N-N bond formation in Ugi Processes: from nitric acid to libraries of Nitramines

Valentina Mercalli, Aude Nyadanu, Marie Cordier, Gian Cesare Tron, Laurence Grimaud, and Laurent El Kaim.

EXPERIMENTAL SECTION

I) Procedures and data for nitramine preparation:	p. 1-10
II) Procedure and data for the optimization step	р. 10-11
III) Copies of H1, C13 NMR spectra and HRMS for 3	р. 12-48
IV) Copies of H1, C13 spectra for 2	p. 49-52
V) report for RX of 3l	p. 53-62

General Methods. Commercially available reagents and solvents were used without further purification. ¹H and ¹³C NMR were recorded on a Bruker Avance 300 and 400 MHz. Chemical shifts (δ) are reported in part per million (ppm) relative to internal TMS. High-Resolution Mass spectra (HRMS) were carried out with JEOL JMSGCmateII spectrometer. IR spectra were performed on a Perkin-Elmer FT 1600 spectrometer with wavelengths in cm⁻¹. Column chromatography was performed on silica gel (70–230 mesh ASTM) using the reported eluents. Thin layer chromatography (TLC) was performed using plates of silica 60 F₂₅₄.Melting points (mp) were determined on a Stuart SMP3 apparatus and were left uncorrected.

General preparation of ammonium nitrate salt:

The amine (1 equiv) was dissolved in the toluene (1 M) and HNO_3 70% (1 equiv) was added dropwise. The reaction was stirred at room temperature under for 30 minutes. The white solid precipitate was filtrate, washed with Et_2O , and used without further purifications. When the precipate does not form, the salt can be dried by azeotropic removal of water with toluene, followed by evaporation of the solvent under reduced pressure.

General procedure for Ugi reaction:

The ammonium nitrate salt (1 equiv) was dissolved in MeOH (0.3 M), aldehyde (1 equiv) and isocyanide (1 equiv) were added. The reaction was stirred at room temperature under argon overnight. After evaporation of the solvent the crude was purified by column chromatography (usually eluents EP/EtOAc). When necessary the final product was crystallized in MeOH.

Spectroscopic data

2-((4-chlorobenzyl)(nitro)amino)-N-cyclohexyl-4-methylpentanamide, 3a

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as amorphous solid (342 mg, yield 89%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.32 – 7.26 (m, 4H), 6.18 (d, J = 8.0 Hz, 1H), 5.21 (t, J = 7.5 Hz, 1H), 5.05 (d, J = 16.1 Hz, 1H), 4.88 (d, J = 16.1 Hz, 1H), 3.73 – 3.68 (m, 1H), 1.92 – 1.85 (m, 2H), 1.71 – 1.58 (m, 5H), 1.56 – 1.48 (m, 1H), 1.39 – 1.27 (m, 2H), 1.21 – 1.06 (m, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.7, 134.0, 133.7, 129.2, 128.8, 61.8, 51.3, 48.8, 38.1, 32.7, 32.6, 25.4, 25.0, 24.7, 22.4, 22.3. IR (thin film) 3418, 3058, 2858, 1682, 1516, 1371, 1289, 899v_{max}/cm⁻¹. HRMS *m*/*z*: [M]^{+•} calcd for C₁₉H₂₈ClN₃O₃: 381.1819; calcd for [M-NO₂]^{+•}: 335.189016 Found: 335.1880 [M-NO₂]^{+•}.

2-((4-chlorobenzyl)(nitro)amino)-N-cyclohexyl-4-phenylbutanamide, 3b

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (132 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 95:5, 9:1) to give the product as white solid (367 mg, yield 93%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.24 – 7.20 (m, 4H), 7.20 – 7.13 (m, 3H), 7.03 – 7.00 (m, 2H), 5.61 (d, J = 8.0 Hz, 1H), 4.98 (d, J = 16.1 Hz, 1H), 4.89 (t, J = 7.5 Hz, 1H), 4.74 (d, J = 16.1 Hz, 1H), 3.68 – 3.58 (m, 1H), 2.63 – 2.45 (m, 2H), 2.32 – 2.23 (m, 1H), 2.03 – 1.97 (m, 1H), 1.81 (d, J = 9.2 Hz, 1H), 1.70 – 1.52 (m, 4H), 1.29 – 1.22 (m, 2H), 1.12 – 0.93 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.5, 139.7, 134.0, 133.8, 129.4, 129.0, 128.8, 128.4, 126.7, 62.7, 51.7, 48.8, 32.8, 32.7, 32.1, 30.8, 25.4, 24.7.IR (thin film) 3417, 3062, 2858, 1682, 1516, 1351, 1296, 899 v_{max}/cm^{-1} . MP (crystallized in MeOH) 152.2-153.5 °C. HRMS *m*/*z*: [M]^{+•} calcd for C₂₃H₂₈ClN₃O₃: 429.1819; calcd for [M-NO₂]^{+•}:383.1890 Found: 383.1901[M-NO₂]^{+•}.

