Supporting Information

I_2 -Promoted formal [3+2] cycloaddition of α -methylenyl isocyanides

with methyl ketones: a route to 2,5-disubstituted oxazoles

Xia Wu, Xiao Geng, Peng Zhao, Jingjing Zhang, Yan-dong Wu,* and An-xin Wu*

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China

page

E-mail: chwuyd@mail.ccnu.edu.cn, chwuax@mail.ccnu.edu.cn.

Table of Contents

1.	General	S2
2.	General procedure for the synthesis of 3	S2
3.	Optimization of the Reaction Conditions	S2
4.	Mass spectrum of 3aa' and ¹ H NMR of 3aa- d_1	S2-S4
5.	¹³ C NMR spectroscopy monitored	S4-S5
6.	Control Experiments	S5-S6
7.	Characterization data for compounds 3	S6-S12
8.	Crystallographic data and molecular structure of 3ga	S12-S13
9.	References	S13
10.	¹ H and ¹³ C NMR spectra of compounds 3	S12-S36

1. General

All substrates and reagents were commercially available and used without further purification. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200–300 mesh). IR spectra were recorded on a Perkin-Elmer PE-983 infrared spectrometer as KBr pellets with absorption in cm⁻¹. ¹H spectra were recorded in CDCl₃ on 300/600 MHz NMR spectrometers and resonances (δ) are given in parts per million relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃ on 75/100/150 MHz NMR spectrometers and resonances (δ) are given in ppm. HRMS were obtained on a Bruker 7-tesla FT-ICR MS equipped with an electrospray source. The X-ray crystal-structure determinations of **3ga** were obtained on a Bruker SMART APEX CCD system. Melting points were determined using XT-4 apparatus and not corrected.

2. General procedure for the synthesis of 3 (3aa as an example)

To a solution of acetophenone 1a (1.0 mmol) and iodine (1.6 mmol) in DMSO (3 mL) was added ethyl 2-isocyanoacetate 2a (2.0 mmol). Then the mixture was stirred at

130 °C till almost completed conversion of the substrates by TLC analysis. the mixture

was quenched with water (50 mL), extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the product 3aa.

0 Ph + CN 1a	0 OR ₂ <u>I₂, solvent</u> 130 °C 2a	Ph O O N OR ₂ 3aa
Entry	Solvent	yield $(\%)^b$
1	DMF	0
2	toluene	0
3 ^c	DMSO	0

3. Optimization of the Reaction Conditions^a

^{*a*}Reaction conditions: **1a** (1.0 mmol), **2a** and I₂ were heated in 3 mL of DMSO. ^{*b*}Isolated yield. ${}^{c}Ag_{2}O$ was used instead of I₂.

A brief screening of the reaction media proved that DMSO was the best choice with respect to yields. Moreover, molecular iodine was the best medium.

4. Mass spectrum of 3aa' and ¹H NMR of 3aa- d_1

The molecular weight of **3aa'** detected by MS. MS (EI): m/z 219.19 (M-1, 3.71%), 218.00 (M, 100%), 219.06 (M+1, 12.03%). This result indicated that methyl ketones provided two carbons of the oxazoles ring.

5. ¹³C NMR spectroscopy monitored

3aa-da

Figure 1. Progress of the reaction of **1a** (0.1 mmol), **2a** (0.2 mmol) with I₂ (0.16 mmol) at 130 °C by 13 C NMR (150 MHz, DMSO-*d*₆, 298 ± 0.5 K)

The reaction of $1a^{-13}C$ (0.1 mmol) with 2a (0.2 mmol) in the presence of I₂ (0.16 mmol) in DMSO- d_6 was monitored by ¹³C NMR spectroscopy to develop a deeper understanding of the reaction mechanism (Figure 1).¹ The results of this study also revealed that phenacyl iodine (1aa') and phenylglyoxal (1ac') were important intermediates in the overall transformation. Moreover, this experimental result also indicated that methyl ketones provided two carbons of the oxazoles ring.

