂₅H₃₄O₉Na⁺ 501.2101; found 501.2108.

 $[\alpha]_{D=+1.4}^{25}$ (c = 0.8 CHCl₃)

References:

- 1. S. Roy, N. Roy, J. Carbohydr. Chem. 2003, 22, 521-535.
- a) N. J. Davis, S. L. Flitsch, J. Chem. Soc. Perkin Trans. I, 1994, 359-368, b) N. C. R. van Straten, G. A. van der Marel, J. H. van Boom, Tetrahedron, 1997, 53, 6523-6538; c) Y. Qiao, W. Ge, L. Ja, X. Hou, Y. Wang, C. M. Pedersen, Chem. Commun. 2016, 52, 11418-11421.
- 2 a) H. Dietrich, J. F. Espinosa, J. L. Chiara, J. Jimenez-Barbero, Y. Leon, I. Varela-Nieto, J-M. Mato, F. H. Cano, C. Foces-Foces, M. Martin-Lomas, *Chem. Eur. J.* 1999, 5, 320-336; b) K. M. Koeller, M. E. B. Smith, Ch-H. Wong, *Bioorg. Med. Chem.* 2000, *8*, 1017-1025.
- 4. W. F. J. Hogendorf, N. Gisch, D. Schwudke, H. Heine, M. Bols, C. M. Pedersen, *Chem. Eur. J.* 2014, *20*, 13511-13516.
- 5. D. Crich, M. Smith, Org. Lett. 2000, 225, 4067-4069.
- 6. M. Heuckendorff, P. S. Bols, C. B. Barry, T. G. Frihed, C. M. Pedersen, M. Bols, *Chem. Commun.* 2015, *51*, 13283-13285.
- 7. a) N. V. Bovin, S. E. Zurabyan, A. Y. Khorlin, *Carbohydr. Res.* 1983, 112, 23-35;
 b) T. S. Karkkainen, K. P. R. Kartha, D. MacMillan, R. A. Field, *Carbohydr. Res.* 2008, 343, 1830-1834.
- 8. a) A. Marra, F. Gauffeny, P. Sinay, *Tetrahedron*, 1991, 47, 5149-5160; b) G. Ngoje, J. Addae, H. Kaur, Z. Li, *Org. Biomol. Chem.* 2011, 9, 6825-6831.
- 9. Y. Ma, G. Lian, Y. Li, B. Yu Chem. Commun. 2011, 47, 7515-7517

¹H-NMR and ¹³C-NMR spectra of compounds

S17

S20

S21

5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 f2 (ppm)