Electronic Supplementary Information

Photocyclization of Photoswitches with High Enantioselectivity in Human Serum Albumin under an Artificial Environment

Koichi Kawamura, Ken Osawa, Yuta Watanobe, Yuri Saeki, Naoki Maruyama, Yasushi Yokoyama* Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama
National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
yokoyama-yasushi-wp@ynu.ac.jp

1. Experimental Procedures ESI-2
2. Effect of Acetonitrile on HSA examined by CD Spectra (Fig. SI-1) ESI-4
3. Effect of Amount of Acetonitrile on Ee Values of Closed Forms (Fig. SI-2) ESI-5
4. Effect of Acetonitrile on ${ }^{19}$ F NMR Spectra of $\mathbf{5 0}$ with HSA (Fig. SI-3) ESI-5
5. Transformation of $4 \mathbf{c}$ to $\mathbf{1 c}$ (Fig. SI-4) ESI-6
6. Transformation of 4c to 5c (Fig. SI-5) ESI-8
7. Competitive incorporation experiments of $\mathbf{4 0}$ and $\mathbf{5 0}$ in HSA (Fig. SI-6) ESI-10
8. Competitive incorporation experiments of $\mathbf{5 0}$ and warfarin in HSA (Fig. SI-7) ESI-109. Correlation diagram of enantiomers obtained in HSA and the derivatives obtained from theoptically resolved $(R, R)-\mathbf{4 c}$ESI-11
9. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS spectra of $\mathbf{3 o}$ESI-12

1. Experimental Procedures

Materials: HSA (Sigma, fatty-acid free, lot \# 068K7538v, molecular weight: 66,500), phosphate buffer powder (Wako, $1 / 15 \mathrm{~mol} / \mathrm{dm}^{3}$, ph 6.8 , composition: $\mathrm{Na}_{2} \mathrm{HPO}_{4} 4.7 \mathrm{~g}, \mathrm{KH}_{2} \mathrm{PO}_{4} 4.5 \mathrm{~g}, 1$ packet for 1L solution), acetonitrile (Wako, spectrosol, purity: 99.8\%) were used as received. Distilled water was purified by Milli Pore ($>18 \mathrm{M} \Omega \mathrm{cm}$, model: Simpli Lab), Merck) and was used for all aqueous sample solutions.

Measurement instruments: ${ }^{1} \mathrm{H}$ NMR Spectra were recorded in CDCl_{3} with Bruker DRX300 (300 $\mathrm{MHz})$ or DRX500 $(500 \mathrm{MHz})$ NMR spectrometers. The J values are expressed in Hz and chemical shifts in ppm . The coupling patterns are indicated as s , singlet; d , doublet; t , triplet; q : quartet, quint: quintet, m; multiplet. Infrared spectra (IR) were recorded on a JASCO FT/IR-4100 spectrometer. Mass spectra were measured by the electron impact ionization using a JEOL JMS-AX-600 mass spectrometer. Ultraviolet (UV) and visible (vis) spectra were recorded on a JASCO V-550 spectrophotometer. CD spectra were recorded on a JASCO J-725 spectrometer at $25^{\circ} \mathrm{C}$.

Diarylethenes: Diarylethenes 10[1], 20[2] and 40[3] were prepared according to the literature procedures. Diarylethene 30, a new compound, was also prepared by the methylation of $\mathbf{2 0}$ with trimethylsilyldiazomethane in toluene and methanol as shown below. Diarylethene 50[4], known in literature, was prepared by the methylation of $\mathbf{4 0}$ with trimethylsilyldiazomethane in toluene and methanol with the similar method to the preparation of $\mathbf{3 0}$.