6. Control Experiments

To gain insight into the mechanism of the reaction, the following experiments were performed. Ethyl 2-aminoacetate hydrochloride **2ab** reacted with aryl methyl ketone **1a** to afford the product **3aa** in lower yield. Then, in order to improve the yield, the substrate **2ab** was reacted with K_2CO_3 in order to remove the hydrochloric acid and subsequently react with acetophenone **1a** could provide desired product **3aa** in 25% yield. These results clearly confirm the intermediacy of ethyl 2-aminoacetate **2aa** in the transformation. Moreover, 2-oxo-2-phenylacetic acid **1ad** was reacted with **2a** under the standard conditions, but target product **3aa** was not obtained. This result indicates that **1ad** is not the intermediate to construct 2,5-disubstituted oxazoles in this transformation.

7. Characterization data for compounds 3

ethyl 5-phenyloxazole-2-carboxylate (3aa):

Yield 75%; 162.9 mg; yellow solid; mp 52–55°C; IR (KBr): 1276, 1447, 1382, 1181,

1126, 764, 690 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.76 (d, J = 7.2 Hz, 2H), 7.52 (s, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.41 (t, J = 7.2 Hz, 1H), 4.54-7.46 (m, 2H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 155.6, 154.2, 151.5, 129.7, 129.0, 126.6, 125.0, 123.8, 62.5, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₂H₁₁NNaO₃: 240.0631; found: 240.0635.

ethyl 5-(p-tolyl)oxazole-2-carboxylate (3ba):

Yield 74%; 171.25 mg; light yellow solid; mp 90–93 °C; IR (KBr): 1737, 1526, 1490,

1381, 1175, 1129, 819 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 7.8 Hz, 2H), 7.47 (s, 1H), 7.26 (d, J = 8.4 Hz, 2H), 4.55-4.46 (m, 2H), 2.40 (s, 3H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.7, 154.5, 151.3, 140.1, 129.7, 125.0, 123.9, 123.2, 62.5, 21.4, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₃H₁₃NNaO₃: 254.0788; found: 254.0785.

ethyl 5-(4-methoxyphenyl)oxazole-2-carboxylate (3ca):

Yield 79%; 195.3 mg; light yellow solid; mp 70–73 °C; IR (KBr): 1729, 1612, 1488,

1264, 1179, 1152, 1122, 1020 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.70 (d, J = 8.4 Hz, 2H), 7.41 (s, 1H), 6.98 (d, J = 9.0 Hz, 2H), 4.53-4.44 (m, 2H), 3.86 (s, 3H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.8, 155.8, 154.5,

151.0, 126.7, 122.4, 119.4, 114.5, 62.5, 55.4, 14.2; HRMS (ESI): m/z $[M+Na]^+$ calcd for C₁₃H₁₃NNaO₄: 270.0737; found: 270.0740.

ethyl 5-(3-methoxyphenyl)oxazole-2-carboxylate (3da):

Yield 80%; 197.8 mg; light yellow solid; mp 60-63 °C; IR (KBr): 1731, 1638, 1620,

1231, 1182, 1125, 623 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.52 (s, 1H), 7.39-7.31 (m, 2H), 7.27 (s, 1H), 6.95 (d, J = 7.2 Hz, 1H), 4.56-4.43 (m, 2H), 3.87 (s, 3H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.0, 155.6, 154.1, 151.5, 130.1, 127.8, 124.1, 117.5, 115.6, 110.2, 62.5, 55.4, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₃H₁₃NNaO₄: 270.0737; found: 270.0734.

ethyl 5-(2-methoxyphenyl)oxazole-2-carboxylate (3ea):

Yield 83%; 205.2 mg; yellow solid; mp 103–106 °C; IR (KBr): 1733, 1512, 1378, 1306,

1264, 1177, 1128, 757 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.93 (d, J = 7.8 Hz, 1H), 7.71 (s, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.56-4.44 (m, 2H), 3.98 (s, 3H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 156.2, 155.8, 150.9, 150.4, 130.5, 127.8, 126.8, 120.9, 115.8, 110.9, 62.4, 55.4, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₃H₁₃NNaO₄: 270.0737; found: 270.0742.

ethyl 5-(2,4-dimethoxyphenyl)oxazole-2-carboxylate (3fa):

Yield 81%; 224.6 mg; yellow solid; mp 65-67 °C; IR (KBr): 2293, 2852, 1729, 1613,

