Electronic Supplementary Information for:

Second Sphere Ligand Modifications Enable a Recyclable Catalyst for Oxidant-Free Alcohol Oxidation to Carboxylates

Eric W. Dahl, Thomas Louis-Goff, Nathaniel K. Szymczak*

Table of Contents

General Considerations	S2
Experimental Details	S2-S3
Figure S1: ¹ H NMR spectrum of Ru(H ₂ Tpy ^{NMes})(PPh ₃)Cl ₂ (1)	S3
Figure S2: ¹ H NMR spectrum of [Ru(H ₂ Tpy ^{NMes})(PPh ₃) ₂ H]PF ₆ (1-H)	S4
Details of H–H distance calculation	S5
Figure S3: ¹ H NMR spectra of H/D exchange in $1-H$ and H ₂ Tpy ^{NMes}	S6
Details of transfer hydrogenation reactions	S7
General procedure for dehydrogenative oxidation reactions	S8
¹ H NMR spectra for isolated compounds	S8-S10
General procedure for dehydrogenative oxidation recyclability study	S10
Figure S4: GC standard curves	S11
Figure S5: Representative GC chromatogram of conversion of reaction	S11
Table S1: GC data for catalyst recycling experiment	S12
General procedure for dehydrogenative oxidation reaction screening	S12
Table S2: GC data from reaction screening	S13
Table S3: Functional group robustness screen	S13
Crystallographic details	S14
Figure S6: X-ray crystal structure of $Ru(H_2Tpy^{NMes})(PPh_3)Cl_2(1)$	S14
Figure S7: X-ray crystal structure of [Ru(H ₂ Tpy ^{NMes})(PPh ₃) ₂ H]PF ₆ (1-H)	S15
References	S15

Experimental Details

General Considerations: All commercially-available reagents were used as received without further purification. All liquid alcohol substrates were distilled from CaH₂ and stored over 3Å molecular sieves prior to use. 6,6"-bis(2,4,6-

trimethylphenylamino)terpyridine (H₂Tpy^{NMes})¹, complex **2**² and complex **3**³, Ru(PPh₃)₃Cl₂⁴ were prepared as previously described. KOH, NaOH, and LiOH were dried under vacuum at 150°C overnight and powered using a mortar and pestle or automated grinder before use. All manipulations were carried out under an atmosphere of nitrogen in an Innovative Technologies Pure LabHE GP-1 glovebox or using Schlenk techniques, unless otherwise specified. Degassed, anhydrous solvents were obtained by a SG Water USA solvent purification system or by drying overnight with CaH₂ followed by distillation. NMR spectra were collected on a Varian MR400, Varian vnmrs 500 or Varian vnmrs 700 and were referenced to residual solvent peaks. ³¹P NMR spectra were referenced to their respective ¹H spectrum. IR spectra were collected on a Nicolet is10 spectrometer using a diamond attenuated total reflectance (ATR) accessory. Elemental analyses were performed by Atlantic Microlabs, Inc., Norcross, Ga.

General Procedure for GC-FID Analysis: Gas chromatography was performed on a Shimadzu GC-2014 equipped with an FID detector and a Shimadzu SH-Rxi-5ms (15 m, 0.25 mm ID, 0.25 μ m df) column. H₂ gas was used as the carrier gas. All GC experiments were collected using the following method: 80°C hold for first 2 min, ramp to 300°C at 30°C/min and hold for 2 min. The injector temperature was set to 260°C and the detector was set to 300°C. GC calibration curves were obtained by plotting the response ratios of the areas of A_{sample}/A_{standard} against the known concentrations.

