Supporting Information for:

Silver-Catalyzed Formal [3+2]-Cycloaddition of α-Trifluoromethylated Methyl Isocyanides for the Divergent Synthesis of CF₃-Substituted Heterocycles

Table of contents

I. General information	S2
II. Representative experimental procedures and analytical data of substrates 2	S2
III. Synthetic procedures and analytical data of compounds 3 , 5 , 7 , 9	S6
IV. General procedures for a gram scale synthesis of 3pa	
V. General procedures for synthesis application of products	S24
VI. Preliminary asymmetric studies	
VII. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of compounds	S31
VIII. Crystal Data, COSY and NOE spectra	S170

I. General Information

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). The products were purified by flash column chromatography on silica gel (300–400 mesh). Melting points were uncorrected. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at 25 °C on a Varian 400 MHz, 500 MHz and 600 MHz. ¹H NMR and ¹³C NMR were determined with TMS as the internal standard. ¹⁹F NMR was determined with C₆H₅F as external reference. All chemical shifts are given in ppm. High-resolution mass spectra (HRMS) were obtained using a microTOF II focus spectrometer (ESI).

II. Synthesis and analytical data of α-trifluoromethylated isocyanide substrates 2

The trifluoromethylated amines were readily prepared from aryl trifluoromethyl ketones in high overall yields according to the literature procedures,¹ the trifluoromethylated isocyanides 2 were prepared by the typical procedure by formylation and dehydration.²

^{1. (}a) Xu, J.; Liu, Z. J.; Yang, X. J.; Wang, L. M.; Chen, G. L.; Liu, J. T. *Tetrahedron*. **2010**, *66*, 8933–8937. (b) Evans, J. W.; Ellman, J. A. J. Org. Chem. **2003**, *68*, 9948–9957.

^{2. (}a) Neochoritis, C. G.; Stotani, S.; Mishra, B.; Dömling, A. *Org. Lett.* **2015**, *17*, 2002–2005. (b) Sisko, J.; Mellinger, M.; Sheldrake, P. W.; Baine, N. H. *Tetrahedron Lett.* **1996**, *37*, 8113–8116.

Analytical data of compounds 2

2a, 1-Methyl-4-(2,2,2-trifluoro-1-isocyanoethyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 2.40 (s, 3H), 5.12 (q, *J* = 6.4 Hz, 1H), 7.27 (d, *J* = 9.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.2, 59.5 (q, *J* = 33.0 Hz), 121.7 (q, *J* = 280.4 Hz), 124.7, 127.6, 129.8, 140.8, 163.4.

2b, (2,2,2-Trifluoro-1-isocyanoethyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 5.16 (q, J = 6.0 Hz, 1H), 7.48 (s, 5H). ¹³C NMR (CDCl₃, 125 MHz) δ 59.7 (q, J = 33.5 Hz), 121.6 (q, J = 280.5 Hz), 125.5, 127.8, 129.1, 130.5. 163.8.

2c, 1-Methoxy-4-(2,2,2-trifluoro-1-isocyanoethyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 3.83 (s, 3H), 5.09 (q, *J* = 6.6 Hz, 1H), 6.96-6.98 (m, 2H), 7.38 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, 150 MHz) δ 55.3, 59.2 (q, *J* = 35.1 Hz), 114.5, 119.6, 121.7 (q, *J* = 279.9 Hz), 129.1, 161.2, 163.5.

2d, 1-Fluoro-4-(2,2,2-trifluoro-1-isocyanoethyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 5.17 (q, *J* = 6.0 Hz, 1H), 7.15-7.19 (m, 2H), 7.46-7.49 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 59.0 (q, *J* = 34.6 Hz), 116.4 (d, *J* = 22.3 Hz), 121.5 (q, *J* = 280.4 Hz), 123.6 (d, *J* = 3.1 Hz), 129.8

(d, J = 8.6 Hz), 163.9 (d, J = 249.6 Hz), 164.2.

2e, 1-Chloro-4-(2,2,2-trifluoro-1-isocyanoethyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 5.15 (q, *J* = 6.0 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 59.1 (q, *J* = 34.4 Hz), 121.4 (q, *J* = 280.6 Hz), 126.1, 129.1, 129.5, 136.9. 164.4. HRMS (ESI-TOF) Calcd for C₉H₄ClF₃N (M-H)⁻ 217.9990. Found 217.9978.

2f, 1-Bromo-4-(2,2,2-trifluoro-1-isocyanoethyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 5.14 (q, *J* = 6.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 59.2 (q, *J* = 30.8 Hz), 121.3 (q, *J* = 280.4 Hz), 125.1, 126.6, 129.3, 132.4, 164.5.

2g, 1-Methyl-3-(2,2,2-trifluoro-1-isocyanoethyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 2.40 (s, 3H), 5.11 (q, *J* = 6.0 Hz, 1H), 7.25-7.30 (m, 3H), 7.33-7.36 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.3, 59.7 (q, *J* = 36.9 Hz), 121.7 (q, *J* = 280.4 Hz), 124.9, 127.5, 128.3, 129.0, 131.3, 139.2, 163.5.

2h, 1-Methoxy-2-(2,2,2-trifluoro-1-isocyanoethyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 3.87 (s, 3H), 5.82 (q, *J* = 5.6 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 52.8 (q, *J* = 34.9

Hz), 55.8, 110.9, 116.6, 121.2, 122.0 (q, *J* = 280.6 Hz), 128.5, 131.8, 156.5, 162.0.

2i, 2-(2,2,2-Trifluoro-1-isocyanoethyl)thiophene. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 5.42 (d, *J* = 5.2 Hz, 1H), 7.08 (s, 1H), 7.29 (s, 1H), 7.47 (d, *J* = 4.0 Hz, 1H). ¹³C NMR (CDCl₃, 150 MHz) δ 55.6 (q, *J* = 40.7 Hz), 121.2 (q, *J* = 280.4 Hz), 127.3, 128.4, 128.8, 129.4, 164.5.

2j, (3,3,3-Trifluoro-2-isocyanopropyl)benzene. Yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 2.98-3.03 (m, 1H), 3.19 (d, *J* = 12.5 Hz, 1H), 4.18-4.22 (m, 1H), 7.28 (d, *J* = 7.0 Hz, 2H), 7.34-7.40 (m, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 35.0, 58.1 (q, *J* = 32.0 Hz), 122.1 (q, *J* = 279.9 Hz), 128.1, 129.0, 129.2, 133.3, 163.7.