3o: To a stirred solution of $\mathbf{2 0}(50.1 \mathrm{mg}, 0.144 \mathrm{mmol})$ in the mixture of methanol $(2 \mathrm{~mL})$ and toluene $(7 \mathrm{~mL})$ was added an ether solution of trimethylsilyldiazomethane ($2.0 \mathrm{~mol} \mathrm{dm}^{-3}, 0.2 \mathrm{~mL}, 0.4 \mathrm{mmol}$, 1.4 eq for each carboxy group) and the mixture was stirred for 1.5 h at r.t. The solvent was removed, and the residual (brown oil) was purified with silica gel column chromatography (15% ethyl acetate/hexane) to give $52.2 \mathrm{mg}(0.139 \mathrm{mmol})$ of $\mathbf{3 0}$ as a viscous oil in 96% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS as the internal standard): $\delta / \mathrm{ppm} 1.91(6 \mathrm{H}, \mathrm{s}), 2.07(2 \mathrm{H}$, quint, $\mathrm{J} / \mathrm{Hz}=7.5 \mathrm{~Hz}), 2.79(4 \mathrm{H}, \mathrm{t}, \mathrm{J} / \mathrm{Hz}=7.6), 3.84(6 \mathrm{H}, \mathrm{s}), 7.51(2 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS as the internal standard): $\delta / \mathrm{ppm} 14.79,22.83,38.64,52.02$, 129.23, 134.44, 134.76, 136.59, 142.76, 162.58.

IR (neat, $\mathrm{v} / \mathrm{cm}^{-1}$): 2951, 2843, 1706, 1246, 1080, 750.
LRMS (EI, 70 eV): 376 ($\mathrm{M}^{+}, 100$), 361 (13), 345 (14), 301 (20), 257 (8), 157 (15).

HRMS (ESI, positive) Found: 377.0899. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}_{2}: 377.0876(\mathrm{M}+\mathrm{H})^{+}$.
[1] Y. Yokoyama, N. Hosoda, Y. T. Osano, C. Sasaki, Chem. Lett., 1998, 27, 1093-1094.
[2] L. N. Lucas, J. J. D. de Jong, J. H. van Esch, R. M. Kellogg, B. L. Feringa, Eur. J. Org. Chem. 2003, 155-166.
[3] A. J. Myles, N. R. Branda, Macromolecules, 2003, 36, 298-303.
[4] S. Hiroto, K. Suzuki, H. Kamiya, H. Shinokubo, Chem. Commun., 2011, 47, 7149-7151.

Sample preparation for photochromic reaction: The buffer solution at pH 6.8 was prepared by adding 1 packet of phosphate buffer powder into $1 \mathrm{dm}^{3}$ of pure water. Stock solutions of diarylethenes $\left(4 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ were prepared by acetonitrile.

A solution of a diarylethene and HSA in acetonitrile-buffer was prepared as follows: weigh appropriate amount of HSA into a volumetric flask and then adding a few mLs of buffer solution. The solution was set aside until the HSA was completely dissolved. Then the appropriate amount of the diarylethene stock solution in acetonitrile was injected into the solution, the designated amount of acetonitrile was added, and the flask was filled to the mark with buffer solution.

The solutions thus prepared were kept at $25^{\circ} \mathrm{C}$ or at $-4^{\circ} \mathrm{C}$ to reach the equilibrium for 24 h .

Photoreaction and HPLC analysis: Photochemical reactions were all carried out in a $10-\mathrm{mm}$ path length quartz cell. Photoirradiation with 313-nm light was carried out using a $500-\mathrm{W}$ high-pressure mercury lamp, separated by filters (a 5-cm water filter, a UV-31 glass filter, a UVD-33S glass filter, a $5-\mathrm{cm}$ aqueous $\mathrm{NiSO}_{4} 6 \mathrm{H}_{2} \mathrm{O}$ solution, a $1-\mathrm{cm}$ aqueous $\mathrm{K}_{2} \mathrm{CrO}_{4}$ solution, and a $1-\mathrm{cm}$ aqueous potassium hydrogen phthalate solution). Photoirradiation with 506-nm light was carried out using a 500-W xenon lamp which was separated by filters (a $5-\mathrm{cm}$ water filter, a Y-47 glass filter, and a KL50 glass filter). During the photoreactions, the solutions in the cell were stirred continuously.

Diarylethenes in the irradiated solutions were separated from HSA by ether extraction and then used for HPLC analysis.

