Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Brönsted Acid-Catalyzed α-Halogenation of Ynamides from Halogenated Solvents and Pyridine-N-Oxides

Seung Woo Kim, Tae-Woong Um, Seunghoon Shin*

Department of Chemistry and Center for New Directions in Organic Synthesis, Research Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea

sshin@hanyang.ac.kr

Table of Contents

1. General Information	S2
2. Optimization Study	S2
3. Kinetic Study	S3
4. Halide Test	S7
5. General Procedure	S8
6. Mechanistic Studies	S8
7. Characterization of Substrates and Products	S9
Appendix: ¹ H and ¹³ C NMR spectra for all new compounds	S17

1. General Information

All solvents were dried and distilled according to standard methods before use.¹ Pyridine-*N*-oxides² and ynamides³ were prepared according to the literature procedures. Ynamides were prepared according to the literature. All other chemicals were purchased from commercial sources and was used as received. TLC (this-layer chromatography) analysis was carried out on Merck silica gel 60 F254 TLC plates and was visualized with UV lamp and KMnO₄ solution. Flash chromatography was performed on Kieselgel 60 (230-400 mesh). ¹H and ¹³C NMR spectra were recorded on a Varian (400 MHz) or Bruker (400 MHz) spectrometer with TMS as an internal standard. High resolution mass spectra (HRMS) were obtained from Korea Basic Science Institute (KBSI, Daegu).

2. Optimization Study

Ts N Bn	Ph 1a	pyridine + HX (20 mol%) (2 d DCN	s-N-oxides equiv) Λ, 80 °C	CI Ts _N + Bn Ph 4a	O Ts N Bn Ph 5a	+ Ts N Pr Bn O 6a
	entry	HX	time	yield	(%) ^b (4a/5a	1/6a)
	1	O POH	60 h	69	8	-
	2	$(S) \text{TCyP} (Ar = 2,4,6-(CHex)_3C_6H_2)$	60 h	48	-	-
	3	MsOH	28 h	-	15	85
	4	CSA^b	72 h	(messy)	-	-
	5	citric acid	80 h	59	40	-
	6	PhCOOH	80 h	83	7	-
	7	HCOOH	60 h	46	22	-
	8	lactic acid	60 h	30	30	-
	9	PPTS	60 h	28	-	27
	10	4- nitrophenol	60 h	37	-	-

Table S1. Screening of Acid Catalysts^a

^{*a*}All reactions were conducted in CH₂Cl₂ (0.1 M); Yields were determined based on the ¹H NMR spectra with CH₂Br₂ as an internal standard. ^{*b*}CSA: (1*S*)-(+)-10- camphorsulfonic acid. ^{*c*}PPTS: pyridinium *p*-toluenesulfonate.

¹ Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; Elsevier: Oxford, 2009.

² (a) Kokatla, H. P.; Thomson, P. F.; Bae, S.; Doddi, V. R.; Lakshman, M. K. J. Org. Chem. **2011**, *76*, 7842. (b) Bering, L.; Antonchick, A. P.; Org. Lett. **2015**, *17*, 3134.

³ Alexandre, H.; Pascal, R.; Vincent, G.; Kevin, C.; Robert H. D. Angew. Chem,. Int. Ed. 2014, 53, 8333.

Ts	PhC	CO ₂ H (20 mo l %)	CI Ta I T	0	O ⊤c ∬ Dh
N _ ≡_Ph Bn	+ N-oxides (2 equiv)	DCE, 80 °C	Bn Ph	^S N + Bn Ph	
1a			4a	5a	6a
entry	<i>N</i> -oxides	time	yield	$(\%)^{b}$ (4a/5a	a/6a)
5	Ō-		, ,		
1	Ň	70 h	92(89)	-	-
2	O- N	36 h	76 (73)	12	12
3	O ⁻ N ⁺	65 h	59	13	34
4	O ⁻ N⁺ Ph	60 h	53	7	19
5	O ⁻ N ⁺ OH	15 h	-	-	-
6	ON⁺·O⁻	65 h	32	20	25
7	O ⁻ N ⁺ Br	70 h	trace (messy)	-	-
8	O ⁻ N⁺ CN	70 h	trace (messy)	-	-
9	Ph ₃ P=O	40 h	-	-	-
10	Me ₃ N⁺-O⁻	15 h	26	-	-