2-(allyl(nitro)amino)-N-cyclohexyl-4-phenylbutanamide, 3c

Starting material: ammonium nitrate salt (120 mg, 1.0 mmol, 1.0 equiv), aldehyde (132 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluent: PE/EtOAc 9:1) to give the product as yellow solid (245 mg, yield 71%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.25 – 7.20 (m, 2H), 7.18 – 7.14 (m, 1H), 7.11 – 7.07 (m, 2H), 5.87 – 5.76 (m, 2H), 5.22 (d, J = 16.0 Hz, 1H), 5.18 (d, J = 12.0 Hz, 1H), 4.94 (t, J = 7.6 Hz, 1H), 4.34 (dd, J = 16.0, 6.0 Hz, 1H), 4.22 (dd, J = 16.0, 6.0 Hz, 1H), 3.82 – 3.74 (m, 1H), 2.66 – 2.52 (m, 2H), 2.30 – 2.20 (m, 1H), 2.08 – 1.98 (m, 1H), 1.86 – 1.73 (m, 2H), 1.67 – 1.52 (m, 3H), 1.32 – 1.20 (m, 2H), 1.13 – 0.98 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.6, 140.0, 130.6, 128.7, 128.4, 126.6, 119.7, 62.2, 50.9, 48.8, 32.9, 32.8, 32.2, 30.7, 25.4, 24.8, 24.7. IR (thin film) 3417, 2935, 1679, 1518, 1414, 1351, 1236, 1050 v_{max}/cm^{-1} . MP130.6-131.8 °C. HRMS *m/z*: [M]^{+•} calcd for C₁₉H₂₇N₃O₃: 345.2052; calcd for [M-NO₂]^{+•}:299.2123 Found:299.2122[M-NO₂]^{+•}.

2-((2-(1H-indol-3-yl)ethyl)(nitro)amino)-N-cyclohexyl-4-phenylbutanamide, 3d

Starting material: ammonium nitrate salt (223 mg, 1.0 mmol, 1.0 equiv), aldehyde (132 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as yellow oil (194 mg, yield 43%).

¹HNMR (400 MHz, CDCl₃) δ (ppm) 8.20 (s, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.36 – 7.31 (m, 2H), 7.30 – 7.25 (m, 2H), 7.22 – 7.18 (m, 1H), 7.16 – 7.12 (m, 1H), 7.09 (d, J = 2.3 Hz, 1H), 5.81 (br d, J = 8.0 Hz, 1H), 4.99 (t, J = 7.5 Hz, 1H), 4.12 – 4.00 (m, 2H), 3.83 – 3.73 (m, 1H), 3.31 – 3.16 (m, 2H), 2.75 – 2.59 (m, 2H), 2.40– 2.34 (m, 1H), 2.07 – 1.96 (m, 1H), 1.87 – 1.80 (m, 2H), 1.79 – 1.60 (m, 4H), 1.43 – 1.33 (m, 3H), 1.23 – 1.10 (m, 3H), 1.02 – 0.92 (m, 1H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.6, 140.0, 136.3, 128.7, 128.4, 127.2, 126.5, 122.5, 122.4, 119.8, 118.8, 111.8, 111.3, 62.3, 49.6, 48.8, 32.8, 32.0, 30.4, 25.4, 24.8, 24.7, 23.0. IR (thin film) 3469, 3419, 3046, 1683, 1514, 1352, 1289, 1031 v_{max}/cm⁻¹.HRMS *m*/*z*: [M]^{+•} calcd for C₂₆H₃₂N₄O₃: 448.2474 calcd for [M-NO₂]^{+•}.

2-(4-chlorophenyl)-N-cyclohexyl-2-(hexyl(nitro)amino)acetamide, 3e

Starting material: ammonium nitrate salt (164 mg, 1.0 mmol, 1.0 equiv), aldehyde (141 mg, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluent: PE/EtOAc 9:1) to give the product as white solid (191 mg, yield 49%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.35 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 5.97 (s, 1H), 5.39 (br d, J = 7.5 Hz, 1H), 3.74 – 3.64 (m, 2H), 3.44 – 3.32 (m, 1H), 1.86 – 1.61 (m, 2H), 1.58 – 1.52 (m, 4H), 1.28 – 1.27 (m, 2H), 1.26 – 1.18 (m, 10H), 0.74 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.9, 135.8, 131.3, 131.1, 129.6, 66.6, 50.1, 49.1, 32.8, 32.7, 31.0, 27.0, 26.2, 25.4, 24.8, 24.7, 22.4, 13.9. IR (thin film) 3417, 3061, 2858, 1688, 1517, 1378, 1292, 891 v_{max} /cm⁻¹.MP 169.2-171.6 °C. HRMS *m/z*: [M]^{+•} calcd for C₂₀H₃₀ClN₃O₃: 395.1976; calcd for [M-NO₂]^{+•}.

2-((4-chlorobenzyl)(nitro)amino)-2-(4-chlorophenyl)-N-cyclohexylacetamide, 3f

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (141 mg, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as white solid (301 mg, yield 69%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.38 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.16 (s, 1H), 5.75 (br d, J = 4.0 Hz, 1H), 5.17 (d, J = 16.2 Hz, 1H), 4.57 (d, J = 16.2 Hz, 1H), 3.91 – 3.81 (m, 1H), 1.94 (br s, 2H), 1.73 (br s, 3H), 1.41 – 1.34 (m, 2H), 1.23 – 1.09 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.0, 136.1, 134.1, 133.5, 131.3, 130.9, 129.6, 128.9, 128.6, 66.9, 52.6, 49.2, 32.8, 25.4, 24.8, 24.7. IR (thin film) 3416, 3066, 2937, 1688, 1519, 1317, 1095, 895 v_{max}/cm⁻¹. MP (crystallized in MeOH) 189.7-191.2 °C. HRMS *m*/*z*: [M]^{+•} calcd for C₂₁H₂₃Cl₂N₃O₃: 435.1116; calcd for [M-NO₂]^{+•}: 389.1187 Found: 389.1197[M-NO₂]^{+•}.