III. Synthetic procedures and analytical data of compounds 3, 5, 7, 9

General procedure for the synthesis of 3 (taking 3aa as an example): To a solution of 2naphthaldehyde (1) (31.2 mg, 0.2 mmol) and 1-methyl-4-(2,2,2-trifluoro-1-isocyanoethyl)benzene (2a) (59.7 mg, 0.3 mmol) in toluene (2 ml) at 15 °C was added Ag₂CO₃ (2.8 mg, 5.0 mol %) and DBU (3.0 μ L, 10.0 mol %). After the reaction was finished as indicated by TLC (reaction time, 2.5 h), the resulting mixture was poured into water (10 mL) and extracted with DCM (CH₂Cl₂, 10 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification of the crude product with flash column chromatography (petroleum ether /EtOAc = 15:1) to give **3aa** (67.5 mg, 95%).

3aa, the isomers could not readily be separated by silica gel chromatography. The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the product showed a 3.7:1 mixture of **3aa** based on the methyne peak at δ 6.08 and at δ 5.83.

3aa, 5-(Naphthalen-2-yl)-4-(*p*-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

Mixture of two diasteroisomers, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 2.11 and 2.41 (s, 3H, two isomers), 5.83 and 6.08 (s, 1H, two isomers), 6.74-6.76 (m, 2H, one isomer), 7.06 (d, *J* = 8.0 Hz, 1H, one isomer), 7.30 (d, *J* = 8.0 Hz, 1H, one isomer), 7.44-7.50 (m, 3H, one isomer), 7.53-7.57 (m, 1H, one isomer), 7.62-7.63 (m, 1H, two isomers), 7.69-7.77 (m, 2H, one isomer), 7.88-7.95 (m, 1H, one isomer). ¹⁹F NMR (470 MHz, CDCl₃) δ -78.2, -72.2. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₁₇F₃NO ([M + H]⁺) 356.1257, found 356.1255.

For the major isomer 3aa1, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 2.11 (s,

3H), 6.08 (s, 1H), 6.75-6.80 (m, 3H), 7.06 (d, *J* = 7.5 Hz, 2H), 7.44-7.50 (m, 4H), 7.62 (s, 1H), 7.69-7.71 (m, 1H), 7.76-7.77 (m, 1H).

3ba, 5-(4-Fluorophenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.9:1 mixture of **3ba** based on the methyne peak at δ 5.89 and at δ 5.64. For **3ba**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.21 and 2.39 (s, 3H, two isomers), 5.64 and 5.89 (s, 1H, two isomers), 6.79-6.90 (m, 5H, two isomers), 6.99 (d, *J* = 8.0 Hz, 1H, one isomer), 7.10-7.27 (m, 1H, one isomer), 7.38 (d, *J* = 2.8 Hz, 1H, one isomer), 7.43-7.55 (m, 1H, one isomer). ¹⁹F NMR (564 MHz, CDCl₃, the major isomer) δ -112.3 – -112.2 (m), -75.9. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₄F₄NO ([M + H]⁺) 324.1006, found 324.0998.

3ca, 5-(4-Chlorophenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.7:1 mixture of **3ca** based on the methyne peak at δ 5.87 and at δ 5.62. For **3ca**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.21 and 2.39 (s, 3H, two isomers), 5.62 and 5.87 (s, 1H, two isomers), 6.83-6.91 (m, 3H, two isomers), 7.00 (d, *J* = 8.0 Hz, 2H, one isomers), 7.08-7.27 (m, 2H, two isomers), 7.38-7.54 (m, 2H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 81.6 (q, *J* = 26.4 Hz), 84.4, 125.4 (q, *J* = 281.6 Hz), 127.8, 128.3, 128.5, 129.0, 129.6, 133.4, 134.6, 138.1, 157.2. ¹⁹F NMR (564 MHz, CDCl₃) δ -75.8,

-67.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for $C_{17}H_{14}ClF_3NO$ ([M + H]⁺) 340.0711, found 340.0706.

3da, 5-(4-Bromophenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.7:1 mixture of **3da** based on the methyne peak at δ 5.85 and at δ 5.60. For **3da**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.22 and 2.39 (s, 3H, two isomers), 5.60 and 5.85 (s, 1H, two isomers), 6.78 (d, *J* = 8.4 Hz, 2H, one isomer), 6.90 (d, *J* = 8.4 Hz, 1H, one isomer), 7.00 (d, *J* = 8.4 Hz, 1H, one isomer), 7.24-7.27 (m, 2H, two isomers), 7.33-7.38 (m, 2H, two isomers), 7.52-7.57 (m, 1H, one isomer). ¹⁹F NMR (564 MHz, CDCl₃) δ -75.7, -67.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₄BrF₃NO ([M + H]⁺) 384.0205, found 384.0205.

3ea, Methyl 4-(4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazol-5-yl)benzoate.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.6:1 mixture of **3ea** based on the methyne peak at δ 5.94 and at δ 5.70. For **3ea**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.17 and 2.39 (s, 3H, two isomers), 3.86 and 3.94 (s, 3H, two isomers), 5.70 and 5.94 (s, 1H, two isomers), 6.86 and 7.00 (d, J = 8.4 Hz and 8.4 Hz, 5H, one isomer), 7.26-7.41 (m, 1H, two isomers), 7.56 (d, J = 8.0 Hz, 1H, one isomer), 7.79 and 8.11 (d, J = 8.4 Hz and 8.4 Hz, 2H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 52.2, 81.9 (q, J = 26.3 Hz), 84.5, 125.3 (q, J = 281.6 Hz), 127.6,

127.7, 128.5, 129.2, 129.5, 129.6, 138.1, 139.8, 157.2, 166.4. ¹⁹F NMR (564 MHz, CDCl₃) δ -75.6, -67.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₇F₃NO₃ ([M + H]⁺) 364.1155, found 364.1156.