Table S2. Screening of N-Oxides

3. Kinetic Study

Initially, the efficiency of conversion of **1a** into **4a** was inspected varying amount of pyridine-*N*-oxide **2**. Trends in Table S3 shows that the amount of **2** had relatively negligible effect on the formation of side products **5a** and **6a**, but the trend in the reaction time for consumption of starting **1a** indicated the rate is inversely related to **[2]**. We carried out the detailed kinetic study as described below.

Ynamide **1a** (0.2 mmol, 0.5 M) and 20 mol% of PhCOOH was dissolved in DCE (0.4 mL) and was mixed with five different loadings of pyridine-*N*-oxide **2** (0.25 M, 0.50 M, 0.75 M, 1.0 M, and 1.25 M). These solutions were independently heated at 100 °C and time-dependent formation of the product **4a** was measured by GLC (with *n*-dodecane as an internal standard). The plot of [**4a**] vs. time showed zeroth-order dependence on [**4a**] (a linear plot). These time evolutions were shown in Figure S1-S5 after averaging duplicate experiments for each figures.

Ts Bri	NPh	PhCO ₂ H (20 pyridine-N-(<u>(X equ</u> DCE (0.5 M)	0 mol%) pxide, 2 Cl <u>iv)</u> Ts N 100 °C Bn F 4a	+ Ts] Ph	O N Bn Ph 5a	+ Ts N N E	O V Ph Bn O 6a
1	entry	2 (equiv)	time (h)	yiel	d (%) (1	la/4a/5a	a/6a)
1	1	0.5	156	35	51	6	
	2	1.0	130	-	63	13	-
	3	2.0	70	-	92	4	-
	4	3.0	40	-	78	5	17
	5	5.0	24	-	71	6	23

Table S3. Effect of pyridine N-Oxide (equivalent)

Figure S1.

Figure S2

A linear plot in the Figure S1-S5 as well as the rate dependency on [1a] (Figure S6) shows that the formation of **4a** is 0th order in ynamide **1a**. The rates of the formation of **4a** (M^t h^{-1}) in each concentration of [2], was calculated from the least-square fit of the slopes in Figure S1-S5 which was then plotted against [2] in Figure

S7.

The first-order rate dependence on pyridine-*N*-oxide **2** indicates that the rate-determining step is the attack of **2** on the halonium **H** (Scheme 3 of manuscript). The rate was not affected by the concentration of ynamide **1a** (Figure S6), which indicates the formation of keteniminium **D** as well as halonium **H** is fast and reversible processes and the concentration of **D** in the reaction mixture is limited by the concentration of the acid catalyst, [PhCOOH].

Figure S6 The rate dependence on ynamide 1a

Figure S7 The rate dependence on pyridine-N-oxide 2

4. Halide Test

Mechanistically, there is a possibility that the current halogenation may actually occur by the halide anion liberated from the reaction of pyridine-*N*-oxide and halogenated solvents. To exclude such a possibility, pyridine-*N*-oxide was heated in 1,2-DCE (1.0 M) for 12 h at 100 °C and an aliquot (0.2 mL) of the reaction mixture was mixed with saturated aqueous AgNO₃ solution. We did not observe the formation of precipitates in this text (left picture below).

(Mixture A)

On the other hand, a similar experiment was repeated with CH₃I as solvent. This time, the reaction mixture that was heated for 20 min at 65 °C generated iodide anion, which was confirmed by the positive AgNO₃ test (right picture below).

(Mixture B)

Mixture A (no precipitation observed)

Mixture B (yellow precipitation of AgI observed)

5. General Procedure

General Procedure A: Hydrochlorination

Ynamide **1a** (0.1 mmol) was added in a 10 ml screw-capped test tube. Pyridine *N*-oxide (0.2 mmol), benzoic acid (0.02 mmol) and 1,2-dichloroethane (0.2 ml) was added sequentially under air. The reaction mixture was stirred at 100 °C for 13 h. Solvent was removed under vacuum and the residue was purified by column chromatography (EtOAc:nHex = 1:15~1:7).