2-(4-chlorophenyl)-N-cyclohexyl-2-(cyclohexyl(nitro)amino)acetamide, 3g

Starting material: ammonium nitrate salt (162 mg, 1.0 mmol, 1.0 equiv), aldehyde (141 mg, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as white solid (81 mg, yield 21%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.34 – 7.31 (m, 2H), 7.28 – 7.24 (m, 2H), 5.47 (br d, J = 8.1 Hz, 1H), 5.29 (s, 1H), 4.38 – 4.32 (m, 1H), 3.76 – 3.66 (m, 1H), 2.10 (br d, 1H), 1.83 – 1.71 (m, 3H), 1.69 – 1.49 (m, 7H), 1.38 – 1.18 (m, 5H), 1.10 – 0.96 (m, 4H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.5, 135.1, 132.8, 129.9, 129.5, 64.9, 61.7, 49.1, 32.7, 32.6, 30.6, 29.1, 25.8, 25.5, 25.4, 25.2, 24.7, 24.6. IR (thin film) 3421, 3046, 2982, 1683, 1512, 1351, 1290, 891 v_{max}/cm⁻¹. MP (crystallized in MeOH) 203.1-204.5 °C. HRMS *m*/*z*: [M]^{+•} calcd for C₂₀H₂₈ClN₃O₃: 393.1819; calcd for [M-NO₂]^{+•}: 347.1890 Found: 347.1884[M-NO₂]^{+•}.

2-((4-chlorobenzyl)(nitro)amino)-N-cyclohexyl-2-(4-methoxyphenyl)acetamide, 3h

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (122 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluent: PE/EtOAc 8:2) to give the product as white solid (118 mg, yield 27%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.25 – 7.11 (m, 2H), 7.08 – 7.04 (m, 2H), 6.82 – 6.78 (m, 4H), 6.06 (s, 1H), 5.49 (d, J = 8.1 Hz, NH), 5.02 (d, J = 16.1 Hz, 1H), 4.45 (d, J = 16.1 Hz, 1H), 3.79 – 3.76 (m, 1H), 3.74 (s, 3H), 1.89 – 1.79 (m, 2H), 1.66 – 1.50 (m, 3H), 1.34 – 1.22 (m, 2H), 1.10 – 0.97 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.6, 160.7, 134.5, 133.3, 131.5, 129.1, 128.4, 124.1, 114.8, 67.3, 55.5, 52.2, 49.1, 32.8 (2C), 25.4, 24.8, 24.7. IR (thin film) 3416, 3052, 2857, 1685, 1517, 1352, 1268, 990 v_{max}/cm⁻¹. MP (crystallized in MeOH) 183.1-185.2 °C. HRMS m/z: [M]^{+•} calcd for C₂₂H₂₆ClN₃O₄: 431.1612; calcd for [M-NO₂]^{+•}: 385.1683 Found: 385.1686 [M-NO₂]^{+•}.

2-((4-chlorobenzyl)(nitro)amino)-N-cyclohexyl-2-(furan-3-yl)acetamide, 3i

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (87 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as yellow solid (125 mg, yield 32%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.51 – 7.48 (m, 1H), 7.36 (d, J = 1.7 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.30 (dd, J = 1.7, 0.7 Hz, 1H), 5.84 (s, 1H), 5.55 (br d, J = 7.8 Hz, 1H), 5.00 (d, J = 16.0 Hz, 1H), 4.68 (d, J = 16.0 Hz, 1H), 3.77 – 3.67 (m, 1H), 1.88 – 1.77 (m, 2H), 1.63 – 1.53 (m, 3H), 1.34 – 1.24 (m, 2H), 1.12 – 0.94 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.6, 144.4, 143.5, 134.0, 133.7, 129.2, 128.7, 117.7, 110.7, 60.0, 52.9, 49.1, 32.8, 32.7, 25.4, 24.7. IR (thin film) 3417, 3061, 2937, 1688, 1436, 1368, 1246, 875 v_{max}/cm⁻¹. MP (crystallized in MeOH) 198.8-200.4 °C. HRMS *m*/*z*: [M]^{+•} calcd for C₁₉H₂₂ClN₃O₄: 391.1299; calcd for [M-NO₂]^{+•}: 345.1370 Found:345.1366 [M-NO₂]^{+•}.

2-((4-chlorobenzyl)(nitro)amino)-N-cyclohexyl-2-(thiophen-3-yl)acetamide, 3j

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (88 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (124 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as white solid (172 mg, yield 42%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.35 (d, J = 3.0 Hz, 1H), 7.27 (dd, J = 5.0, 3.0 Hz, 1H), 7.10 (d, J = 8.5 Hz, 2H), 6.94 (dd, J = 5.0, 1.3 Hz, 1H), 6.85 (d, J = 8.5 Hz, 2H), 6.09 (s, 1H), 5.54 (d, J = 7.9 Hz, 1H), 5.05 (d, J = 16.1 Hz, 1H), 4.54 (d, J = 16.1 Hz, 1H), 3.80 – 3.70 (m, 1H), 1.87 – 1.83 (m, 2H), 1.65 – 1.51 (m, 3H), 1.34 – 1.22 (m, 2H), 1.11 – 1.01(m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.2, 134.3, 133.5, 132.8, 129.1, 128.5, 128.2, 127.6, 127.5, 62.9, 52.7, 49.1, 32.8, 25.4, 24.8, 24.7.IR (thin film) 3416, 3061, 2858, 1688, 1520, 1366, 1289, 845 v_{max}/cm⁻¹. MP (crystallized in MeOH) 199.5-201.2 °C. HRMS m/z: [M]^{+•} calcd for C₁₉H₂₂ClN₃O₃S: 407.1070; calcd for [M-NO₂]^{+•}.