3fa, 5-(4-Nitrophenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3:1 mixture of **3fa** based on the methyne peak at δ 5.97 and at δ 5.74. For **3fa**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.19 and 2.40 (s, 3H, two isomers), 5.74 and 5.97 (s, 1H, two isomers), 6.89 and 6.98 (d, *J* = 8.0 Hz and 8.4 Hz, 3H, one isomer), 7.11 (d, *J* = 8.8 Hz, 2H, one isomer), 7.28-7.44 (m, 1H, two isomers), 7.54 and 7.66 (d, *J* = 8.4 Hz and 8.8 Hz, 1H, one isomer), 7.98 and 8.30 (d, *J* = 8.8 Hz and 8.8 Hz, 2H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 82.3 (q, *J* = 26.5 Hz), 83.8, 123.2, 125.2 (q, *J* = 281.5 Hz), 127.5, 128.4, 128.7, 129.7, 138.5, 142.0, 147.7, 157.1. ¹⁹F NMR (564 MHz, CDCl₃, the major isomer) δ -75.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₄F₃N₂O₃ ([M + H]⁺) 351.0951, found 351.0958.

3ga, 5-(4-Nitrophenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.6:1 mixture of **3ga** based on the methyne peak at δ 5.90 and at δ 5.66. For **3ga**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.18 and 2.39 (s, 3H, two isomers), 5.66 and 5.90 (s, 1H, two isomers), 6.85-6.91 (m, 2H, two isomers), 7.01 (d, *J* = 8.0 Hz,

1H, one isomer), 7.12 (q, J = 7.6 Hz, 2H, one isomer), 7.26 (d, J = 8.0 Hz, 1H, one isomer), 7.39-7.47 (m, 3H, two isomers), 7.57 (d, J = 8.0 Hz, 1H, one isomer). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 81.5 (q, J = 26.4 Hz), 85.2, 125.5 (q, J = 281.8 Hz), 127.7, 127.9, 127.9, 128.0, 128.2, 128.7, 134.8, 137.8, 157.3. ¹⁹F NMR (564 MHz, CDCl₃) δ -75.9, -67.6. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₅F₃NO ([M + H]⁺) 306.1100, found 306.1108.

3ha, 4,5-Di-*p*-tolyl-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.7:1 mixture of **3ha** based on the methyne peak at δ 5.88 and at δ 5.63. For **3ha**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.20 and 2.22 (s, 5H, one isomer), 2.38 and 2.39 (s, 1H, one isomer), 5.63 and 5.88 (s, 1H, two isomers), 6.77-7.04 (m, 7H, one isomer), 7.22-7.57 (m, 2H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 21.1, 81.3 (q, *J* = 26.3 Hz), 85.2, 125.5 (q, *J* = 281.8 Hz), 127.7, 128.0, 128.2, 128.7, 129.0, 129.5, 137.7, 138.6, 157.4. ¹⁹F NMR (564 MHz, CDCl₃) δ -76.2, -67.5. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₈H₁₇F₃NO ([M + H]⁺) 320.1257, found 320.1244.

3ia, 5-(4-Methoxyphenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.7:1 mixture of **3ia** based on the methyne peak at δ 5.87 and at δ 5.62. For **3ia**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.20 and 2.38 (s, 3H, two isomers), 3.71 and 3.84 (s, 3H, two isomers), 5.62 and 5.87 (s, 1H, two isomers), 6.62-6.83 (m, 3H, one isomer), 6.88-7.04 (m, 4H, two isomers), 7.24-7.56 (m, 2H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 55.2, 81.1 (q, J = 26.0 Hz), 85.1, 113.4, 125.5 (q, J = 281.8 Hz), 126.7, 128.0, 128.3, 129.2, 129.5, 137.7, 157.3, 159.7. ¹⁹F NMR (564 MHz, CDCl₃) δ -76.3, -67.6. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₈H₁₇F₃NO₂ ([M + H]⁺) 336.1206, found 336.1190.

3ja, 5-(3-Chlorophenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.3:1 mixture of **3ja** based on the methyne peak at δ 5.85 and at δ 5.62. For **3ja**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.20 and 2.39 (s, 3H, two isomers), 5.62 and 5.85 (s, 1H, two isomers), 6.78-6.91 (m, 4H, two isomers), 7.00-7.13 (m, 4H, two isomers), 7.26-7.55 (m, 1H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 81.8 (q, *J* = 26.4 Hz), 84.3, 125.3 (q, *J* = 281.6 Hz), 125.7, 127.7, 128.4, 128.8, 129.3, 129.5, 129.6, 134.0, 136.8, 138.1, 157.2. ¹⁹F NMR (564 MHz, CDCl₃) δ -75.6, -67.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₄ClF₃NO ([M + H]⁺) 340.0711, found 340.0717.

3ka, 5-(3-Methoxyphenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.9:1 mixture of **3ka** based on the methyne peak at δ 5.86 and at δ 5.61. For **3ka**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.20 and 2.38 (s, 3H, two

isomers), 3.58 and 3.84 (s, 3H, two isomers), 5.61 and 5.86 (s, 1H, two isomers), 6.34-6.70 (m, 2H, one isomer), 6.87-7.07 (m, 5H, two isomers), 7.25-7.58 (m, 2H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 55.1, 81.5 (q, J = 26.5 Hz), 85.0, 112.9, 114.7, 120.3, 125.4 (q, J = 281.6 Hz), 127.8, 128.2, 129.0, 129.5, 136.2, 137.8, 157.3, 159.2. ¹⁹F NMR (564 MHz, CDCl₃) δ -75.8, -67.6. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₈H₁₇F₃NO₂ ([M + H]⁺) 336.1206, found 336.1219.

3la, 5-(2-Chlorophenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.7:1 mixture of **3la** based on the methyne peak at δ 6.51 and at δ 6.12. For **3la**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.18 and 2.38 (s, 3H, two isomers), 6.16 and 6.51 (s, 1H, two isomers), 6.60-6.91 (m, 3H, two isomers), 7.03-7.25 (m, 4H, two isomers), 7.31-7.65 (m, 2H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 80.7, 82.3 (q, *J* = 26.8 Hz), 125.3 (q, *J* = 282.4 Hz), 126.6, 127.6, 128.4, 129.1, 129.1, 129.2, 129.8, 133.0, 133.3, 138.0, 157.4. ¹⁹F NMR (564 MHz, CDCl₃) δ -76.3, -68.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₄ClF₃NO ([M + H]⁺) 340.0711, found 340.0721.