General Procedure B: Hydrobromination

Ynamide **1a** (0.1 mmol) was added in a 10 ml screw-capped test tube. Pyridine *N*-oxide (0.2 mmol), benzoic acid (0.02 mmol) and 1,3-dibromoropropane (0.2 ml) was added sequentially under air. The reaction mixture was stirred at 80 °C for 11 h. Solvent was removed under vacuum and the residue was purified by column chromatography (EtOAc:nHex = 1:20~1:10).

6. Mechanistic Studies (Scheme 2)

(Eq. 2)

Similar procedure to General Procedure A was followed (ynamide **1a** (0.1 mmol), quinoline *N*-oxide (0.15 mmol), benzyl chloride (0.2 mmol) and benzoic acid (0.02 mmol) in THF (0.2 ml)), leading to isolation of **4a** (48%) along with quinolone (60%) and benzaldehyde (39%). The identity of the latter two was confirmed by GC-MS. The smaller yield of benzaldehyde than that of **4a** is presumably due to the volatility. The slightly higher yield of quinoline is likely due to the oxygenation of ynamides leading to α -ketoamide **6a** which was observed in a trace amount in the crude ¹H NMR spectrum.

(Eq. 3)

Similar procedure to General Procedure A was followed (ynamide 1a (0.1 mmol), pyridine *N*-oxide (0.2 mmol) and benzoic acid (0.02 mmol) in CD₂Cl₂ (1 ml)). The %D incorporation in *d*-4a was based on its ¹H-NMR spectrum.

(Eqs. 4 and 5)

Ynamide **1i** (0.1 mmol) was stirred with diarylphosphoric acid **3** (0.11 mmol) in 1,2-dichloroethane (1 ml) at RT for 6 h. Solvent was removed and the residue was purified by column chromatography (EtOAc:nHex = 1:3) to obtain **8**. Subsequently, the adduct **8** was mixed with pyridine-N-oxide (2 equiv.) in 1,2-dichloroethane (0.5 M) and was heated at 80 °C for 60 h. The purification of the mixture afforded **4i** in 57 % yield. For the formation of **9** and its reaction to afford **4c**, a similar procedure was followed under the reaction conditions described in the manuscript.

7. Characterization of Substrates and Products

yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.40 (m, 2H), 7.32-7.29 (m, 3H), 3.53 (t, *J* = 7.3 Hz, 2H), 3.13 (s, 3H), 1.83-1.76 (m, 2H), 1.45-1.26 (m, 18H), 0.88 (t, *J* = 6.9 Hz 3H); ¹³C NMR (100 MHz, CDCl₃): δ 131.5, 128.3, 128.0, 122.7, 81.7, 71.0, 51.7, 38.2, 31.9, 29.64, 29.62, 29.56, 29.5, 29.4, 29.1, 28.3, 26.3, 22.7, 14.1; HRMS (EI) Calcd for C₂₁H₃₃NO₂S [M]⁺ 363.2227; found 363.2228.

colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 5.91 (ddt, J = 10.4, 17.2, 5.6 Hz, 1H), 5.27 (dq, J = 17.2, 1.64 Hz, 1H), 5.17 (dq, J = 10.4, 1.7 Hz, 1H), 3.96 (dt, J = 5.6, 1.4 Hz, 2H), 3.48 (t, J = 6.2 Hz, 2H), 3.01 (s, 3H), 2.46 (s, 3H), 2.35 (t, J = 7.1 Hz, 2H), 1.79-1.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.5, 134.9, 133.2, 129.7, 127.8, 116.8, 75.1, 71.9, 68.7, 68.0, 39.3, 29.1, 21.6, 15.2; HRMS (EI) Calcd for C₁₆H₂₁NO₃S [M]⁺ 307.1237; found 307.1237.