2-((4-chlorobenzyl)(nitro)amino)-4-methyl-N-pentylpentanamide, 3k

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (126 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluent: PE/EtOAc 9:1) to give the product as amorphous solid (305 mg, yield 82%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.36 – 7.32 (m, 2H), 7.31 – 7.28 (m, 2H), 6.07 (br s, 1H), 5.24 (t, *J* = 7.5 Hz, 1H), 5.06 (d, *J* = 16.1 Hz, 1H), 4.90 (d, *J* = 16.1 Hz, 1H), 3.28 – 3.20 (m, 2H), 1.95 – 1.86 (m, 1H), 1.69 – 1.67 (m, 1H), 1.56 – 1.45 (m, 3H), 1.39 – 1.24 (m, 4H), 0.98 – 0.91 (m, 9H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.8, 133.9 (2C), 129.3, 128.8, 61.6, 51.4, 39.8, 38.1, 28.9, 25.0, 22.4, 22.3, (2C) 13.4. IR (thin film) 3430, 3046, 2873, 1683, 1517, 1371, 1290, 922 v_{max}/cm^{-1} . HRMS *m/z*: [M]^{+•} calcd for C₁₈H₂₈ClN₃O₃: 369.1819; calcd for [M-NO₂]^{+•}: 323.1890 Found: 323.1886 [M-NO₂]^{+•}.

2-(benzyl(nitro)amino)-N-pentyl-2-(thiophen-3-yl)acetamide, 3l

Starting material: ammonium nitrate salt (170 mg, 1.0 mmol, 1.0 equiv), aldehyde (88 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (126 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as white solid (143 mg, yield 40%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.35 – 7.33 (m, 1H), 7.26 (dd, J = 5.0, 3.0 Hz, 1H), 7.17 – 7.14 (m, 3H), 6.95 (dd, J = 5.0, 1.9 Hz, 3H), 6.02 (s, 1H), 5.60 (br s, 1H), 5.09 (d, J = 15.9 Hz, 1H), 4.66 (d, J = 15.9 Hz, 1H), 3.29 – 3.18 (m, 2H), 1.44 – 1.40 (m, 2H), 1.26 – 1.18 (m, 4H), 0.81 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.2, 135.6, 132.8, 128.4, 128.3, 127.7 (2C), 127.6, 127.4, 63.0, 53.6, 40.0, 29.0, 28.9, 22.3, 14.0. IR (thin film) 3427, 3045, 1682, 1524, 1372, 1248, 891 v_{max}/cm^{-1} . MP 115.3-116.1 °C. HRMS m/z: [M]^{+•} calcd for C₁₈H₂₃N₃O₃S: 361.1460 Found: 361.1445.

2-(4-chlorophenyl)-2-((2-cyclohexylethyl)(nitro)amino)-N-pentylacetamide, 3m

Starting material: ammonium nitrate salt (190 mg, 1.0 mmol, 1.0 equiv), aldehyde (140 mg, 1.0 mmol, 1.0 equiv), and isocyanide (126 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 95:5, 9:1) to give the product as white solid (191 mg, yield 49%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.38 – 7.33 (m, 2H), 7.30 – 7.26 (m, 2H), 5.99 (s, 1H), 5.76 (s, 1H), 3.77 – 3.68 (m, 1H), 3.45 – 3.37 (m, 1H), 3.24 – 3.18 (m, 2H), 1.57 – 1.32 (m, 9H), 1.29 – 1.12 (m, 5H), 1.00 – 0.98 (m, 5H), 0.81 (t, *J* = 7.0 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.8, 135.9, 131.14 (2C), 129.6, 66.7, 48.4, 40.0, 35.4, 34.3, 32.8, 32.7, 29.0, 28.9, 26.3, 26.1, 26.0, 22.3, 14.0. IR (thin film) 3430, 3047, 2928, 1693, 1519, 1330, 1267, 899 v_{max}/cm⁻¹. MP116.6-118.1 °C. HRMS *m*/*z*: [M]^{+•} calcd for C₂₁H₃₂ClN₃O₃: 409.2132; calcd for [M-NO₂]^{+•}: 363.2203 Found: 363.2202[M-NO₂]^{+•}.