3ma, 5-(2-Bromophenyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.5:1 mixture of **3ma** based on the methyne peak at δ 6.51 and at δ 6.12. For **3ma**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.18 and 2.38 (s, 3H, two

isomers), 6.12 and 6.51 (s, 1H, two isomers), 6.56 (dd, $J_1 = 1.6$ Hz, $J_2 = 7.6$ Hz, 1H, one isomer), 6.88-6.99 (m, 3H, two isomers), 7.17-7.25 (m, 2H, two isomers), 7.34-7.66 (m, 3H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 82.3 (q, J = 26.8 Hz), 83.0, 123.3, 125.2 (q, J = 282.6 Hz), 127.2, 127.7, 128.4, 129.1, 129.4, 130.0, 132.4, 134.9, 138.0, 157.4. ¹⁹F NMR (564 MHz, CDCl₃) δ -76.3, -68.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₄BrF₃NO ([M + H]⁺) 384.0205, found 384.0217.

3na, 5-(Thiophen-2-yl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 5:1 mixture of **3na** based on the methyne peak at δ 6.23 and at δ 5.92. For **3na**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.25 and 2.38 (s, 3H, two isomers), 5.92 and 6.23 (s, 1H, two isomers), 6.79-6.90 (m, 2H, one isomer), 6.96 (d, *J* = 8.0 Hz, 2H, one isomer), 7.08-7.17 (m, 3H, two isomers), 7.25-7.33 (m, 1H, two isomers). ¹⁹F NMR (470 MHz, CDCl₃, the major isomer) δ -78.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₅H₁₃F₃NOS ([M + H]⁺) 312.0664, found 312.0667.

30a, 5-(Furan-2-yl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydro oxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.5:1 mixture of **3oa** based on the methyne peak at δ 5.97 and at δ 5.71. For **3oa**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 2.26 and 2.38 (s, 3H, two isomers), 5.71 and 5.97 (s, 1H, two isomers), 6.15-6.24 (m, 1H, one isomer), 6.47-6.56 (m, 1H,

one isomer), 6.98-7.06 (m, 1H, one isomer), 7.20-7.30 (m, 4H, two isomers), 7.54-7.63 (m, 1H, one isomer). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 21.0, 80.3 (q, J = 26.1 Hz), 82.7, 110.1, 110.9, 125.1 (q, J = 282.4 Hz), 127.2, 128.4, 130.2, 138.9, 143.5, 147.3, 157.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -79.5, -76.2. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₅H₁₃F₃NO₂ ([M + H]⁺) 296.0893, found 296.0903.

3pa, 5-(Pyridin-2-yl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.7:1 mixture of **3pa** based on the methyne peak at δ 6.06 for **3pa1** and at δ 5.91 for **3pa2**.

For **3pa**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.16 and 2.37 (s, 3H, two isomers), 5.91 and 6.06 (s, 1H, two isomers), 6.77 and 6.85 (d, J = 8.0 Hz and 8.0 Hz, 2H, one isomer), 7.00-7.09 (m, 2H, one isomer), 7.26-7.53 (m, 3H, two isomers), 7.72-7.99 (m, 1H, one isomer), 8.41 and 8.67 (d, J = 4.8 Hz and 4.4 Hz, 1H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.8, 82.0 (q, J = 26.8 Hz), 85.1, 122.3, 123.2, 125.2 (q, J = 281.8 Hz), 127.8, 128.2, 129.2, 136.0, 137.8, 148.7, 154.8, 157.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -78.5, -74.4. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₆H₁₄F₃N₂O ([M + H]⁺) 307.1053, found 307.1053.

The major isomer **3pa1** and the minor one **3pa2** could be separated by flash column.

For **3pa1**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 2.17 (s, 3H), 6.06 (s, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 7.03-7.05 (m, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.36-7.39 (m, 1H), 7.42 (s, 1H). 8.42 (d, J = 5.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 20.9, 82.0 (q, J = 26.8 Hz), 85.2, 122.3, 123.3, 125.2 (q, J = 281.8 Hz), 127.8, 128.3, 129.9, 136.1, 137.8, 148.7, 154.8, 157.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -78.5. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₆H₁₄F₃N₂O ([M + H]⁺) 307.1053, found 307.1064.

For **3pa2**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 2.39 (s, 3H), 5.91 (s, 1H), 7.26-7.32 (m, 3H), 7.36 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.75-7.79 (m, 1H), 7.97 (d, *J* = 8.0 Hz, 2H), 8.69 (d, *J* = 4.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.2, 81.9 (q, *J* = 26.4 Hz), 88.8,

121.5, 123.5, 123.9 (q, J = 283.4 Hz), 128.1, 129.2, 135.1, 136.5, 138.7, 148.8, 154.4, 156.8. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.4. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₆H₁₃F₃N₂NaO ([M + Na]⁺) 329.0872, found 329.0867.

3qa, Ethyl 4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole-5-carboxylate.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 1.8:1 mixture of **3qa** based on the methyne peak at δ 5.29 and at δ 5.13. For **3qa**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 0.93 and 1.39 (t, J = 7.5 Hz and 7.0 Hz, 3H, two isomers), 2.33 and 2.37 (s, 3H, two isomers), 3.62-4.43 (m, 2H, two isomers), 5.13 and 5.29 (s, 1H, two isomers), 7.15 (d, J = 8.5 Hz, 1H, one isomer), 7.21-7.29 (m, 2H, two isomers), 7.39 and 7.63 (d, J = 8.0 Hz and 8.0 Hz, 2H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 13.4, 21.0, 61.8, 80.2, 81.8 (q, J = 27.4 Hz), 124.7 (q, J = 282.3 Hz), 127.4, 128.8, 129.4, 139.2, 157.4, 165.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -78.3, -75.0. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₄H₁₅F₃NO₃ ([M + H]⁺) 302.0999, found 302.1011.

For the major isomer **3qa1**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 0.94 (t, J = 7.0 Hz, 3H), 2.33 (s, 3H), 3.62-3.68 (m, 1H), 3.79-3.85 (m, 1H), 5.29 (s, 1H), 7.15 (d, J = 8.5 Hz, 2H), 7.29 (s, 1H), 7.39 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 13.4, 21.0, 61.8, 80.3, 81.9 (q, J = 27.3 Hz), 124.7 (q, J = 282.3 Hz), 127.5 (d, J = 1.4 Hz), 128.9, 129.0, 139.2, 157.4, 166.0.

3ra, (E)-5-styryl-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 1.4:1 mixture of **3ra** based on the peak at δ 6.68 and at δ 6.89.