High-performance liquid chromatography HPLC on a Shimadzu LC-6AD system or a JASCO XLC system equipped with a UV/Vis detector and a column (Daicel OD-H, $4.6 \mathrm{~mm} \times 250 \mathrm{~cm}$ for 1c, $\mathbf{3 c}$ and $\mathbf{4 c}$, Daicel OD-3, $2.1 \mathrm{~mm} \times 150 \mathrm{~mm}$ for $\mathbf{5 c}$) was used to determine the enantiomer excess values of the compounds. Ee values were determined by peak area on the HPLC chromatogram
detected by the absorbance at 10: 510 or $555 \mathrm{~nm}, \mathbf{3 o}: 580 \mathrm{~nm}, \mathbf{4 o}: 587 \mathrm{~nm}$, and $\mathbf{5 0}: 585 \mathrm{~nm}$.
2. Effect of Acetonitrile on HSA examined by CD Spectra

Fig. ESI-1. CD spectral change of HSA in buffer solution with different amount of acetonitrile added.
HSA: $4.90 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$.
Solvent: Phosphate buffer solution (pH 6.8) with acetonitrile.
Cell length: 1 cm .
3. Effect of Amount of Acetonitrile on Ee Values of Closed Forms

Fig. ESI-2. Relationship between the ee values of closed forms and amount of acetonitrile in buffer solution.

Reaction conditions: In ref. 19 in the text except for the amount of acetonitrile.
4. Effect of Acetonitrile on ${ }^{19}$ F NMR Spectra of 50 with HSA

Fig. ESI-3. ${ }^{19}$ F NMR of $\mathbf{5 0}$.
Blue: In acetonitrile without HSA at r.t.
Green: In 10% acetonitrile-buffer with two eq HSA at r.t.
Red: In 10% acetonitrile-buffer with two eq HSA at $50^{\circ} \mathrm{C}$.
5. Transformation of $\mathbf{4 c}$ to $\mathbf{1 c}$

To a solution of optically resolved (R, R)-4c (faster moving enantiomer of $\mathbf{4 c}$ ($\mathbf{4 c} \mathbf{c}-\mathrm{f}$) on Daicel OD-H. $21.1 \mathrm{mg}, 0.046 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (3 ml) was added a THF solution of borandimethylsulfide complex (DMSB) ($2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF) ($0.23 \mathrm{ml}, 0.46 \mathrm{mmol}, 10.0 \mathrm{eq}$) at -78 ${ }^{\circ} \mathrm{C}$. The resulting solution was stirred for one hour at $-78{ }^{\circ} \mathrm{C}$, and the reaction was quenched by adding water. The resultant mixture was extracted with ether three times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the drying agent filtered off, and the solvent evaporated. The residue was purified by silica gel column chromatography using 40% ethyl acetate/hexane as the eluent, to give (R, R)-1c ($7.34 \mathrm{mg}, 0.017 \mathrm{mmol}$) in 37 \% yield, which was spectroscopically identical with 1c photochemically generated from 10. On Daicel OD-H it is identical with the faster moving enantiomer of $\mathbf{1 c}$ (1c-f), which is known to be $(R, R)-\mathbf{1 c}$, the minor enantiomer generated in HSA from $\mathbf{1 0}$ by 313 nm light irradiation.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta / \mathrm{ppm} 1.97(2 \mathrm{H}, \mathrm{s}), 2.07$ (6H, s), $4.54(4 \mathrm{H}, \mathrm{s}), 6.26(2 \mathrm{H}, \mathrm{s})$.

(a) HPLC: X-LC (Double pump device)

Column: Daicel OD-H
Eluent: 3\% 2-propanol/hexane $+0.5 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 587 nm

(b) HPLC: X-LC (Double pump device) Column: Daicel OD-H
Eluent: 3\% 2-propanol/hexane $+0.5 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 587 nm

(c) HPLC: X-LC (Single pump device)

Column: Daicel OD-H
Eluent: 3\% 2-propanol/hexane $+0.5 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 587 nm
(e) HPLC: X-LC

Column: Daicel OD-H
Eluent: 10\% 2-propanol/hexane
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 510 nm

(f) HPLC: LC-6AD

Column: Daicel OD-H
Eluent: 10\% 2-propanol/hexane
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 555 nm

Fig. ESI-4. Synthesis of $(R, R)-\mathbf{1 c}$ from optically resolved $\mathbf{4 c}-\mathbf{f}((R, R)-\mathbf{4 c})$.
6. Transformation of $\mathbf{4 c}$ to $\mathbf{5 c}$