2-((4-chlorobenzyl)(nitro)amino)-N-(4-methoxybenzyl)-4-methylpentanamide, 3n

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (147 mg, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 8:2, 7:3) to give the product as white solid (326 mg, yield 78%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.30 (d, J = 8.0 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 6.51 (t, J = 5.4 Hz, 1H), 5.26 (t, J = 7.5 Hz, 1H), 5.06 (d, J = 16.1 Hz, 1H), 4.88 (d, J = 16.1 Hz, 1H), 4.38 (dd, J = 14.5, 7.2 Hz, 1H), 4.33 (dd, J = 14.5, 7.2 Hz, 1H), 3.83 (s, 3H), 1.95 – 1.69 (m, 1H), 1.74 – 1.67 (m, 1H), 1.56 – 1.49 (m, 1H), 0.94 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.9, 159.2, 133.8 (2C),129.3, 129.2, 129.1, 128.9, 114.2, 61.7, 55.3, 51.5, 43.3, 38.1, 25.0, 22.4 (2C). IR (thin film) 3425, 3068, 2994, 1682, 1517, 1371, 1292, 901 v_{max}/cm⁻¹. MP 133.5-134.8 °C. HRMS *m/z*: [M]^{+•} calcd for C₂₁H₂₆ClN₃O₄: 419.1612; calcd for [M-NO₂]^{+•}: 373.1683 Found: 373.1672[M-NO₂]^{+•}.

2-(benzyl(nitro)amino)-N-(2,6-dimethylphenyl)-4-methylpentanamide, 30

Starting material: ammonium nitrate salt (170 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (128 mg, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluent: PE/EtOAc 9:1) to give the product as white solid (122 mg, yield 34%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42 – 7.36 (m, 5H), 7.18 – 7.09 (m, 3H), 5.41 – 5.37 (m, 1H), 5.31 (d, J = 16.1 Hz, 1H), 4.92 (d, J = 16.1 Hz, 1H), 2.17 (s, 6H), 2.12 – 2.03 (m, 1H), 1.83 – 1.78(m, 1H), 1.71 – 1.64 (m, 1H), 1.01 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.8, 135.4, 135.1, 133.0, 128.9, 128.3, 128.13, 127.8, 127.7, 61.9, 52.8, 38.3, 25.1, 22.6, 22.3, 18.4. IR (thin film) 3399, 3068, 2873, 1695, 1464, 1389, 1294, 942 v_{max}/cm⁻¹. MP (crystallized in MeOH) 151.7-153.0 °C. HRMS *m/z*: [M]^{+•} calcd for C₂₁H₂₇N₃O₃: 369.2052 Found:369.2040.

Ethyl (2-((4-chlorobenzyl)(nitro)amino)-4-phenylbutanoyl)glycinate, 3p

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (132 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (109 μ L, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as yellow oil (375 mg, yield 86%).

¹HNMR (400 MHz, CDCl₃) δ (ppm) 7.37 – 7.26 (m, 7H), 7.14 – 7.10 (m, 2H), 6.64 (br t, J = 7.5 Hz, 1H), 5.19 – 5.15 (m, 2H), 4.83 (d, J = 16.2 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.06 (dd, J = 16.0, 5.4 Hz, 1H), 3.99 (dd, J = 16.0, 5.4 Hz, 1H), 2.75 – 2.58 (m, 2H), 2.47 – 2.38 (m, 1H), 2.13 – 2.09 (m, 1H), 1.33 (t, J = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 169.2, 168.2, 139.7, 134.0, 133.8, 129.3, 129.0, 128.8, 128.4, 126.6, 62.3, 61.8, 52.0, 41.5, 32.1, 31.0, 14.2. IR (thin film) 3420, 3049, 2986, 1744, 1693, 1523, 1377, 1282, 900 v_{max}/cm⁻¹. HRMS *m/z*: [M]^{+•} calcd for C₂₁H₂₄ClN₃O₅: 433.1404; calcd for [M-NO₂]^{+•}: 387.1475 Found:387.1474[M-NO₂]^{+•}.

2-((4-chlorobenzyl)(nitro)amino)-N-(3,4-dimethoxyphenethyl)-4-methylpentanamide, 3q

Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (191 mg, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as yellow oil (391 mg, yield 84%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.32 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 8.0 Hz, 2H), 6.09 (br s, 1H), 5.13 (t, J = 7.5 Hz, 1H), 4.99 (d, J = 16.2 Hz, 1H), 4.80 (d, J = 16.2 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.56 – 3.48 (m, 2H), 2.77 – 2.72 (m, 2H), 1.87 – 1.82 (m, 1H), 1.66 – 1.59 (m, 1H), 1.49 – 1.40 (m, 1H), 0.91 (d, J = 6.6 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.0, 149.1, 147.8, 133.8 (2C), 130.7, 129.2, 128.9, 120.7, 111.8, 111.4, 61.6, 55.9(2C), 51.5, 40.9, 38.1, 35.1, 24.9, 22.3(2C).IR (thin film) 3427, 3005, 1684, 1517, 1434, 1271, 844 v_{max}/cm⁻¹.HRMS *m*/*z*: [M]^{+•} calcd for C₂₃H₃₀ClN₃O₅: 463.1874 Found: 463.1858.