For **3ra**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.33 and 2.36 (s, 3H, two isomers), 5.17-5.50 (m, 2H, two isomers), 6.47-6.91 (m, 1H, two isomers), 7.11-7.15 (m, 3H, two isomers), 7.21-7.28 (m, 4H, two isomers), 7.33-7.41 (m, 2H, two isomers), 7.49-7.51 (m, 1H, one isomer). ¹³C NMR (CDCl₃, 100 MHz, the major isomer) δ 21.0, 80.0 (q, J = 27.0 Hz), 88.9, 123.2, 125.3 (q, J = 282.0 Hz), 126.9, 127.1, 128.3, 128.6, 128.8, 129.4, 135.5, 135.6, 138.5, 157.1. ¹⁹F NMR (564 MHz, CDCl₃) δ -76.4, -72.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₇F₃NO ([M + H]⁺) 332.1257, found 332.1258.

3sa, 5-Phenethyl-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.6:1 mixture of **3sa** based on the methyne peak at δ 4.88 and at δ 4.55. For **3sa**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 1.18-1.61 (m, 2H, two isomers), 2.33 and 2.34 (s, 3H, two isomers), 2.55-3.08 (m, 2H, two isomers), 4.54-4.90 (m, 1H, two isomers), 7.03 (d, *J* = 7.2 Hz, 2H, one isomer), 7.14-7.37 (m, 8H, two isomers). ¹³C NMR (CDCl₃, 100 MHz, the major isomer) δ 21.0, 31.9, 34.2, 79.8 (q, *J* = 26.3 Hz), 82.0, 125.5 (q, *J* = 281.8 Hz), 126.1, 127.7, 128.3, 128.5, 129.0, 129.6, 138.6, 140.4, 157.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8, -75.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₉F₃NO ([M + H]⁺) 334.1413, found 334.1427.

3ta, 5-(4-Chlorophenethyl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.4:1 mixture of **3ta** based on the methyne peak at δ 4.85 and at δ 4.52. For **3ta**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 1.15-1.57 (m, 2H, two

isomers), 2.33 and 2.34 (s, 3H, two isomers), 2.50-3.04 (m, 2H, two isomers), 4.50-4.87 (m, 1H, two isomers), 6.94 (d, J = 8.4 Hz, 1H, one isomer), 7.15-7.36 (m, 8H, two isomers). ¹³C NMR (CDCl₃, 100 MHz, the major isomer) δ 21.0, 31.1, 34.1, 79.8 (q, J = 26.0 Hz), 81.7, 125.5 (q, J = 282.0 Hz), 126.5, 127.6, 128.6, 129.1, 129.7, 131.9, 138.6, 138.8, 157.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8, -72.1. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₈ClF₃NO ([M + H]⁺) 368.1024, found 368.1035.

3ab, 5-(Naphthalen-2-yl)-4-phenyl-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 4:1 mixture of **3ab** based on the methyne peak at δ 6.10 and at δ 5.85. For **3ab**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 5.85 and 6.10 (s, 1H, two isomers), 6.72-7.20 (m, 5H, two isomers), 7.43-7.95 (m, 8H, two isomers). ¹⁹F NMR (564 MHz, CDCl₃) δ -75.9, -67.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₁₅F₃NO ([M + H]⁺) 342.1100, found 342.1112.

3ac, 4-(4-Methoxyphenyl)-5-(naphthalen-2-yl)-4-(trifluoromethyl)-4,5-dihydrooxazole. The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.1:1 mixture of **3ac** based on the methyne peak at δ 6.08 and at δ 5.83.

For **3ac**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.10 and 2.41 (s, 3H, two isomers), 5.83 and 6.08 (s, 1H, two isomers), 6.75-7.07 (m, 4H, two isomers), 7.25-7.94 (m, 8H, two isomers). ¹⁹F NMR (564 MHz, CDCl₃) δ -76.4, -67.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₁₆F₃NNaO₂ ([M + Na]⁺) 394.1025, found 394.1018.

For the major isomer **3ac1**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 3.59 (s, 3H), 6.07 (s, 1H), 6.50 (d, *J* = 9.0 Hz, 2H), 6.74 (d, *J* = 8.5 Hz, 1H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.43-7.50 (m, 4H), 7.63 (s, 1H), 7.68-7.70 (m, 1H), 7.75-7.76 (m, 1H).

3ad, 4-(4-Fluorophenyl)-5-(naphthalen-2-yl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 4.4:1 mixture of **3ad** based on the methyne peak at δ 6.08 and at δ 5.78. For **3ad**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 5.78 and 6.08 (s, 1H, two isomers), 6.64-6.73 (m, 2H, one isomer), 7.14-7.22 (m, 2H, two isomers), 7.43-7.59 (m, 5H, two isomers), 7.68-7.92 (m, 3H, two isomers). ¹⁹F NMR (564 MHz, CDCl₃) δ -113.5 – -113.5 (m), -112.7 – -112.6 (m), -77.1, -76.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₁₄F₄NO ([M + H]⁺) 360.1006, found 360.1019.

3ae, 4-(4-Chlorophenyl)-5-(naphthalen-2-yl)-4-(trifluoromethyl)-4,5-dihydrooxazole. The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.6:1 mixture of **3ae** based on the methyne peak at δ 6.08 and at δ 5.76. For **3ae**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 5.76 and 6.08 (s, 1H, two isomers), 6.71-7.14 (m, 4H, one isomer), 7.44-7.54 (m, 4H, two isomers), 7.61-7.91 (m, 4H, two isomers). ¹⁹F NMR (470 MHz, CDCl₃) δ -78.2, -72.2. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₁₄ClF₃NO ([M + H]⁺) 376.0711, found 376.0719.

3af, 4-(4-Bromophenyl)-5-(naphthalen-2-yl)-4-(trifluoromethyl)-4,5-dihydrooxazole. The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 4.2:1 mixture of **3af** based on the methyne peak at δ 6.08 and at δ 5.75. For **3af**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 5.75 and 6.08 (s, 1H, two isomers), 6.70-6.72 (m, 1H, one isomer), 7.07 and 7.12 (d, *J* = 8.0 Hz and 8.5 Hz, 3H, one isomer), 7.44-7.54 (m, 4H, two isomers), 7.61-7.91 (m, 4H, two isomers). ¹⁹F NMR (564 MHz, CDCl₃) δ - 76.3, -68.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₁₄BrF₃NO ([M + H]⁺) 420.0205, found 420.0225.