$$\begin{array}{c} \mathsf{CI} \\ \mathsf{Ts}_{\mathsf{N}} \\ \mathsf{Bn} \\ \mathsf{Ph}_{4a^4} \end{array}$$

white solid (35.4 mg); mp 126-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.3 Hz, 2H), 7.34-7.31 (m, 4H), 7.21-7.19 (m, 5H), 7.14-7.10 (m, 3H), 6.60 (s, 1H), 4.79 (d, J = 10.6 Hz, 1H), 4.03 (d, J = 10.0 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 135.0, 134.9, 133.3, 132.9, 129.8, 129.6, 128.9, 128.8, 128.5, 128.3, 128.2, 128.1, 127.5, 52.4, 21.7; HRMS (EI) Calcd for C₂₂H₂₀ClNO₂S [M]⁺ 397.0898, found 397.0898.

yellow solid (28.7 mg); mp 128-132 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.3 Hz, 2H), 7.35-7.32 (m, 4H), 7.24(d, J = 5.6 Hz, 2H), 7.14-7.12 (m, 3H), 6.73 (d, J = 8.9 Hz, 2H), 6.52 (s, 1H), 4.81 (d, J = 13.0 Hz, 1H), 4.03 (d, J = 13.0 Hz, 1H), 2.46(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 144.5, 135.0, 134.5, 133.5, 130.3, 129.8, 129.6, 128.9, 128.3, 128.2, 125.6, 125.4, 113.5, 55.2, 52.4, 21.7; HRMS (EI) Calcd for C₂₃H₂₂ClNO₃S [M]⁺ 427.1003, found 427.1003.

white solid (33.4 mg); mp 116-122 °C; ¹H NMR (400 MHz, CDCl3): δ 7.85 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.25-7.23 (m, 3H), 7.00 (d, J = 8.0 Hz, 2H), 6.56 (s, 1H), 4.80 (d, J = 12.8 Hz, 1H), 4.04 (d, J = 12.8 Hz, 1H), 2.46 (s, 3H) 2.29(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.5, 138.6, 135.0, 134.9, 133.5, 130.1, 129.8, 129.6, 128.9, 128.8, 128.7, 128.3, 128.2, 126.6, 52.4, 21.7, 21.3; HRMS (EI) Calcd for C₂₃H₂₂ClNO₂S [M]⁺ 411.1054, found 411.1053.

pale yellow solid (41.0 mg); mp 120-124 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.36-7.34 (m, 5H), 7.20-7.10 (m, 4H), 6.64 (s, 1H), 4.81 (d, *J* = 12.9 Hz, H), 4.02 (d, *J* = 12.2 Hz, H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 144.5, 136.3 (q, ⁴*J*_{CF} = 1 Hz), 134.7, 133.7, 133.1, 129.8, 129.7, 128.88, 128.85 (q, ²*J*_{CF} = 41 Hz), 128.77, 128.51, 128.31, 124.9 (q, ³*J*_{CF} = 4 Hz), 124.0 (q, ¹*J*_{CF} = 271 Hz), 52.4, 21.7; HRMS (EI) Calcd for C₂₃H₁₉ClF₃NO₂S [M]⁺465.0772, found 465.0773.

pale yellow liquid (26.7 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.26 (m, 4H), 7.20-7.14 (m, 6H), 6.56 (s, 1H), 4.71 (bs, 1H), 4.38 (bs, 1H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.6, 133.2, 132.6, 129.8, 128.7, 128.6, 128.5, 128.3, 128.2, 127.2, 53.0, 39.6; HRMS (EI) Calcd for C₁₆H₁₆ClNO₂S [M]⁺ 321.0585, found 321.0585.