2-(allyl(nitro)amino)-N-(3,4-dimethoxyphenethyl)-4-methylpentanamide, 3r

Starting material: ammonium nitrate salt (216 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 μ L, 1.0 mmol, 1.0 equiv), and isocyanide (191 mg, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 8:2, 7:3) to give the product as colorless oil (196 mg, yield 52%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.87 – 6.84 (m, 1H), 6.76 – 6.72 (m, 2H), 6.04 (br d, 1H), 5.87 – 5.83(m, 1H), 5.31 (d, *J* = 16.0 Hz, 1H), 5.28 (d, *J* = 12.0 Hz, 1H), 5.14 (t, *J* = 7.6 Hz, 1H), 4.34 (dd, *J* = 16.0, 6.0 Hz, 1H), 4.27 (dd, *J* = 16.0, 6.0 Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.61 – 3.48 (m, 2H), 281 –2.77 (m, 2H), 1.86 – 1.77 (m, 1H), 1.72 –1.67 (m, 1H), 1.60 – 1.50 (m, 1H), 0.96 (d, *J* = 6.6 Hz, 3H), 0.94 (d, *J* = 6.6 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.0, 149.1, 147.8, 130.8, 130.6, 120.7, 119.5, 111.8, 111.4, 61.1, 55.9, 55.8 50.9, 40.9, 37.8, 35.1, 24.8, 22.5, 22.2. IR (thin film) 3428, 3057, 2962, 1686, 1516, 1352, 1292, 898 v_{max}/cm⁻¹. HRMS *m*/z: [M]^{+•} calcd for C₁₉H₂₉N₃O₅: 379.2107 Found: 379.2106.

General procedure for the three-component formation of 2:

The amine (1.0 equiv, 1.0 mmol) was dissolved in DCM (0.25 M), aldehyde (1.0 equiv, 1.0 mmol), isocyanide (1.0 equiv, 1.0 mmol) and an aqueous 70% of HNO₃ (1.0 equiv, 1.0 mmol) were added. The reaction was stirred at room temperature under argon overnight. The crude mixture was diluted with a saturated aqueous solution of hydrogenocarbonate and extracted three times with diethyl

ether. The organic layer was then dessicated over magnesium sulfate, filtrated and evaporated under reduced pressure. The crude product was then purified by column chromatography (eluents EP/EtOAc).

2-((4-chlorobenzyl)amino)-N-cyclohexyl-4-methylpentanamide, 2a

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.37 – 7.33 (m, 2H), 7.27 (d, J = 8.6 Hz, 2H), 7.03 (br d, J = 8.4 Hz, 1H), 3.85 – 3.77 (m, 1H), 3.74 (d, J = 13.3 Hz, 1H), 3.65 (d, J = 13.3 Hz, 1H), 3.16 – 3.12 (m, 1H), 1.96 – 1.87 (m, 2H), 1.76 – 1.59 (m, 6H), 1.47 – 1.37 (m, 3H), 1.28 – 1.14 (m, 3H), 0.97 (d, J = 6.5 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.5, 138.2, 133.1, 129.5, 128.7, 61.1, 52.1, 47.4, 43.1, 33.2, 25.6, 25.1, 24.8, 23.3, 21.9. IR (thin film) 3425, 3358, 3053, 1666, 1430, 1245, 900 v_{max}/cm^{-1} . MP (white solid): 105.1-106.0 °C. HRMS *m/z*: [M]^{+•} calcd for C₁₉H₂₉ClN₂O: 336.1968 Found: 336.1963.

2-(phenethyl)-N-2,6-xylyl-2-(butylamino)acetamide 2b

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.35 – 7.22 (m, 3H), 7.21 – 7.11 (m, 3H), 7.08 – 6.96 (m, 3H), 5.18 – 5.13 (m, 1H), 3.73 – 3.62 (m, 2H), 2.75 – 2.64 (m, 2H), 2.51 – 2.33 (m, 1H), 2.20 – 2.03 (m, 7H), 1.82 – 1.66 (m, 1H), 1.65 – 1.46 (m, 1H), 1.28 (hex, J = 7.4 Hz, 2H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 166.2, 139.8, 134.9 (2C), 132.9, 128.8 (2C), 128.3 (2C), 128.3 (2C), 127.7, 126.6, 62.3, 49.1, 32.3, 30.9, 29.4, 20.1, 18.5 (2C), 13.6; HRMS *m*/*z*: [M]^{+•} calcd for C₂₂H₃₀N₂O 338.2358, found: 337.2402.

Ethyl (2-(benzylamino)-4-phenylbutanoyl)glycinate 2c

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.53 – 7.14 (m, 9H), 7.14 – 6.96 (m, 2H), 6.44 (br t, J = 5.5 Hz, 1H), 5.21 (d, J = 16.1 Hz, 1H), 5.06 (t, J = 7.4 Hz, 1H), 4.80 (d, J = 16.1 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 4.03 (dd, J = 18.0, 6.0 Hz, 1H), 3.90 (dd, J = 18.0, 6.0 Hz, 1H), 2.74 – 2.50 (m, 2H), 2.47 – 2.30 (m, 1H), 2.17 – 2.07 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 168.0, 139.8, 135.2, 128.8 (2C), 128.6 (2C), 128.3 (2C), 128.1, 127.8 (2C), 126.4, 62.3, 61.7, 52.8, 41.4, 32.1, 30.7, 14.1; HRMS *m/z*: [M]^{+•} calcd for C₂₁H₂₆N₂O₃ 354.1943, found: 353.1735.

Three-component amine formation:

RX Experimental part:

Single crystal of compound **31** was mounted on a kapton loop using Paratone® oil and cooled to 150 K in a nitrogen stream for X-ray structure determination.

The loop was transferred to a Nonius Kappa CCD diffractometer using Mo K α (l = 0.71069 Å) Xray source, a graphite monochromator and a Bruker APEX-II detector. Preliminary orientation matrixes and cell constants were determined by collection of 10 s frames, followed by spot integration and least-squares refinement.

Structure solution:

Data were integrated and corrected for Lorentz and polarization effects. The crystal structure was solved using SHELXT-2014 and refined in SHELXL-2014 by full-matrix least squares using anisotropic thermal displacement parameters for all non-hydrogen atoms.

