Supporting Information for

Switching Chirality in the Assemblies of Bio-based Amphiphiles

Solely by Varying their Alkyl Chain Length

Pei Zhang^a, Jun Ma^a, Xinchen Kang^{a,b}, Huizhen Liu^{a,b}, Chunjun Chen^{a,b}, Zhanrong Zhang^a, Jianling Zhang^{a,b}, and Buxing Han^{*a,b}

^aBeijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

Contents

1 Materials
2 Synthesis and characterizations of SAAS-C _m S2
2.1 Synthesis
2.2 Characterizations
3 Characterizations of the self-assembly behaviors of SAAS-C _m S4
3.1 Fluorescence Spectroscopy
3.2 Transmission electron microscopy (TEM)
3.3 Small Angel X-ray Scattering (SAXS)
3.4 Circular dichroism spectroscopy
3.5 Nuclear magnetic resonance (NMR) spectroscopy
4 ResultsS5
5 References

1. Materials

D-Sorbitol (purity \geq 99%), n-Octylamine (99%), 1-Aminodecane (98%), 1-Dodecylamine (98%), 1-Hexadecylamine (90%), D₂O (99.9%), CDCl₃ (99.8%) were purchased from Acros and used without any further purification. Pyrene was purchased from Aldrich and recrystallized from ethanol before used. Acetyl bromide (purity > 98%), D-(-)-Tartaric acid (D-TA) (99%) and L-(-)-Tartaric acid (L-TA) (99%) were provided by Alfa Aesar China (Shanghai) Co., Ltd. Methanol (A. R. grade), ethanol (A. R. grade), 1,4-dioxane (A. R. grade), dichloromethane (A. R. grade), aetone (A. R. grade) were obtained from Sinopharm Chemical Reagent Co., Ltd.

2. Synthesis and characterization of sorbitol-alkylamides SAAS-C_m (m = 8, 10, 12, 16)

Synthesis

The procedures to prepare intermediate 1,6-dibromosorbitol (1) was similar to that reported.¹ In the experiments, acetyl bromide (1.1 mL; 13.6 mmol) was added dropwise to a suspension of D-sorbitol (1.11 g; 6.1 mmol) in 1,4-dioxane (16 mL) solution in ice bath. Then the mixture was stirred at 18 °C for 48 h. After the reaction, the product was extracted with dichloromethane and dried by anhydrous MgSO₄, and the intermediate (1) was obtained after removing of the solvent. The yield of the 1,6-dibromosorbitol (1) was 85%.

The procedures for preparation of SAAS- C_m are discussed taking SAAS- C_{12} as the example. In the experiment, 0.01 mol (3.08 g) of 1,6-dibromosorbitol (1) was added into methanol solution containing 0.022 moles of 1-dodecylamine. The mixture was stirred at 35 °C for 48 h. Then the mixture was concentrated in vacuum to afford residue which was recrystallized with ethanol/acetone for three times, giving the product as bright yellow powder in 73% yield. The procedures to prepare SAAS- C_8 , SAAS- C_{10} and SAAS- C_{16} were similar, and the main difference was that the corresponding alkylamines were used, respectively. The product of SAAS- C_8 is white powder in 57% yield; SAAS- C_{10} is bright yellow powder in 62% yield; SAAS- C_{16} is white powder in 58% yield, respectively.

Characterizations

¹H NMR spectra for variations in chemical shifts were obtained on a proton frequency of 600.13 MHz spectrometer in D_2O at 25 °C. ¹³C NMR spectra were recorded on a Bruker AV400 spectrometer in CDCl₃. MS spectra were determined with BEFLEX III for MALDI-TOF mass spectrometer.

(2S, 3R, 4R, 5R) -1, 6-bis(octylamino)hexane-2,3,4,5-tetraol (SAAS-C₈): ¹H-NMR (600 MHz, D₂O): $\delta = 0.76-0.78$ (t, J = 6.0 Hz, 6H, -CH₃), 1.19-1.21 (m, 24H,), 1.23-1.29 (m, J = 12.0, 6.0 Hz, 4H), 1.54-1.59 (m, 4H), 2.88-2.91 (m, J = 6.0 Hz, 4H); ¹³C-NMR (400 MHz, CDCl₃): $\delta = 40.0$, 31.9, 29.6, 29.5, 29.4, 29.3, 29.0, 27.6, 25.5, 22.6, 14.1; MALDI-TOF-MS (M+Na)⁺: Calcd. for C₂₂H₄₈N₂O₄: 404.3. Found: 427.6.