3ag, 5-(Naphthalen-2-yl)-4-(m-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 4.4:1 mixture of **3ag** based on the methyne peak at δ 6.08 and at δ 5.83. For **3ag**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 1.99 and 2.43 (s, 3H, two isomers), 5.83 and 6.08 (s, 1H, two isomers), 6.74-6.83 (m, 3H, two isomers), 6.91-7.01 (m, 2H, one isomer), 7.23-7.47 (m, 4H, two isomers), 7.51-7.59 (m, 1H, two isomers), 7.66-7.94 (m, 2H, two isomers). ¹⁹F NMR (470 MHz, CDCl₃) δ -77.8, -72.0. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₁₇F₃NO ([M + H]⁺) 356.1257, found 356.1265.

3ah, 4-(2-Methoxyphenyl)-5-(naphthalen-2-yl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The products could readily be separated by silica gel chromatography. The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.2:1 mixture of **3ah**.

For **3ah1**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 3.15 (s, 3H), 6.17 (s, 1H), 6.29 (d, J = 8.4 Hz, 1H), 6.93-6.99 (m, 2H), 7.10-7.15 (m, 1H), 7.34 (s, 1H), 7.39-7.42 (m, 2H), 7.48 (d, J = 8.4 Hz, 1H), 7.58 (s, 1H), 7.67-7.68 (m, 2H), 8.11 (d, J = 7.6 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 54.2, 80.3 (q, J = 27.5 Hz), 85.4, 110.6, 120.4, 121.7, 124.7, 125.3 (q, J = 285.2 Hz), 126.1, 126.4, 127.0, 127.5, 127.7, 127.9, 130.5, 130.6, 132.3, 133.0, 134.0, 155.5, 157.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -77.6. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₁₆F₃NNaO₂ ([M + Na]⁺) 394.1025, found 394.1022.

For **3ah2**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 4.04 (s, 3H), 6.34 (s, 1H), 7.03-7.08 (m, 2H), 7.40-7.45 (m, 2H), 7.50-7.54 (m, 2H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.82-7.88 (m, 4H), 7.97 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.4. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₁₇F₃NO₂ ([M + H]⁺) 372.1206, found 372.1189.

3ai, 5-(Naphthalen-2-yl)-4-(thiophen-2-yl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 3.1:1 mixture of **3ai** based on the methyne peak at δ 6.07 and at δ 5.88. For **3ai**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 5.88 and 6.07 (s, 1H, two isomers), 6.39-6.56 (m, 1H, one isomer), 6.89-7.03 (m, 1H, one isomer), 7.11-7.40 (m, 1H, one isomer), 7.44-7.62 (m, 5H, two isomers), 7.71-7.93 (m, 3H, two isomers). ¹⁹F NMR (470 MHz, CDCl₃) δ -79.0, -73.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₈H₁₃F₃NOS ([M

+ H]⁺) 348.0664, found 348.0670.

3aj, 4-Benzyl-5-(naphthalen-2-yl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.5:1 mixture of **3aj** based on the methyne peak at δ 5.93 and at δ 5.59. For **3aj**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.52-3.63 (m, 2H, two isomers), 5.59 and 5.93 (s, 1H, two isomers), 6.83 (d, *J* = 7.6 Hz, 1H, one isomer), 6.97-7.12 (m, 3H, two isomers), 7.20-7.40 (m, 3H, two isomers), 7.47-7.62 (m, 3H, two isomers), 7.75-7.85 (m, 3H, two isomers). ¹⁹F NMR (564 MHz, CDCl₃) δ -76.1, -72.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₁₇F₃NO ([M + H]⁺) 356.1257, found 356.1264.

3cj, 4-Benzyl-5-(4-chlorophenyl)-4-(trifluoromethyl)-4,5-dihydrooxazole.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 1.7:1 mixture of **3cj** based on the methyne peak at δ 5.73 and at δ 5.38. For **3cj**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.47-3.59 (m, 2H, two isomers), 5.38 and 5.73 (s, 1H, two isomers), 6.86-6.88 (m, 1H, one isomer), 7.07-7.14 (m, 4H, two isomers), 7.19-7.25 (m, 1H, two isomers), 7.30-7.37 (m, 4H, two isomers). ¹³C NMR (CDCl₃, 100 MHz, the major isomer) δ 37.3, 78.9 (q, *J* = 25.0 Hz), 82.0, 125.7 (q, *J* = 282.0 Hz), 126.6, 127.6, 128.7, 130.4, 131.5, 132.8, 134.0, 134.6, 156.7. ¹⁹F NMR (564 MHz, CDCl₃) δ -76.4, -72.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₄ClF₃NO ([M + H]⁺) 340.0711, found 340.0717.

5, Ethyl 5-methyl-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole-5-carboxylate.

The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 0.9:1 mixture of **5**.

For **5**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 0.81-1.16 (m, 3H, two isomers), 1.38-1.99 (m, 3H, two isomers), 2.32 and 2.37 (s, 3H, two isomers), 3.49-3.60 (m, 1H, one isomer), 4.30-4.45 (m, 1H, one isomer), 7.14 (d, *J* = 8.5 Hz, 1H, one isomer), 7.21-7.28 (m, 2H, two isomers), 7.44-7.66 (m, 2H, two isomers). ¹³C NMR (CDCl₃, 100 MHz, the major isomer) δ 13.2, 18.5, 21.1, 61.9, 83.2 (q, *J* = 26.3 Hz), 88.7, 124.4 (q, *J* = 284.6 Hz), 128.6, 128.9, 130.2, 139.0, 157.6, 168.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -74.5, -73.0. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₅H₁₇F₃NO₃ ([M + H]⁺) 316.1155, found 316.1167.

7, 5-(4-Methoxyphenyl)-4-(p-tolyl)-1-tosyl-4-(trifluoromethyl)-4,5-dihydro-1H-imidazole. The ratio of the isomers was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 4.2:1 mixture of 7 based on the methyne peak at δ 5.26 and at δ 5.08. For 7, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 2.16-2.35 (m, 6H, two isomers), 3.66 and 3.78 (s, 3H, two isomers), 5.08 and 5.26 (s, 1H, two isomers), 5.94-6.09 (m, 1H, two isomers), 6.70-7.13 (m, 8H, two isomers), 7.31-7.40 (m, 3H, two isomers), 7.97 and 7.97 (s, 1H, two isomers). ¹³C NMR (CDCl₃, 125 MHz, the major isomer) δ 20.9, 21.5, 55.0, 65.9, 84.3 (q, J = 26.0 Hz), 112.2, 114.0, 123.8, 123.9 (q, J = 279.4 Hz), 125.8, 127.2, 128.2, 129.6, 130.5, 134.4, 137.8, 144.6, 151.2, 159.3. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₂₃F₃N₂NaO₃S ([M + Na]⁺) 511.1274, found 511.1271.