The structure solution and the refinement were achieved with the PLATON software. The position of the hydrogen atoms was determined using residual electronic densities which are calculated by a Fourier difference.

Finally, ORTEP drawings were produced using Mercury with 50% probability thermal ellipsoids. CCDC 1524126

Experimental data:

Temperature: 150 K	
<u>Crystal data:</u>	
Empirical Formula	$C_{18} \ H_{23} \ N_3 \ O_3 \ S$
Formula Weight	361.45
Crystal Color, Habit	colorless block
Crystal Dimensions	0.340x0.180x0.160mm
Crystal System	monoclinic
Lattice Type	P 2 ₁ /c

Lattice Parameters:

a(Å)	9.8097(3)
b(Å)	19.8264(4)
c(Å)	9.5259(3)
α(°)	90
β(°)	95.136(2)
γ(°)	90
$V(Å^3)$	1845.26(9)
Z	4
$d(g-cm^{-3})$	1.301
F(000)	768
$\mu(cm^{-1})$	0.197

Intensity measurements:

Diffractometer	Bruker APEX II CCD
Monochromator	graphite
Radiation	MoKα (λ = 0.71069 Å)
Maximum theta	32.218 °
HKL ranges	-13 14; -29 29; -14 14
No. of Reflexions measured	Total: 19633 Unique: 6512
	$(R_{int} = 0.0386)$
Absorption corrections	multi-scan; min = 0.6973 ; max =
	0.7464

Structure solution and refinement:

Structure Solution	SHELXT-2014	
Refinement	SHELXL-2014	
Refinement type	Fsqd	
Hydrogen atoms	mixed	
Parameters refined	230	
Reflections/parameter	22	
wR2	0.1288	
R1	4.34 %	
Completeness	99.7 %	
Weights a, b	0.0657; 0.4231	
GoF	1.020	
Difference peak / hole (e Å ⁻³)	0.420(0.058) / -0.363(0.058)	

Structure:

Image 1: ORTEP structure of 3l (hydrogen atoms are omitted for clarity)

Image 2: ORTEP structure of 3l with the presence of hydrogen atoms

Image 3: ORTEP structure of 3l CCDC 1524126 showing hydrogen bounding

Table 2. Atomic	ic Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2	2 x 10^3) for
mv178_1_a		

atom	x	У	Z	U(eq)
S(1)	3693(1)	4856(1)	1751(1)	30(1)
0(1)	5101(1)	1709(1)	704(1)	28(1)
0(2)	6808(1)	1947(1)	-540(1)	39(1)
0(3)	2893(1)	2478(1)	-1403(1)	24(1)
N(1)	5788(1)	2104(1)	55(1)	24(1)
N(2)	5398(1)	2757(1)	1(1)	20(1)
N(3)	1879(1)	2472(1)	656(1)	18(1)
C(1)	6120(1)	3199(1)	-902(1)	22(1)
C(2)	4157(1)	2921(1)	681(1)	16(1)
C(3)	2902(1)	2589(1)	-131(1)	16(1)
C(4)	604(1)	2144(1)	134(1)	21(1)
C(5)	535(1)	1432(1)	738(1)	23(1)
C(6)	1629(1)	963(1)	258(1)	25(1)

C(7)	1728(1)	290(1)	1030(1)	27(1)
C(8)	2842(2)	-159(1)	565(2)	48(1)
C(9)	7460(1)	3467(1)	-214(1)	18(1)
C(10)	7747(1)	3484(1)	1238(1)	20(1)
C(11)	8968(1)	3764(1)	1827(1)	25(1)
C(12)	9903(1)	4031(1)	974(2)	30(1)
C(13)	9615(1)	4015(1)	-475(2)	31(1)
C(14)	8407(1)	3731(1)	-1070(1)	24(1)
C(15)	3926(1)	3670(1)	767(1)	17(1)
C(16)	3358(1)	4077(1)	-373(1)	22(1)
C(17)	3184(1)	4740(1)	9(1)	24(1)
C(18)	4157(1)	4030(1)	1986(1)	23(1)

U(eq) is defined as 1/3 the trace of the Uij tensor.