(2S, 3R, 4R, 5R) -1, 6-bis(decylamino)hexane-2,3,4,5-tetraol (SAAS-C₁₀): ¹H-NMR (600 MHz, D₂O): $\delta = 0.77$ -0.79 (t, J = 6.0 Hz, 6H), 1.20-1.22 (m, 32H), 1.24-1.30 (m, J = 12.0, 6.0 Hz, 4H), 1.56-1.60 (m, 4H), 2.89-2.92 (m, J = 6.0 Hz, 4H); ¹³C-NMR (400 MHz, CDCl₃): $\delta = 40.2$, 31.8, 29.5, 29.4, 29.3, 29.0, 27.5, 26.6, 14.1; MALDI-TOF-MS (M+H)⁺: Calcd. for C₂₆H₅₅N₂O₄: 460.4. Found: 461.5.

(2S, 3R, 4R, 5R)-1,6-bis(dodecylamino)hexane-2,3,4,5-tetraol (SAAS-C₁₂,): ¹H-NMR (600 MHz, D₂O): $\delta = 0.77$ -0.79 (t, J = 6.0 Hz, 6H), 1.20-1.22 (m, 44H), 1.23-1.30 (m, 4H), 1.54-1.59 (m, J = 12.0, 6.0 Hz, 4H), 2.89-2.91 (m, J = 12.0, 6.0 Hz, 4H); ¹³C-NMR (400 MHz, CDCl₃) $\delta = 58.3, 41.2, 31.9, 29.67, 29.66, 29.56, 29.38, 29.3, 26.8, 22.7, 14.1;$ MALDI-TOF-MS (M+H)⁺: Calcd. for C₃₀H₆₄N₂O₄: 516.4. Found: 517.6.

(2S, 3R, 4R, 5R)-1,6-bis(hexadecylamino)hexane-2,3,4,5-tetraol (SAAS-C₁₆): ¹H-NMR (600 MHz, D₂O): $\delta = 0.82$ -0.83 (t, J = 6.0 Hz, 6H), 1.09-1.20 (m, 56H), 1.75-1.78 (m, 4H), 3.11-3.13

(d, J = 5.0, 2H), 3.41(s, -OH), 3.56-3.57 (m, 2H), 3.79 (m, 1H), 3.88 (m, 1H); ¹³C-NMR (400 MHz, CDCl₃): $\delta = 58.4, 41.5, 31.9, 31.8, 29.72, 29.68, 29.47, 29.6, 29.38, 27.2, 25.8, 22.7, 14.1;$ MALDI-TOF-MS (M+H)⁺: Calcd. for C₃₈H₈₀N₂O₄: 628.6. Found: 629.7, 611.5.

3. Characterizations of the self-assembly behaviors of SAAS-C_m

Fluorescence spectroscopy study with pyrene as the probe: Pyrene was employed as fluorescence probes at the concentration of 1 μ M and the sample solutions were stirred at room temperature overnight before measurement. Steady-state fluorescence spectra were obtained with a Hitachi F-4500 spectrofluorometer using a xenon lamp as the excitation source at ambient temperature. The emission spectra scanned for Pyrene from 350 to 550 nm using a 335 nm excitation wavelength. The width of emission slit was 2.5 nm. The ratio of the intensities of the third (384 nm) to the first (373 nm) vibronic peak (I_1/I_3) in the emission spectra are sensitive to the environment polarity, which are frequently used for the determination of aggregate polarity and critical micelle concentration (cmc),² as showed in Fig. S1.

Transmission electron microscopy (TEM) charaterization: TEM micrographs were obtained with a JEM-1011 transmission electron microscope (working voltage of 100 kV) by the negative-staining method with uranyl acetate solution (1%) as the staining agent.

Small Angel X-ray Scattering (SAXS): The apparatus and procedures for the SAXS study were similar to that used previously.³ Briefly, the experiments were carried out at Beamline 1W2A at the Beijing Synchrotron Radiation Facility (BSRF) at 25 °C. The data were collected using a CCD detector (MAR) with maximum resolution of 3450×3450 pixels. The wavelength of X-ray was 1.54 Å, and the distance of the sample to detector was 1.57 m. In a typical experiment, the sample was added into the sample cell, and the X-ray scattering data were recorded. The 2-D SAXS images were obtained from the detector and then transformed into the profiles of intensity vs wavevector (*q*) by the software FiT2D. The pair-distance distribution function *p*(*r*) was obtained from SAXS data using Gnom application software.⁴ The indirect Fourier transform (IFT) is a model independent method to obtain information on the scattering object by generating a pair distance distribution function *p*(*r*) of a scattering particle. The obtained *p*(*r*) is shown in Fig. S2.

Atomic Force Microscopy (AFM) Imaging. The AFM images were obtained on a Dimension Fast Scan (Bruker) using Scan Asyst mode under ambient conditions. Standard silicon AFM probes (FASTSCAN-B) with cantilever spring constants of 4 N/m and resonance frequencies around 400 kHz were used for the scan. The AFM samples were prepared by dropping solutions onto a mica sheet.

Circular dichroism spectroscopy (CD): All circular dichroism (CD) spectra were recorded on a JASCO J-810 spectropolarimeter. Samples were scanned from 550 to 180 nm at a rate of 1000 nm min^{-1} . The CD spectra of SAAS-C_m with tartaric acid (TA) enantiomer and various ee values of enantiomeric mixtures in desired concentration were recorded.