Synthesis of Ru(H₂Tpy^{NMes})(PPh₃)Cl₂(1): To a 100 mL Schlenk flask, 1.0996 g (1.147 mmol) Ru(PPh₃)₃Cl₂ and 0.6012 g (1.204 mmol) H₂Tpy^{NMes} was added. The flask was then subjected to multiple vacuum/refill cycles with N₂. 60 mL of bench top toluene (not dry) was then sparged for 6 minutes with N₂ and added to the flask. A reflux condenser was affixed to the flask and the reaction was heated to reflux for 20 hours. Upon cooling to room temperature a purple precipitate formed in the flask. 50 mL of N₂-sparged hexane was added to the flask and the flask was placed in a -25 °C freezer for 16 h. The product was collected on a glass frit in the air, washed with pentane (3 x 10 mL), and dried *in vacuo*. The product was further purified in an N₂-filled glovebox by dissolution in minimal CH₂Cl₂ followed by precipitation with diethyl ether. The product was isolated by filtration on a glass frit, washed with diethyl ether (2 x 10 mL) and dried in vacuo for 16 h to yield 820.8 mg (77% yield) of a purple powder. Purple crystals suitable for X-ray diffraction were grown from a concentrated benzene solution at room temperature. ¹H NMR (700 MHz, CDCl₃) δ 10.56 (s, 2H), 7.44 (d, *J* = 7.9 Hz, 2H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.20 (dd, *J* = 7.4, 8.5 Hz, 2H), 7.17 (m, 9H), 7.00 (m, 6H), 6.96 (d, J = 7.4 Hz, 2H), 6.88 (s, 2H), 6.84 (s, 2H), 5.98 (d, I = 8.5 Hz, 2H), 2.29 (s, 6H), 2.26 (s, 6H), 1.96 (s, 6H). ³¹P NMR (283 MHz, CDCl₃) δ 44.2 (s, PPh₃). IR (powder, cm⁻¹): 1614, 1567, 1515, 1467, 1421, 1253, 778. HRMS (ESI-TOF) m/z: [**1** – Cl]⁺ Calcd for C₅₁H₄₈ClN₅PRu: 898.2379; Found: 898.2383.

Synthesis of [Ru(H₂Tpy^{NMes})(PPh₃)₂H]PF₆ (1-H): In the air, a 100 mL Schlenk flask was charged with 500.0 mg (0.5354 mmol) **1**, 280.8 mg (1.071 mmol) triphenylphosphine, and 174.6 mg (1.071 mmol) ammonium hexafluorophosphate. The flask was then subjected to multiple vacuum/refill cycles with N₂. 75 mL of N₂-sparged benchtop (not dry) methanol was added to the flask and the solution was allowed to stir at room temperature for 20 hours. The orange product, [Ru(H₂Tpy^{NMes})(PPh₃)₂Cl]PF₆, was then converted in one-pot to 1-H by addition of 202.5 mg (5.354 mmol) sodium borohydride to the reaction flask, causing gas evolution from the dark red reaction solution. After stirring at room temperature for an additional 24 hours the methanol was removed by rotary evaporation to afford a red powder. The solid was brought into a nitrogen-filled glovebox, washed with pentane (3 x 10 mL), dissolved in \sim 50 mL CH₂Cl₂ and filtered over Celite. The CH₂Cl₂ was concentrated to ~ 10 mL and ~ 50 mL diethyl ether was used to precipitate the product as a red solid. The precipitate was filtered, washed with diethyl ether (2 x 10 mL), and dried *in vacuo* overnight affording 456 mg (67 % yield) of **1-H**. Red crystals suitable for X-ray diffraction were grown from toluene. ¹H NMR (700 MHz, CD_2Cl_2) δ 8.99 (s, 2H), 7.71 (t, *J* = 8.0 Hz 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.28 (dd, J = 7.4, 8.3 Hz, 2H), 7.20 (m, 12H), 7.05 (d, J = 7.4 Hz, 2H), 6.95 (m, 16H), 6.73 (s, 4H), 5.68 (d, / = 8.3 Hz, 2H), 2.23 (s, 6H), 1.28 (s, 12H), -6.76 (t, J_{HP} = 21.2 Hz, 1H). ³¹P NMR (283 MHz, CDCl₃) δ 41.5 (s, PPh₃), -144.5 (quint, PF₆). IR (powder, cm⁻¹): 1819 (Ru-H), 1605, 1564, 1497, 1479, 1432, 1418, 1247, 833 (PF₆). HRMS (ESI-TOF) m/z: [**1-H**]⁺ Anal. calcd for C₆₉H₆₄F₆N₅P₃Ru: 1126.3680 Found: 1126.3691.