⁴ Prabagar, B.; Nayak, S.; Mallick, R. K.; Prasad, R.; Sahoo, A. K. Org. Chem. Front., 2016, 3, 110.

pale yellow solid (33.5 mg); mp 122-126 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 9.0 Hz, 2H), 7.33 (d, J = 5.6 Hz, 2H), 7.31-7.18 (m, 5H), 7.14-7.10 (m, 2H), 6.95 (d, J = 9.0 Hz, 2H), 6.59 (s, 1H), 4.78 (d, J = 12.0 Hz, 1H), 4.03 (d, J = 12.8 Hz, 3H) 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.7, 134.9, 133.4, 132.9, 131.1, 129.8, 129.3, 128.8, 128.5, 128.3, 128.2, 128.1, 127.7, 114.1, 55.7, 52.4; HRMS (EI) Calcd for C₂₂H₂₀ClNO₃S [M]⁺413.0847, found 413.0847.

white solid (27.0 mg); mp 126-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.55 (m, 4H), 7.38-7.27 (m, 6H), 6.87 (s, H), 3.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.9, 133.6, 132.6, 129.6, 129.0, 128.7, 128.6, 128.1, 127.6, 124.3, 39.6; HRMS (EI) Calcd for C₁₅H₁₄ClNO₂S [M]⁺ 307.0428, found 307.0428.

white solid (27.0 mg); mp 116-120 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.37-7.28 (m, 5H), 6.65 (s, H), 3.02 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 133.4, 134.2, 133.1, 132.4, 129.8, 129.5, 128.9, 128.8, 128.77, 128.68, 35.7, 21.7.

colorless liquid (21.6 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.56 (m, 2H), 7.40—7.33 (m, 3H), 6.72 (s, H), 3.17 (s, 3H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 132.7, 132.5, 129.5, 129.1, 128.8, 128.7, 38.1, 35.8; HRMS (EI) Calcd for C₁₀H₁₂ClNO₂S [M]⁺ 245.0272, found 245.0272.

pale yellow liquid (25.1 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.9 Hz, 2H), 6.61 (s, 1H), 3.81 (s, 3H) 3.14 (s, 3H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 132.11, 130.2, 126.9, 125.4, 114.2, 55.3, 38.0 35.6; HRMS (EI) Calcd for C₁₁H₁₄ClNO₃S [M]⁺ 275.0377, found 275.0377; 1D-NOE experiments were conducted to support the (E)-geometry.

Yellow sticky solid (19.2 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.51 (m, 4H), 7.37-7.27 (m, 3H), 7.05-7.00 (m, 2H), 6.80 (s, 1H), 3.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.8 (d, ¹*J*_{CF} = 249 Hz), 138.7, 132.4, 130.6 (d, ³*J*_{CF} = 8 Hz), 129.6, 128.7 (d, ⁴*J*_{CF} = 3 Hz), 128.0, 127.7, 124.2, 115.7 (d, ²*J*_{CF} = 21 Hz), 39.6; HRMS (EI) Calcd for C₁₅H₁₃ClFNO₂S [M]⁺ 325.0334, found 325.0334.

yellow liquid (27.6 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 6.8 Hz, 2H), 7.36-7.29 (m, 3H), 6.81 (s, 1H), 3.50-3.36(bd, 2H), 1.84-1.77 (m, 2H), 1.57-1.15 (m, 18H), 0.88 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.5, 132.8, 129.1, 129.0, 128.6, 127.4, 49.0, 38.6, 31.9, 29.63, 29.59, 29.47, 29.4, 29.3, 29.1, 27.5, 26.8, 22.7, 14.1; HRMS (FAB) Calcd for C₂₁H₃₅ClNO₂S [M+H]⁺ 400.2072, found 400.2071.

pale yellow solid (21.2 mg); mp 112-116 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.6 Hz, 2H), 7.40-7.33 (m, 5H), 6.76 (s, 1H), 5.73 (tdd, *J* = 7.0, 10.0, 17.0 Hz, H), 5.27 (app qd, *J* = 1.3, 17.0 Hz, 1H), 5.15 (app qd, *J* = 1.4, 10.0 Hz, 1H), 4.30 (bs, 1H), 3.65(bs, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 134.7, 134.4, 133.1, 130.6, 129.6, 129.1, 128.90, 128.85, 128.5, 127.6, 120.9, 51.6, 21.7; HRMS (EI) Calcd for C₁₈H₁₈ClNO₂S [M]⁺ 347.0741, found 347.0741.