1463, 1269, 1216, 1178, 1021 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.85 (d, J = 8.4 Hz, 1H), 7.58 (s, 1H), 6.60 (d, J = 8.4 Hz, 1H), 6.54 (s, 1H), 4.51-4.44 (m, 2H), 3.96 (s, 4H), 3.86 (s, 4H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 162.2, 158.0, 156.2, 151.6, 150.2, 128.2, 126.3, 109.4, 105.5, 98.7, 62.6, 55.83, 55.78, 14.5; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₄H₁₅NNaO₅: 300.0842; found: 300.0841.

ethyl 5-(4-ethoxyphenyl)oxazole-2-carboxylate (3ga):

Yield 71%; 185.5 mg; light yellow solid; mp 100–103 °C; IR (KBr): 1730, 1616, 1492, 1246, 1182, 1154, 1124, 694 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.68 (d, J = 8.4 Hz, 2H), 7.40 (s, 1H), 6.96 (d, J = 8.4 Hz, 2H), 4.53-4.55 (m, 2H), 4.12-4.00 (m, 2H), 1.51-1.40 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.2, 155.7, 154.5, 151.0, 126.7, 122.4, 119.1, 114.9, 63.6, 62.4, 14.7, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₄H₁₅NNaO₄: 284.0893; found: 284.0899.

ethyl 5-(benzo[d][1,3]dioxol-5-yl)oxazole-2-carboxylate (3ha):

Yield 69%; 180.2 mg; light yellow solid; mp 127-130 °C; IR (KBr): 1719, 1473, 1446,

1331, 1234, 1177, 1041 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.38 (s, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.19 (s, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.03 (s, 2H), 4.53-4.45 (m, 2H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.6, 154.1, 151.0, 148.9, 148.2, 122.7, 120.6, 119.6, 108.8, 105.3, 101.5, 62.4, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₃H₁₁NNaO₅: 284.0529; found: 284.0532.

ethyl 5-(4-chlorophenyl)oxazole-2-carboxylate (3ia):

Yield 75%; 188.8 mg; light yellow solid; mp 99-102 °C; IR (KBr): 1726, 1477, 1411,

1184, 1127, 1090, 833 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.70 (d, J = 8.4 Hz, 2H), 7.52 (s, 1H), 7.44 (d, J = 8.4 Hz, 2H), 4.54-4.44 (m, 2H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.5, 153.2, 151.7, 135.7, 129.3, 126.3, 125.1, 124.1, 62.7, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₂H₁₀ClNNaO₃: 274.0241; found: 274.0247.

ethyl 5-(3-chlorophenyl)oxazole-2-carboxylate (3ja):

Yield 70%; 176.2 mg; light yellow solid; mp 122-125 °C; IR (KBr): 1723, 1646, 1620,

1187, 1151, 1130, 1118 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.76 (s, 1H), 7.68-7.62 (m, 1H), 7.55 (s, 1H), 7.43–7.37 (m, 2H), 4.57-4.44 (m, 2H), 1.47 (t, *J* = 7.2 Hz,

3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 155.6, 152.8, 152.0, 135.3, 130.4, 129.8, 128.3, 125.1, 124.7, 123.2, 62.8, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₂H₁₀ClNNaO₃: 274.0241; found: 274.0244.

ethyl 5-(4-bromophenyl)oxazole-2-carboxylate (3ka):

Yield 78%; 231.0 mg; light yellow solid; mp 101–104 °C; IR (KBr): 1724, 1475, 1408,

1279, 1182, 834 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.63 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.54 (s, 1H), 4.54-4.46 (m, 2H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.5, 153.2, 151.7, 132.2, 126.4, 125.5, 124.2, 124.0, 62.7, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₂H₁₀BrNNaO₃: 317.9736; found: 317.9742.

ethyl 5-(naphthalen-2-yl)oxazole-2-carboxylate (3la):

Yield 77%; 205.8 mg; light yellow solid; mp 76-78 °C; IR (KBr): 1724, 1333, 1178,

1127, 747 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.28 (s, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.87-7.82 (m, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.63 (s, 1H), 7.56-7.52 (m, 2H), 4.56-4.47 (m, 2H), 1.48 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.7, 154.4, 151.7, 133.6, 133.1, 128.9, 128.5, 127.8, 127.2, 127.0, 124.7, 124.2, 123.8, 122.1, 62.7, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₆H₁₃NNaO₃: 290.0788; found: 290.0791.

ethyl 5-(naphthalen-1-yl)oxazole-2-carboxylate (3ma):