NMR Data:

Figure S2: (Top) 700 MHz ¹H NMR spectrum of **1-H** collected at 25°C in CD₂Cl₂. (Bottom) Overlay of the ¹H NMR spectrum collected at 25°C and -80°C in THF-d₈. We ascribe the broadening of the PPh₃ resonances in the 25°C spectrum to H-H coupling between multiple rotating aryl CH protons with the Ru-H. The ortho-CH protons of the PPh₃ ligand are in close contact with the Ru-H (see crystal structure), and these are resolved in the -80°C spectrum at 9.83 ppm consistent with similar systems.⁵

Details of H-H distance calculation:

The average intramolecular H–H distance between the Ru-hydride and the pendent ligand mesitylamino group in solution was determined by evaluating through-space dipole–dipole induced nuclear spin relaxation contributions.⁶ For a detailed example of this analysis from our lab see the supporting information in reference 7. The $T_1(\min)$ for **1-H** was estimated by obtaining a T_1 value at variable temperatures (-80°C to 55°C in THF). Although the boiling point of THF limited the maximum temperature that could be reached (and the complete temperature/ T_1 profile), we used the temperature T_1 of 10 °C, with a value of 0.1617. The $T_1(\min)$ value was then used for the interatomic distance calculation based on the relationship between dipole-dipole relaxation and interatomic distance. Using the crystal structure, the net contribution to the $T_1(\min)$ from *all* the atoms, except the pendent mesitylamine protons, was calculated based on distance to the hydride. The remaining relaxation time contribution was used to calculate the interatomic hydride-NH distance.

$1/T_1(min)$
1.1206
0.00003887
0.01005
0.05882
0.03639

Observed $T_1(\min) = 0.1617$ sec Corrected $T_1(\min) = 0.2064$ sec **Calculated H–H distance = 1.782** Å

Details of H/D exchange experiment:

 D_2O was added to NMR samples of **1-H** and H_2Tpy^{NMes} in THF and the progress of H/D exchange was monitored by ¹H NMR spectroscopy against a trimethyl(phenyl)silane internal standard.

Figure S3: H/D exchange ¹H NMR spectra of **1-H** (top) and H_2Tpy^{NMes} (bottom) collected at 25°C in THF before and after adding D_2O at the specified times.

Details of transfer hydrogenation reactions:

Transfer hydrogenation reactions were carried out in NMR tubes using 0.05 mmol acetophenone, 0.0005 mmol KO^tBu, 0.000025 mmol [Ru], and 0.5 mL *i*PrOH. 1.25 mM stock solutions of **1-3** with KO^tBu were prepared and stirred for 10 min to dissolve the catalysts of which 20 μ L was added to the respective NMR tube. 5 μ L of trimethyl(phenyl)silane (PhTMS) was added to each tube as an internal standard. For each sample, the ¹H NMR spectrum was obtained prior to being placed in pre-heated oil bath for the allotted time. Reaction yield was determined by the consumption of the acetophenone resonance against the PhTMS peak. 25 μ L degassed H₂O (5% w/v) was added to tubes for water stability tests.

Entry	Catalyst	Temp. (°C)	Time	% Yield	Turnover
					Number
1	1	40	24	95%	1900
2	2	40	24	0%	0
3	3	40	24	17%	340
4	1	80	12	69%	1380
5	2	80	12	34%	680
6 ^a	1	80	12	56%	1120
7 ^a	2	80	12	2%	40

 a 25 μL H_2O added.

General procedure for dehydrogenative oxidation reactions:

In a nitrogen-filled glovebox, a 20 mL glass scintillation vial was charged with KOH (84.1 mg, 1.5 mmol), primary alcohol substrate (0.5 mmol), and a Teflon stir bar. A 2 mL aliquot of a 0.5 mM solution of **1** in toluene was then added to the vial (0.001 mmol, 0.2 mol% **1**). The vial was then sealed with a Teflon-lined cap and placed on a pre-heated aluminum block at 120°C for 18 h while stirring at 1000 rpm. After cooling to room temperature, the vial was removed from the glovebox and H_2O (5 mL) was added to the reaction solution. *Note: the vial may be under positive pressure due to hydrogen gas evolved during acceptorless dehydrogenation.* The organic layer was extracted with ethyl acetate (3 x 5 mL) and discarded. 0.4 mL of a 6 M HCl solution was added to the aqueous layer and the product was extracted with ethyl acetate (3 x 5 mL). The organic fractions were combined, dried over Na₂SO₄, and filtered through a pipette fitted with glass filter paper. The ethyl acetate was removed by rotary evaporation to yield the product carboxylic acid.