For the major isomer, white solid. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 2.18 (s, 3H), 2.38 (s, 3H), 3.68 (s, 3H), 5.23 (s, 1H), 5.97 (s, 1H), 6.12 (s, 1H), 6.70 (s, 1H), 6.84 (d, *J* = 8.5 Hz,

2H), 6.93 (s, 2H), 7.14 (d, J = 8.5 Hz, 3H), 7.41 (d, J = 8.0 Hz, 2H), 7.95 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 20.9, 21.6, 55.1, 65.9, 84.4 (q, J = 26.3 Hz), 112.3, 114.1, 125.0 (q, J = 282.4 Hz), 126.0, 127.3, 128.2, 129.6, 130.6, 134.5, 137.9, 144.7, 151.3, 159.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -79.0. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₂₄F₃N₂O₃S ([M + H]⁺) 489.1454, found 489.1473.

9, 5-(P-tolyl)-5-(trifluoromethyl)-4,5-dihydro-1H-pyrrole-3-carbonitrile.

For **9**, yellow oil. NMR Spectroscopy: ¹H NMR (CDCl₃, 500 MHz) δ 2.37 (s, 3H), 3.14 (d, J = 15.5 Hz, 1H), 3.51 (dd, $J_1 = 1.0$ Hz, $J_2 = 15.5$ Hz, 1H), 5.07 (s, 1H), 7.03-7.04 (m, 1H), 7.22 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 39.4, 70.9 (q, J = 28.4 Hz), 79.3, 117.3, 125.4 (q, J = 282.6 Hz), 125.9, 129.5, 134.5, 139.1, 148.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -81.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₃H₁₂F₃N₂ ([M + H]⁺) 253.0947, found 253.0943.

IV. General procedures for a gram scale synthesis of 3pa

To a solution of picolinaldehyde (1p) (0.5 g, 5.0 mmol) and 1-methyl-4-(2,2,2-trifluoro-1isocyanoethyl)benzene (2a) (1.5 g, 7.5 mmol) in toluene (50 ml) at 15 °C was added Ag₂CO₃ (68.9 mg, 5.0 mol %) and DBU (75.0 μ L, 10.0 mol %). After the reaction was finished as indicated by TLC (reaction time, 2.0 h), the resulting mixture was poured into water (100 mL) and extracted with DCM (CH₂Cl₂, 100 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification of the crude product with flash column chromatography (petroleum ether /EtOAc = 15:1) to give **3pa** (1.5 g, 98%).

3pa, 5-(Pyridin-2-yl)-4-(p-tolyl)-4-(trifluoromethyl)-4,5-dihydrooxazole. The ratio of the isomor

was determined by ¹H NMR Spectroscopy. The ¹H NMR spectrum of the crude product showed a 2.8:1 mixture of **3pa**.

V. General procedures for synthesis application of products.

2-Amino-3,3,3-trifluoro-1-(pyridin-2-yl)-2-(p-tolyl)propan-1-ol (10a)

Oxazoline **3pa1** (61.2 mg, 0.2 mmol) was dissolved in 2 mL of CH₃CN and 5 pipette drops of HCl (6N) were added. The reaction mixture was refluxed for 0.5 h. After the reaction mixture was cooled to room temperature, the mixture was quenched with saturated NaHCO₃ solution (10 ml). The aqueous layer was extracted with CH₂Cl₂ (10 ml \times 3), and combined organic layers were dried over Na₂SO₄ and concentrated to give **10a** in quantitative yield as a white solid.

10a, 2-Amino-3,3,3-trifluoro-1-(pyridin-2-yl)-2-(p-tolyl)propan-1-ol. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 1.85 (s, 2H), 2.36 (s, 3H), 5.39 (s, 1H), 5.56 (s, 1H), 6.06 (d, *J* = 8.0 Hz, 1H), 7.11-7.14 (m, 1H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.25-7.30 (m, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 8.50 (d, *J* = 4.8 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 65.6 (q, *J* = 24.6 Hz), 74.4, 122.8, 123.0, 126.5, 126.8 (q, *J* = 286.0 Hz), 129.2, 133.1, 135.7, 138.3, 147.4, 155.5. ¹⁹F NMR (470 MHz, CDCl₃) δ -73.7. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₅H₁₅F₃N₂NaO ([M + Na]⁺) 319.1029, found 319.1020.

10b, 2-Amino-3,3,3-trifluoro-1-(pyridin-2-yl)-2-(p-tolyl)propan-1-ol. NMR Spectroscopy: ¹H NMR (CDCl₃, 400 MHz) δ 2.17 (s, 2H), 2.36 (s, 3H), 4.45 (d, *J* = 8.0 Hz, 1H), 5.22 (d, *J* = 6.8 Hz, 1H), 7.18-7.24 (m, 4H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.62-7.66 (m, 1H), 8.54 (d, *J* = 4.8 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.0, 65.9 (q, *J* = 24.0 Hz), 74.7, 123.3, 123.5, 126.4 (q, *J* = 284.6 Hz), 126.8, 129.1, 133.5, 136.3, 138.1, 148.3, 157.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -73.8. Mass Spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C₁₅H₁₅F₃N₂NaO ([M + Na]⁺) 319.1029, found 319.1019.

VI. Preliminary asymmetric studies

To a 10 mL vial charged with L (1.2 mg, 2.0 mol%) and Ag_2O (0.2 mg, 1.0 mol%) was added EtOAc (1.0 mL). The mixture was allowed to stir at ambient temperature for 10 min, then 2-naphthaldehyde **1a** (16 mg, 0.1 mmol), 1-methyl-4-(2,2,2-trifluoro-1-isocyanoethyl)benzene **2a** (30 mg, 0.15 mmol) were added in one portion. The mixture was stirred for 8 h. The crude reaction mixture was then subjected to a silica gel column to afford the desired product **3aa**.