Nuclear magnetic resonance (NMR) spectroscopy: ¹H NMR spectra for variations in chemical shifts were obtained on a proton frequency of 600.13 MHz spectrometer in D_2O at 25 °C. For assuring complete recovery of magnetization vector, a small pulse flip-angle 30 ° was used rather than 90 ° in the conventional single pulse sequence.

4. Results

Fig. S1 shows variation of intensity ratio I_1/I_3 with SAAS-C_m concentration in aqueous solution. The critical micelle concentration (cmc) values of SAAS-C₈, SAAS-C₁₀, SAAS-C₁₂, and SAAS-C₁₆ obtained from the curves are 2.2 mM, 1.0 mM, 0.04 mM, and 0.03 mM, respectively. The I_1/I_3 ratios decreased quickly after the cmc, indicating the formation of hydrophobic microdomains.

Fig. S1. The I_1/I_3 plots as a function of concentration for SAAS-C_m systems at 25 °C.

Fig. S2. The pair-distance distribution function p(r) obtained from SAXS curves of the nanostructures formed in SAAS-C_m (m= 8, 10, 12, 16) aqueous solutions. a) SAAS-C₈, 5.0 mmol/L; b) SAAS-C₁₀, 5.0 mmol/L; c) SAAS-C₁₂, 1.0 mmol/L; d) SAAS-C₁₆, 0.5 mmol/L.

Fig. S3. AFM images and the height profile along the line connecting the arrows in assemblies: SAAS-C₁₂ (A, B), 0.5 mmol/L; SAAS-C₁₆ (C , D), 0.3 mmol/L.

Fig. S4. Variable CD and UV-vis spectra of SAAS- C_{12} (A) and SAAS- C_{16} (B) in aqueous solution

Fig. S5. Variations in chemical shifts for protons of SAAS- C_m as a function of the concentration in the self-assembly at 25 °C: (A): SAAS- C_{12} ; (B): SAAS- C_{16} ; (C): SAAS- C_8 and SAAS- C_{10} ; (D) the corresponding enlargement of protons for SAAS- C_8 and SAAS- C_{10} in high field.

Fig. S6. The CD and corresponding UV-vis spectra of tartaric acid enantiomers (L-TA/D-TA) with concentration of 0.1 M. (a) L-TA, 0.1 M; (b) D-TA, 0.1 M; (c) racemic mixture of 0.1M; (d) 0% ee; (e) 20% ee; (f) 30% ee; (g) 50%; (h) 75%; (i) -20%; (j) -30%; (k) -50%; (l) -75%.

Table S1. Chemical Shifts δ_{obsd} (ppm) for protons of SAAS-C_m in high field before (H₁) and after

cmc (H ₂) in D ₂ O, and the c	nc values obtained by	fluorescence spectroscopy
--	-----------------------	---------------------------

	δ _{obsd} (ppm)		δ _{obsd}		δ_{obsd}		cmc
SAAS-C _m	H _{a1}	H _{a2}	H_{b1}	H _{b2}	H _{c1}	H _{c2}	(mM)
SAAS-C ₈	0.779	0.785	1.198	1.191	1.571	1.588	~ 2.2
SAAS-C ₁₀	0.791	0.775	1.217	1.200	1.585	1.566	~1.0
SAAS-C ₁₂	0.776	0.790	1.195	1.212	1.568	1.582	0.04
SAAS-C ₁₆	0.774	0.817	1.196	1.198	1.764	1.748	0.03

5. References

1. a) S. Halila, M. Benazza, G. Demailly, *Tetrahedron Lett.* 2001, **42**, 3307; b) W. Pigman, E. A. Cleveland, D. H. Couch, J. H. Cleveland, *J. Am. Chem. Soc.* 1951, **73**, 1976; c) S. D. Burke, G. M.

Sametz, Org. Lett., 1999, 1, 71.

- 2. a) O. E. Philippova, D. Hourdet, R. Audebert, A. R. Khokhlov, Macromolecules 1997, 30, 8278;
- b) I. Astafieva, X. F. Zhong, A. Eisenberg, *Macromolecules* 1993, 26, 7339.
- 3. a) X. C. Kang, Q. G. Zhu, X. F. Sun, J. Y. Hu, J. L. Zhang, Z. M. Liu, B. X. Han, Chem. Sci.
- 2016, 7, 266; b) D. J. Iampietro, L. L. Brasher, E. W. Kaler, J. Phys. Chem. B 1998, 102, 3105.
- 4. M. A. J. Gillissen, M. M. E. Koenigs, J. J. H. Spiering, J. A. J. M. Vekemans, A. R. A. Palmans,
- I. K. Voets, E. W. Meijer, J. Am. Chem. Soc. 2014, 136, 336.