colorless liquid (29.2 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.4 Hz, 2H), 7.39-7.31 (m, 7H), 5.75-5.69 (m, 1H), 4.83 (d, J = 13.3 Hz, 1H), 3.94 (d, J = 13.4 Hz, 1H), 2.48 (s, 3H), 2.48-1.85 (m, 2H), 1.28-0.86 (m, 8H), 0.65 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 138.1, 135.6, 134.5, 129.6, 128.43, 128.37, 128.2, 125.1, 51.3, 31.6, 29.5, 28.8, 28.2, 22.5, 21.7, 14.1; HRMS (EI) Calcd for C₂₂H₂₈ClNO₂S [M]⁺ 405.1524, found 405.1524.

pale yellow liquid (25.4 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 7.1 Hz, 2H) 7.38-7.31 (m, 5H), 6.77 (s, 1H), 3.56 (bs, 1H), 2.99 (bs, 1H), 1.59-1.56 (m, 2H), 1.52-1.50 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 134.7, 134.4, 133.1, 129.6, 129.5, 129.1, 128.9, 128.5, 127.9, 48.3, 29.3, 21.6, 20.1, 13.6; HRMS (EI) Calcd for C₁₉H₂₂ClNO₂S [M]⁺ 363.1054, found 363.1054.

yellow solid (34.3 mg); mp 122-126 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.2 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 9.1 Hz, 2H), 6.74 (s, 1H), 6.70 (d, J = 9.1 Hz, 2H), 3.73 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 144.4, 135.1, 133.0, 132.9, 131.6, 129.5, 129.2, 129.1, 128.9, 128.8, 128.6, 114.2, 55.4, 21.7; HRMS (EI) Calcd for C₂₂H₂₀CINO₃S [M]⁺413.0847, found 413.0847.

colorless liquid (24.4 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 5.99-5.87 (m, 1H), 5.82 (t, *J* = 7.6 Hz, 1H), 5.28 (d, *J* = 17.2 Hz, 1H), 5.18 (d, *J* = 10.4 Hz, 1H), 3.97 (t, *J* = 4.8 Hz, 2H), 3.46 (t, *J* = 6.4 Hz, 2H), 2.92 (s, 3H), 2.44 (s, 3H), 2.44(m, 2H), 1.77-1.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 134.9, 134.6, 134.4, 129.5, 128.5, 128.3, 116.8, 71.8, 69.6, 35.9, 28.6, 26.1, 21.6; HRMS (FAB) Calcd for C₁₆H₂₃ClNO₃S [M+H]⁺ 344.1082, found 344.1082.

white solid (29.2 mg); mp 98-102 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.4 Hz, 2H), 7.38-7.30 (m, 7H), 5.72-5.67 (m, 1H), 4.82 (d, J = 13.2 Hz, 1H), 3.91 (d, J = 13.2 Hz, 1H), 3.19 (t, J = 6.8 Hz, 2H), 2.46 (s, 3H), 2.17-1.96 (m, 2H), 1.54-1.48 (m, 1H), 1.19-1.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 135.9, 135.4, 134.4, 129.7, 128.7, 128.6, 128.4, 128.4, 126.5, 51.3, 44.0, 31.2, 26.9, 21.7; HRMS (FAB) Calcd for C₁₉H₂₂Cl₂NO₂S [M+H]⁺ 398.0743, found 398.0743.

white solid (37.2 mg); mp 110-112 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.3 Hz, 2H), 7.37-7.35 (m, 3H), 7.25-7.23 (m, 3H), 7.15-7.13 (m, 4H), 6.61 (s, 1H), 4.82 (d, J = 13.0 Hz, 1H), 3.99 (d, J = 13.0 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 134.8, 134.1, 133.4, 129.72, 129.66, 129.5, 128.9, 128.3, 128.2, 127.7, 126.5, 126.2, 125.0, 52.3, 21.7; HRMS (EI) Calcd for C₂₀H₁₈ClNO₂S₂ [M]⁺403.0462, found 403.0462.