The ee of **3aa** was determined by HPLC using an AD column (*n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, $t_{major} = 6.6$ min and 16.4 min, $t_{minor} = 8.1$ min and 8.6 min). Product **3aa**: 98% yield, 61% ee (major), 72% ee (minor), Ligand L2, $[\alpha]_D^{17} = -4.5$ (major, c = 0.2, CHCl₃).

Detector A (254nm)

Pk #	Retention Time	Area	Area %	Height	Height %
1	6.545	1266551	50.264	80943	69.867
2	17.029	1253226	49.736	34910	30.133
Totals		2519776	100.000	115853	100.000

Detector A (254nm)

Pk #	Retention Time	Area	Area %	Height	Height %
1	7.922	2372280	50.027	171688	48.886
2	8.676	2369677	49.973	179513	51.114
Totals		4741957	100.000	351201	100.000

Detector A (254nm)

Pk #	Retention Time	Area	Area %	Height	Height %
1	6.612	768039	17.578	75402	40.487
2	8.130	424187	9.708	33530	18.004
3	8.613	69964	1.601	5524	2.966
4	16.382	3107229	71.113	71779	38.542
Totals		4369419	100.000	186234	100.000

To a 10 mL vial charged with L2 (2.4 mg, 4.0 mol%) and Ag_2O (0.2 mg, 1.0 mol%) was added EtOAc (1.0 mL). The mixture was allowed to stir at ambient temperature for 10 min, then 2-naphthaldehyde **1a** (16 mg, 0.1 mmol), 1-methoxy-2-(2,2,2-trifluoro-1-isocyanoethyl)benzene **2h** (35 mg, 0.15 mmol) were added in one portion. The mixture was stirred for 48 h. The crude reaction mixture was then subjected to a silica gel column to afford the desired product **3ah**.

The ee of **3ah** was determined by HPLC using an ID column (*n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, t_{major} = 12.3 min and 13.4 min, t_{minor} = 16.1 min and 17.2 min). Product **3ah**: 88% yield, 83% ee (major), 93% ee (minor), Ligand L2, $[\alpha]_D^{17}$ = -19.8 (major, c = 0.2, CHCl₃).

Translation

Detector A (254nm)

Pk #	Retention Time	Area	Height	Area%	Height %
1	11.651	10655521	704506	49.949	52.255
2	12.740	10677238	643691	50.051	47.745
Totals		21332759	1348197	100.000	100.000

Translation

Detector A (254nm)

Pk #	Retention Time	Area	Height	Area%	Height %
1	16.260	4596902	193124	44.193	49.981
2	17.346	5804946	193267	55.807	50.019
Totals		10401848	386391	100.000	100.000

峰#	保留时间	面积	高度	面积%	高度%
1	12.320	721532	43457	6.497	7.175
2	13.399	7700674	440792	69.344	72.778
3	16.135	88032	4021	0.793	0.664
4	17.162	2594835	117400	23.366	19.384
总计		11105073	605670	100.000	100.000

Translation

Detector A (254nm)

Pk #	Retention Time	Area	Height	Area%	Height %
1	12.320	721532	43457	6.497	7.175
2	13.399	7700674	440792	69.344	72.778
3	16.135	88032	4021	0.793	0.664
4	17.162	2594835	117400	23.366	19.384
Totals		11105073	605670	100.000	100.000

Copies of ¹H NMR and ¹³C NMR spectra of compounds 2

000.0----

978.6-

620'9 680'9 001'9 011'9

996 [.] 97	
896.9-1	
996'9-	
026'9-/	
926'9 ¹	
698.7-2	
E8E.77	

671 2 ESI 2 991 2 621 2 ESI 2 ES

000.0---

607'2 157'2 857'2 087'2

545.7 609.7

227.374

280.7— 882.7— 284.7<u>—</u>

---72.246 ---72.246

-5.109

L-112.288
622 211-7
F-115.273
-112.264
115.258
-115'S24
-112.248
-112.239

768°92----

-2.214 -2.387

682°92----

7.30

7.34

7.38

000.0—

295.7 27.552 7.552 7.552 255.7-

ESE.7-

178.7~ 178.7~

247.78----

979.87---

£62°29----

E82.87----

000.0—

-5.180 -5.386

-220 -210 -200 -190 -170 -180 -160 -140 -150 -130 -120 -110 -100 -90 -80 -70 -9--20 - 4 -30 -20 -10 - 0 - 10 20

976.37----

819.78----
000.0----

23390 ∑2.332 ∑2.390

-

002.97----

E09'29----

000.0---

192.87----

799'29----

000.0—

-2.204 -2.393

862°92----

#62'92---

E89'29----

000.0-

128.83----

-210

-200

-190

-180

-170

-160

-150

-140

-130

-120

-110

-100

-06-

-80

-10

-90

-50

-40

-30

-20

-10

- 0

10-

725.85----

-5.246 -5.383

-240 -220 -200 -180 -160 -140 -120 -100 -80 -9-- 9 -20 - 0 20 - 4 - 09 - 08 100 120 140 160 180

916.87---

967.62~ 061.92~

-5.157 -2.352

_

097'82-666'72-

021.5-

784.467

785.2-

016.8-

892'2' 722'2' 882'2' 962'2' 862'2'

698.7-

EZ3.7-

092.7-

896°.27 626°.27

^{269.8}>

0.0 F

414.414

265.87~

175.87----177.27----

0.0

0.5

1.0

15

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

1.5

8.0

8.5

916.87----

662.76----

000.0-

000.0---

069.6-

000.0---

108.37----

629`89-—

-1 - 1 -200 --180 -160 -140 -120 -100 - 89 -99--40 -20 - 0 - 9 - 20 - 8 - 64 50 - 09 - 2 - 08

860'62----669'62---- 000.0----

920°92----262°72----

2295 E 239. E 239. E 251. E

987.27------76.420

F -230 -210 -190 ⊢ -170 -150 -130 -110 - 60 -10--29 -30 -10 - 0 - 2 20 - 20 - 4 - 99 60 70 - 80

610.87 153.45

800.67----

--220 -200 -180 -160 -140 -120 -100 -80 -60 - 9 -20 - 0 - 9 20 - 92 40 50 - 09 - 2 80

027.18----

867.67----

000.0-

-5.151 -5.358

854.438

22.211 5.228

£87.£7---

COSY spectrum of 3pa1

NOE spectrum of 3pa1

COSY spectrum of 3pa2

NOE spectrum of 3pa2

Crystal Data