Yield 81%; 216.5 mg; deep yellow solid; mp 60–63 °C; IR (KBr): 1729, 1261, 1179,

1107, 1021, 804 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.27 (d, J = 8.4 Hz, 1H), 7.97-7.89 (m, 2H), 7.84 (d, J = 7.2 Hz, 1H), 7.63 (s, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.58-7.51 (m, 2H), 4.56-4.49 (m, 2H), 1.48 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.7, 153.6, 152.0, 133.7, 130.7, 129.9, 128.8, 127.5, 127.4, 127.2, 126.4, 125.1, 124.4, 123.8, 62.6, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₆H₁₃NNaO₃: 290.0788; found: 290.0785.

ethyl 5-(thiophen-2-yl)oxazole-2-carboxylate (3na):

Yield 81%; 180.8 mg; yellow oil; IR (KBr): 1736, 1530, 1277, 1181, 1119 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.52-7.46 (m, 1H), 7.45-7.41 (m, 1H), 7.39 (s, 1H), 7.13-7.10 (m, 1H), 4.54-4.46 (m, 2H), 1.46 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.4, 150.8, 149.7, 128.1, 128.0, 127.5, 126.4, 123.2, 62.6, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₀H₉NNaO₃S: 246.0195; found: 246.0195.

ethyl 5-(thiophen-3-yl)oxazole-2-carboxylate (3oa):

Yield 75%; 167.4 mg; deep yellow solid; mp 70-73 °C; IR (KBr): 1722, 1531, 1337,

1179, 1125 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.77-7.73 (m, 1H), 7.45-7.41 (m, 1H), 7.40-7.36 (m, 2H), 4.55-4.46 (m, 3H), 1.46 (t, *J* = 7.2 Hz, 4H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.6, 150.9, 127.7, 127.3, 124.6, 123.4, 123.3, 62.6, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₀H₉NNaO₃S: 246.0195; found: 246.0192.

ethyl 5-(furan-2-yl)oxazole-2-carboxylate (3pa):

Yield 82%; 158.4 mg; yellow solid; mp 35–37 °C; IR (KBr): 1739, 1547, 1290, 1182,

1155, 1118, 1015 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.54 (s, 1H), 7.43 (s, 1H), 6.88 (d, J = 3.0 Hz, 1H), 6.57-6.52 (m, 1H), 4.54-4.46 (m, 2H), 1.46 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.5, 150.9, 146.4, 144.0, 142.3, 123.4, 111.9, 109.9, 62.7, 14.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₀H₉NNaO₄: 230.0424; found: 230.0427.

ethyl 5-(benzofuran-2-yl)oxazole-2-carboxylate (3qa):

Yield 62%; 159.5 mg; deep yellow solid; mp 69-72 °C; IR (KBr): 1734, 1441, 1314,

1187, 1128, 747 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.64 (d, J = 7.8 Hz, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.23 (s, 1H), 4.57-4.48 (m, 2H), 1.48 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.4,

155.1, 151.8, 146.2, 143.7, 127.8, 126.0, 125.5, 123.7, 121.8, 111.4, 105.9, 62.9, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₄H₁₁NNaO₄: 280.0580; found: 280.0583.

ethyl 5-isobutyloxazole-2-carboxylate (3ra):

Yield 75%; 147.9 mg; yellow oil; IR (KBr): 1739, 1524, 1383, 1179, 1154, 1123, 1044 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 6.98 (s, 1H), 4.51-4.43 (m, 2H), 2.62 (d, *J* = 7.2 Hz, 2H), 2.08-2.01 (m, 1H), 1.43 (t, *J* = 7.2 Hz, 3H), 0.97 (s, 3H), 0.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 156.2, 155.8, 151.6, 125.7, 62.4, 34.6, 27.5, 22.2, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₀H₁₅NNaO₃: 220.0944; found: 220.0945.

methyl 5-phenyloxazole-2-carboxylate (3ab):

Yield 80%; 162.6 mg; light yellow solid; mp 85-88 °C; IR (KBr): 1730, 1637, 1447,

1190, 1155, 1125, 1044, 774, 690 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.76 (d, J = 7.2 Hz, 2H), 7.53 (s, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.41 (t, J = 7.8 Hz, 1H), 4.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 156.0, 154.3, 151.3, 129.8, 129.0, 126.5, 125.0, 123.8, 53.0; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₁H₉NNaO₃: 226.0475; found: 226.0474.