sticky white liquid (36.4 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.69 (d, *J* = 6.8 Hz, 2H), 7.35-7.28 (m, 5H), 6.74 (s, 1H), 3.76 (d, *J* = 10.0 Hz, 1H), 3.71-3.62 (m, 2H), 3.22 (d, *J* = 9.6 Hz, 1H), 2.43 (s, 3H), 0.80 (s, 9H), -0.07 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 135.0, 134.3, 133.3, 129.7, 129.4, 128.99, 128.96, 128.6, 128.1, 60.5, 50.6, 26.0, 21.8, 18.4, -5.4; HRMS (FAB) Calcd for C₂₃H₃₃ClNO₃SSi [M+H]⁺ 466.1633, found 466.1634.

$$\begin{array}{c} CI\\ Ts \\ H\\Bn \\ H \\ 4u \end{array}$$

colorless liquid (13.2 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.3 Hz, 2H), 7.36-7.31 (m, 7H), 5.43 (d, J = 1.5 Hz, 1H), 5.31 (d, J = 1.5 Hz, 1H), 4.50 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 135.4, 134.8, 133.7, 129.7, 128.9, 128.5, 128.1, 128.1, 120.3, 51.2, 29.7, 21.7; HRMS (FAB) Calcd for C₁₆H₁₇ClNO₂S [M+H]⁺ 322.0663, found 322.0663.

white solid (37.2 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.2 Hz, 2H), 7.36-7.29 (m, 5H), 7.20-7.11 (m, 5H), 6.82 (s, 1H), 4.83 (d, J = 13.0 Hz, 1H), 3.94 (d, J = 13.0 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 139.8, 134.3, 133.5, 133.2, 129.9, 129.6, 129.2, 128.7, 128.6, 128.3, 128.2, 128.0, 119.7, 53.4, 21.8; HRMS (FAB) Calcd for C₂₂H₂₁BrNO₂S [M+H]⁺442.0471, found 442.0471.

white solid (31.2 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.3 Hz, 2H), 7.36-7.28 (m, 6H), 7.16-7.12 (m, 3H), 6.73 (s, 1H), 6.72 (d, J = 8.9 Hz, 2H), 4.84 (d, J = 13.1 Hz, 1H), 3.94 (d, J = 13.0 Hz, 1H), 3.78 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 144.7, 139.2, 134.4, 133.4, 130.4, 129.9, 129.6, 129.2, 1128.3, 128.2, 126.4, 117.5, 113.5, 55.2, 53.3, 21.7; HRMS (FAB) Calcd for C₂₃H₂₃BrNO₃S [M+H]⁺ 472.0577, found 472.0577.

Ts_{`N}∕ Bn \dot{p} -CF₃C₆H_{47d}

pale yellow sticky solid (40.7 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.3 Hz, 2H), 7.41-7.31 (m, 7H),

7.24-7.11 (m, 4H), 6.86 (s, 1H), 4.84 (d, J = 13.1 Hz, 1H), 3.93 (d, J = 13.1 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 138.4, 137.0 (q, ⁴ $J_{CF} = 2$ Hz), 134.1, 133.0, 129.9, 129.7, 129.2, 129.1, 128.7, 128.6, 128.5 (q, ² $J_{CF} = 32$ Hz), 128.3, 124.9 (q, ³ $J_{CF} = 4$ Hz), 123.7 (q, ¹ $J_{CF} = 334$ Hz), 53.4, 21.7; HRMS (FAB) Calcd for C₂₃H₂₀BrF₃NO₂S [M+H]⁺ 510.0345, found 510.0346.

white solid (38.0 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 7.8 Hz, 2H), 7.38-7.27 (m, 4H), 7.24-7.10 (m, 6H), 7.00 (d, *J* = 7.8 Hz, 2H), 6.81 (s, 1H), 4.82 (d, *J* = 13.0 Hz, 1H), 3.93 (d, *J* = 13.1 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 139.7, 133.6, 133.3, 131.4, 129.9, 128.74, 128.69, 128.62, 128.3, 128.2, 128.1, 119.9, 114.1, 55.7, 53.4; HRMS (FAB) Calcd for C₂₂H₂₁BrNO₂S [M+H]⁺458.0420, found 458.0420.