To a solution of optically resolved (R, R)-4c (faster moving enantiomer of $\mathbf{4 c}(\mathbf{4 c} \mathbf{c} \mathbf{f})$ on Daicel OD-H. $20.6 \mathrm{mg}, 0.045 \mathrm{mmol}, 1.0 \mathrm{eq}$) in toluene (3.5 ml) and methanol (1.0 ml) was added an ether solution of trimethylsilyldiazomethane $\left(\mathrm{TMSCHN}_{2}\right)\left(2.0 \mathrm{~mol} \mathrm{dm}^{-3}\right)(0.1 \mathrm{ml}, 0.22$ $\mathrm{mmol}, 5.0 \mathrm{eq})$. The resulting solution was stirred for overnight at room temperature. The reaction was quenched by adding water. The resultant mixture was extracted with ether three times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the drying agent filtered off, and the solvent evaporated. The residue was purified by silica gel column chromatography using 10% ethyl acetate/hexane as the eluent to give $\mathbf{5 c}(8.6 \mathrm{mg}, 0.018$ mmol) in 40 \% yield, which was spectroscopically identical with 5 c photochemically generated from 50.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta / \mathrm{ppm} 2.21$ ($6 \mathrm{H}, \mathrm{s}$), $3.88(6 \mathrm{H}, \mathrm{s}), 6.93(2 \mathrm{H}, \mathrm{s})$.

(a) HPLC: X-LC

Column: Daicel OD-3
Eluent: 0.5\% 2-propanol/hexane
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 585 nm

$0 \quad$ Retention time $/ \stackrel{10}{\mathrm{~min}}$ 15
(b) HPLC: X-LC

Column: Daicel OD-3
Eluent: 0.5\% 2-propanol/hexane
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 585 nm

(c) HPLC: X-LC

Column: Daicel OD-3
Eluent: 0.5\% 2-propanol/hexane
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 585 nm
Fig. ESI-5. Synthesis of $(R, R)-5 \mathbf{c}$ from optically resolved 4c-f $((R, R)-\mathbf{4 c})$.

7. Competitive Incorporation Experiments of $\mathbf{4 0}$ and 50 in HSA

Fig. ESI-6. HPLC chromatograms of enantioselectivity of competition experiments of $\mathbf{4 0}$ and $\mathbf{5 0}$ in HSA (1:1:1) in 15% acetonitrile - buffer solution.
(a) 4c. Column: Daicel OD-H. Eluent: 3\% 2-propanol/hexane $+0.5 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$. Detection wavelength: 587 nm .
(b) 5c. Column: Daicel OD-3. Eluent: 1\% 2-propanol/hexane. Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$. Detection wavelength: 585 nm .

8. Competitive Incorporation Experiments of 50 and Warfarin in HSA

Fig. ESI-7. HPLC chromatograms of enantioselectivity of competition experiments of $\mathbf{5 0}$ and warfarin in HSA in 15% acetonitrile - buffer solution.
Column: Daicel OD-3. Eluent: 0.5\% 2-propanol/hexane. Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$. Detection wavelength: 585 nm .
(a) $\mathbf{5 c}$ from 50:warfarin: $\mathrm{HSA}=1: 1: 1$. (b) $\mathbf{5} \mathbf{c}$ from $\mathbf{5 0}$:warfarin: $\mathrm{HSA}=1: 10: 10$.
9. Correlation diagram of enantiomers obtained in HSA and the derivatives obtained from the optically resolved (R, R) - 4c

10. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS spectra of 30 ${ }^{1} \mathrm{H}$ NMR
${ }^{1} \mathrm{H}$ NMR (500 MHz, CHLOROFORM- d) $\delta \mathrm{ppm} 1.91(6 \mathrm{H}, \mathrm{s}), 2.07(2 \mathrm{H}, \mathrm{m}), 2.79(4 \mathrm{H}, \mathrm{t}, J=7.57 \mathrm{~Hz}), 3.84(6 \mathrm{H}, \mathrm{s}), 7.51(2 \mathrm{H}, \mathrm{s})$

16.

$\forall 8^{\circ} \varepsilon$

HRMS (ESI, positive) Found: 377.0899. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}_{2}: 377.0876(\mathrm{M}+\mathrm{H})^{+}$.