methyl 5-(p-tolyl)oxazole-2-carboxylate (3bb):

Yield 72%; 156.4 mg; light yellow solid; mp 82-84 °C; IR (KBr): 1727, 1493, 1372,

1207, 1176, 1131, 813 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.64 (d, J = 7.2 Hz, 2H), 7.48 (s, 1H), 7.26 (d, J = 7.8 Hz, 2H), 4.02 (s, 3H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 156.0, 154.6, 151.0, 140.1, 129.7, 125.0, 123.7, 123.3 53.0, 21.4; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₂H₁₁NNaO₃: 240.0631; found: 240.0628.

ethyl 5-(4-chlorophenyl)oxazole-2-carboxylate (3ib):

Yield 69%; 164.0 mg; yellow solid; mp 159–161 °C; IR (KBr): 1723, 1478, 1435, 1409,

1197, 1170, 1129, 1089 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.69 (d, J = 8.4 Hz, 2H), 7.53 (s, 1H), 7.44 (d, J = 8.4 Hz, 2H), 4.03 (s, 3H); ¹³C NMR (150 MHz,

CDCl₃) δ (ppm) 155.9, 153.3, 151.4, 135.8, 129.4, 126.3, 125.0, 124.2, 53.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₁H₈ClNNaO₃: 260.0085; found: 260.0089.

ethyl 5-(thiophen-2-yl)oxazole-2-carboxylate (3nb):

Yield 82%; 171.6 mg; yellow solid; mp 50–52 °C; IR (KBr): 1733, 1532, 1496, 1280,

1204, 1154, 1118 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.50 (d, J = 3.6 Hz, 1H), 7.44 (d, J = 4.8 Hz, 1H), 7.39 (s, 1H), 7.13 (t, J = 4.2 Hz, 1H), 4.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.8, 150.6, 149.8, 128.16, 128.11, 127.6, 126.5, 123.4, 53.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₉H₇NNaO₃S: 232.0039; found: 232.0042.

methyl 5-isobutyloxazole-2-carboxylate (3rb):

Yield 69%; 126.3 mg; yellow oli; IR (KBr): 1746, 1641, 1383, 1190, 1151, 1125, 1043 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 6.99 (s, 1H), 3.99 (s, 3H), 2.62 (d, *J* = 7.2 Hz, 2H), 2.11-2.01 (m, 1H), 0.97 (s, 3H), 0.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 156.3, 156.2, 151.4, 125.8, 53.0, 34.6, 27.5, 22.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₉H₁₃ClNNaO₃: 206.0788; found: 206.0783.

Figure S2. X-ray crystal structure of 3ga

Crystal Data for Compound **3ga**: CCDC 1511246 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic.

Bond precision:	C-C = 0.0036 A	Wavelength=0.71073					
Cell:	a=14.388(3) alpha=90	b=6.6658(13) beta=90	c=14.112(3) gamma=90				
Temperature:	293 K		J				
	Calculated	Reported					
Volume	1353.5(5)	1353.4(5)					
Space group	Pnma	Pnma					
Hall group	-P 2ac 2n	?					
Moiety formula	C14 H15 N 04	?					
Sum formula	C14 H15 N 04	C14 H15 N	I 04				
Mr	261.27	261.27					
Dx,g cm-3	1.282	1.282					
Z	4	4					
Mu (mm-1)	0.095	0.095					
F000	552.0	552.0					
F000'	552.30						
h,k,lmax	21,9,21	20,9,20					
Nref	2548	2437					
Tmin,Tmax	0.979,0.983	0.979,0.9	83				
Tmin'	0.979						
Correction method= # Reported T Limits: Tmin=0.979 Tmax=0.983 AbsCorr = MULTI-SCAN							
Data completene:	38= 0.956	Theta(max) = 32.13	30				
R(reflections) = 0.0755(1580) wR2(reflections) = 0.2460(2437)							
S = 1.011 Npar= 122							

9. references

1. Q. H. Gao, S. Liu, X. Wu, J. J. Zhang and A. X. Wu Org. Lett., 2015, 17, 2960.

10.¹H and ¹³C NMR spectra of compounds 3

300 MHz CDCl₃ cl↓C⁰→C00Et 3ja

3na