pale yellow sticky solid (30.4 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.54 (m, 4H), 7.36-7.27 (m, 6H), 7.07 (s, H), 3.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.9, 138.6, 133.4, 129.6, 129.2, 128.7, 128.6, 127.5, 123.8, 118.0, 39.1; HRMS (FAB) Calcd for C₁₅H₁₅BrNO₂S [M+H]⁺ 352.0001, found 352.0001.

$$\begin{array}{c}
 Br \\
 Ts \\
 N \\
 Me Ph 7h^4
\end{array}$$

white solid (32.2 mg); E/Z = 1.8/1; ¹H NMR (400 MHz, CDCl₃) for only E isomer : δ 7.79-7.75 (m, 2H), 7.60-7.58 (m, 2H), 7.39-7.29 (m, 5H), 6.86 (s, H), 2.99 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) for E/Z mixture : δ 137.1, 134.2, 134.0, 133.83, 133.77, 133.66, 129.6, 129.5, 129.3, 129.1, 129.0, 128.8, 128.7, 128.5, 128.2, 121.4, 120.5, 37.0, 36.7, 21.7; 1D-NOE experiments were conducted to support the (E)-geometry of the major isomer.

pale yellow sticky solid (22.3 mg); E/Z = 1.3/1; ¹H NMR (400 MHz, CDCl₃) for only E isomer : δ 7.57 (d, J = 8.0 Hz, 2H), 7.41-7.29 (m, 3H), 6.89 (s, H), 3.09 (s, 3H), 2.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) for E/Z mixture : δ 137.3, 135.0, 133.5, 133.4, 129.3, 129.2, 129.0, 128.8, 128.7, 128.3, 120.5, 119.6, 37.4, 37.2, 37.1, 36.5; HRMS (FAB) Calcd for C₁₀H₁₃BrNO₂S [M+H]⁺ 289.9845, found 289.9845.

white solid (27.8 mg); mp 124-128 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.3 Hz, 2H), 7.36-7.29 (m, 7H), 5.72 (d, J = 1.3 Hz, 1H), 5.51 (d, J = 1.3 Hz, 1H), 4.47 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃):

 δ 144.5, 135.0, 134.7, 129.7, 129.0, 128.6, 128.3, 128.1, 125.3, 124.8, 52.2, 21.7; HRMS (FAB) Calcd for $C_{16}H_{17}BrNO_2S~[M+H]^+$ 366.0158, found 366.0158.

pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.49 (m, 6H), 7.46-7.30 (m, 7H), 3.17 (s, 3H), 2.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.5 (d, $J_{CP} = 9.5$ Hz), 139.7 (d, $J_{CP} = 8.7$ Hz), 131.4, 130.4, 130.2, 128.8, 128.70, 128.69, 128.0, 127.0, 121.4 (d, $J_{CP} = 4.8$ Hz), 117.7 (d, $J_{CP} = 3.8$ Hz), 39.0, 35.8; ³¹P NMR (162 MHz, CDCl₃): δ 5.00; HRMS (FAB) Calcd for C₂₂H₂₁NO₆PS [M+H]⁺458.0822, found 458.0822.

colorless to white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.70 (dd, *J* = 8.4, 1.6 Hz, 2H), 7.57 (tt, *J* = 7.2, 1.2 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.27-7.23 (m, 4H), 7.18-7.11 (m, 5H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.47 (s, 1H), 4.51 (s, 2H), 2.33 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 143.8, 138.0, 136.8, 136.3, 134.6, 133.6, 130.0, 129.7, 129.5, 129.1, 128.9, 128.7, 128.3, 128.2, 128.1, 128.0, 123.4, 52.8, 21.5, 21.3; HRMS (FAB) Calcd for C₃₀H₂₈NO4S [M+H]⁺498.1734, found 498.1734.

Appendix

¹H and ¹³C NMR spectra for all new compounds