Benzoic acid: ¹H NMR (700 MHz, DMSO-*d*₆) δ 12.94 (s, 1H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.50 (dd, *J* = 7.3, 8.4 Hz, 2H).

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

4-chloro benzoic acid: ¹H NMR (700 MHz, DMSO-*d*₆) δ 13.15 (s, 1H), 7.94 (d, *J* = 8.6 Hz, 2H), 7.57 (d, *J* = 8.6 Hz, 2H).

3.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

4-methoxy benzoic acid: ¹H NMR (700 MHz, DMSO-*d*₆) δ 12.60 (s, 1H), 7.89 (d, *J* = 9.0 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 3.82 (s, 3H).

Octanoic acid: ¹H NMR (400 MHz, CDCl₃) δ 11.31 (s, 1H), 2.34 (t, *J* = 7.5 Hz, 2H), 1.63 (quint, *J* = 7.5 Hz, 2H), 1.29 (m, 8H), 0.88 (t, *J* = 7.0 Hz, 3H).

3-phenylpropionic acid: ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 7.30 (dd, *J* = 6.8, 7.2 Hz 2H), 7.23 (t, *J* = 6.8 Hz, 1H), 7.22 (d, *J* = 7.2 Hz, 2H), 2.97 (t, *J* = 7.8 Hz, 2H), 2.69 (t, *J* = 7.8 Hz, 2H).

General procedure for dehydrogenative oxidation recyclability study:

In a nitrogen-filled glovebox, an 8 mL glass vial was charged with KOH (42.1 mg, 0.75 mmol), benzyl alcohol (25.9 µL, 0.25 mmol), and a Teflon stir bar. A 1 mL sample of a 0.25 mM solution of **1**, **2**, or **3** in toluene was then added to the vial (0.00025 mmol, 0.1 mol%) **1**). The vial was then sealed with a Teflon-lined cap and placed on a pre-heated aluminum block at 120°C for 18 h while stirring at 1000 rpm. After cooling to room temperature, the reaction solution was filtered through a pipette filter into a new 8 mL vial containing fresh KOH (42.1 mg, 0.75 mmol), benzyl alcohol (25.9 µL, 0.25 mmol), and a Teflon stir bar. The vial was sealed and placed on a pre-heated aluminum block at 120°C for 18 h. This process was then repeated a second time. Samples from the first two cycles were quenched by passage of, through the respective filter pipette, into the reaction vial. Samples from the final cycle did not require filtration, therefore, 1 mL H₂O was added directly to the reaction vial after cooling. 0.2 mL of a 6 M HCl solution was added to each vial followed by 1 mL of a 0.1 M hexamethylbenzene solution in ethyl acetate (measured by Hamilton syringe). The vials were then sealed and vortexed for 5 seconds. Samples for GC analysis were prepared from a \sim 30 µL aliquot of the organic layer added to \sim 1 mL ethyl acetate in a GC vial. Yields for benzoic acid were calculated based on the hexamethylbenzene internal standard.

Figure S4: Plot of calibration curves for benzyl alcohol and benzoic acid against a hexamethylbenzene internal standard.

Figure S5: Representative GC chromatogram of conversion of benzyl alcohol to benzoic acid. Peaks: a) Ethyl acetate; b) toluene; c) benzyl alcohol; d) benzoic acid; e) hexamethylbenzene.

			% Yield			
Cycle	Catalyst	Trial	Benzoic Acid	Avg % Yield	Total TON	
	1	1	83%	Q 4 04	840	
		2	85%	04%0		
1	2	1	82%	020/	020	
1	Z	2	82%	82%	820	
	2	1	52%	F.00/	500	
	3	2	48%	50%	500	
1	1	1	86%	010/	1650	
	I	2	77%	81%	1650	
2 2	2	1	23%	210/	1030	
	Z	2	18%	21%		
3		1	18%	200/	700	
		2	22%	20%	/00	
3 2	1	1	94%	050/	2500	
	1	2	76%	85%		
	2	1	10%	00/	1120	
		2	7%	9%		
	0	1	11%	1.00/	700	
3		2	8%	10%	/90	

Table S1: GC data from catalyst recycling experiment

General procedure for dehydrogenative oxidation reaction screening:

In a nitrogen-filled glovebox, an 8 mL glass vial was charged with KOH (42.1 mg, 0.75 mmol), benzyl alcohol (25.9 μ L, 0.25 mmol), any additional additive (0.25 mmol) and a Teflon stir bar. A 1 mL sample of a 0.5 mM solution of **1** in toluene was then added to the vial (0.0005 mmol, 0.2 mol% **1**). The vial was then sealed with a teflon-lined cap and placed on a pre-heated aluminum block at 120°C for 18 h while stirring at 1000 rpm. After cooling to room temperature, the vial was removed from the glovebox and H₂O (1 mL) was added to the reaction solution. *Note: the vial may be under positive pressure due to hydrogen gas evolved during acceptorless dehydrogenation*. 0.2 mL of a 6 M HCl solution was added to the vial followed by 1 mL of a 0.1 M hexamethylbenzene solution in ethyl acetate (measured by Hamilton syringe). The vial was then sealed and vortexed for 5 seconds. Samples for GC analysis were prepared from a ~30 μ L aliquot of the organic layer added to ~1 mL ethyl acetate in a GC vial. Yields for benzoic acid were calculated based on the hexamethylbenzene internal standard.

						% Yield	
Entry	Catalyst	Cat. Loading	Time	Base	Additive	Benzoic Acid	TON
1	1	0.2 mol%	18 h	КОН	None	83%	445
				КОН			
2	1	0.2 mol%	18 h	(anhydrous)	None	28%	140
					1 equiv		
3	1	0.2 mol%	18 h	КОН	H20	16%	80
4	1	0.2 mol%	18 h	NaOH	None	7%	35
5	1	0.2 mol%	18 h	LiOH	None	3%	15

Table S2: GC data from reaction screening

Table S3: Functional group robustness screen

Additive	Additive Remaining	Yield of Benzoic Acid	Starting Material Remaining
3,5-lutidine	85%	51%	22%
Octylamine	0%	34%	34%
2,3-benzofuran	80%	31%	35%
n-butylthiophene	82%	62%	19%
N-benzylpyrrole	83%	57%	0%
Acetanilide	0%	0%	57%
2-chloroquinoline	5%	0%	3%
1-dodecene	46%	62%	12%
1-decyne	0%	3%	77%
4-octyne	55%	36%	11%

Crystallographic Details:

Crystals were mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer with a low temperature apparatus and Micromax-007HF Cu-target micro-focus rotating anode ($\lambda = 1.54187$ A) operated at 1.2 kW power (40 kV, 30 mA). Samples were measured at 85(2)K. The data were processed with CrystalClear 2.0⁸ and corrected for absorption. Structures were solved in Olex2⁹ using the XL refinement program¹⁰.

Figure S6: ORTEP X-ray crystal structure of **1**. (Ellipsoids at 30% probability. Some mesityl carbon atoms displayed in wireframe for clarity.)

Figure S7: ORTEP X-ray crystal structure of **1-H**. (Ellipsoids at 30% probability. Some mesityl carbon atoms displayed in wireframe for clarity.)

References:

- 1) E. W. Dahl, N. K. Szymczak, Angew. Chem. Int. Ed. 2016, 55, 3101-3015.
- 2) C. M. Moore, B. B. Bark, N. K. Szymczak, ACS Catal. 2016, 6, 1981–1990.
- 3) B. P. Sullivan, J. M. Calvert, T. J. Meyer, *Inorg. Chem.* **1980**, 19, 1404.
- 4) P. S. Hallman, T. A. Stephenson, G. Wilkinson, Inorg. Syn. 1970, 12, 237.
- 5) R. Custelcean and J. E. Jackson, Chem. Rev., 2001, 101, 1963-1980.
- 6) P. J. Desrosiers, L. Cai, Z. Lin, R. Richards, J. Halpern, *J. Am. Chem. Soc.* **1991**, *113*, 4173-4184.
- 7) J. B. Geri, N. K. Szymczak, J. Am. Chem. Soc. 2015, 137, 12808-12814
- 8) CrystalClear Expert 2.0 r12, Rigaku Americas and Rigaku Corporation (2011), Rigaku Americas, 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan.
- 9) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. *J. Appl. Cryst.* **2009**, 42, 339-341.
- 10) G. M Sheldrick, Acta Cryst. A64, 2008, 112-122.