Table 3. Bond lengths (A) and angles (deg) for $mv178_1_a$

	S(1)-C(17)	1.705(1)	S(1)-C(18)	1.708(1)	
	O(1)-N(1)	1.235(1)	O(2)-N(1)	1.233(1)	
	O(3)-C(3)	1.231(1)	N(1)-N(2)	1.350(1)	
	N(2)-C(1)	1.456(1)	N(2)-C(2)	1.465(1)	
	N(3)-C(3)	1.325(1)	N(3)-C(4)	1.458(1)	
	N(3)-H(1N)	0.87(2)	C(1)-C(9)	1.511(2)	
	C(1)-H(1A)	0.9900	C(1)-H(1B)	0.9900	
	C(2)-C(15)	1.506(1)	C(2)-C(3)	1.542(1)	
	C(2)-H(2)	1.0000	C(4)-C(5)	1.528(2)	
	C(4)-H(4A)	0.9900	C(4)-H(4B)	0.9900	
	C(5)-C(6)	1.522(2)	C(5)-H(5A)	0.9900	
	C(5)-H(5B)	0.9900	C(6)-C(7)	1.523(2)	
	C(6)-H(6A)	0.9900	C(6)-H(6B)	0.9900	
	C(7)-C(8)	1.506(2)	С(7)-Н(7А)	0.9900	
	С(7)-Н(7В)	0.9900	C(8)-H(8A)	0.9800	
	C(8)-H(8B)	0.9800	C(8)-H(8C)	0.9800	
	C(9)-C(10)	1.388(2)	C(9)-C(14)	1.392(2)	
	C(10)-C(11)	1.392(2)	C(10)-H(10)	0.9500	
	C(11)-C(12)	1.383(2)	C(11)-H(11)	0.9500	
	C(12)-C(13)	1.384(2)	C(12)-H(12)	0.9500	
	C(13)-C(14)	1.387(2)	C(13)-H(13)	0.9500	
	C(14)-H(14)	0.9500	C(15)-C(18)	1.364(2)	
	C(15)-C(16)	1.426(2)	C(16)-C(17)	1.379(2)	
	C(16)-H(16)	0.9500	C(17)-H(17)	0.9500	
	C(18)-H(18)	0.9500			
C(17)	-S(1)-C(18)	92.93(6)	O(2)-N(1)-O(1)		124.9(1)
0(2)-1	N(1)-N(2)	117.6(1)	O(1)-N(1)-N(2)		117.5(1)
N(1)-1	N(2)-C(1)	116.6(1)	N(1)-N(2)-C(2)		116.1(1)
C(1)-1	N(2)-C(2)	126.5(1)	C(3)-N(3)-C(4)		123.8(1)
C(3)-1	N(3)-H(1N)	118(1)	C(4)-N(3)-H(1N)		118(1)
N(2)-	C(1)-C(9)	113.9(1)	N(2)-C(1)-H(1A)		108.8
C(9)-	С(1)-Н(1А)	108.8	N(2)-C(1)-H(1B)		108.8
C(9)-	C(1)-H(1B)	108.8	H(1A)-C(1)-H(1B)		107.7
N(2)-	C(2)-C(15)	112.25(8)	N(2)-C(2)-C(3)		109.92(8)

C(15)-C(2)-C(3)	109.34(8)	N(2)-C(2)-H(2)	108.4
C(15)-C(2)-H(2)	108.4	C(3)-C(2)-H(2)	108.4
O(3)-C(3)-N(3)	125.9(1)	O(3)-C(3)-C(2)	120.4(1)
N(3)-C(3)-C(2)	113.7(1)	N(3)-C(4)-C(5)	110.5(1)
N(3)-C(4)-H(4A)	109.6	C(5)-C(4)-H(4A)	109.6
N(3)-C(4)-H(4B)	109.6	C(5)-C(4)-H(4B)	109.6
H(4A)-C(4)-H(4B)	108.1	C(6)-C(5)-C(4)	113.3(1)
C(6)-C(5)-H(5A)	108.9	C(4)-C(5)-H(5A)	108.9
C(6)-C(5)-H(5B)	108.9	C(4)-C(5)-H(5B)	108.9
H(5A)-C(5)-H(5B)	107.7	C(5)-C(6)-C(7)	114.0(1)
C(5)-C(6)-H(6A)	108.7	C(7)-C(6)-H(6A)	108.7
C(5)-C(6)-H(6B)	108.7	C(7)-C(6)-H(6B)	108.7
H(6A)-C(6)-H(6B)	107.6	C(8)-C(7)-C(6)	113.1(1)
C(8)-C(7)-H(7A)	109.0	C(6)-C(7)-H(7A)	109.0
C(8)-C(7)-H(7B)	109.0	C(6)-C(7)-H(7B)	109.0
H(7A)-C(7)-H(7B)	107.8	C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5	H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5	H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5	C(10)-C(9)-C(14)	119.2(1)
C(10)-C(9)-C(1)	122.1(1)	C(14)-C(9)-C(1)	118.6(1)
C(9)-C(10)-C(11)	120.1(1)	C(9)-C(10)-H(10)	119.9
C(11)-C(10)-H(10)	119.9	C(12)-C(11)-C(10)	120.5(1)
C(12)-C(11)-H(11)	119.7	C(10)-C(11)-H(11)	119.7
C(11)-C(12)-C(13)	119.3(1)	С(11)-С(12)-Н(12)	120.3
С(13)-С(12)-Н(12)	120.3	C(12)-C(13)-C(14)	120.5(1)
С(12)-С(13)-Н(13)	119.8	C(14)-C(13)-H(13)	119.8
C(13)-C(14)-C(9)	120.3(1)	C(13)-C(14)-H(14)	119.9
C(9)-C(14)-H(14)	119.9	C(18)-C(15)-C(16)	112.1(1)
C(18)-C(15)-C(2)	123.2(1)	C(16)-C(15)-C(2)	124.5(1)
C(17)-C(16)-C(15)	112.8(1)	C(17)-C(16)-H(16)	123.6
С(15)-С(16)-Н(16)	123.6	C(16)-C(17)-S(1)	110.6(1)
C(16)-C(17)-H(17)	124.7	S(1)-C(17)-H(17)	124.7
C(15)-C(18)-S(1)	111.5(1)	C(15)-C(18)-H(18)	124.2
S(1)-C(18)-H(18)	124.2		

atom	U11	U22	U33	U23	U13	U12
S(1)	37(1)	20(1)	33(1)	-5(1)	3(1)	-1(1)
0(1)	33(1)	20(1)	31(1)	0(1)	1(1)	0(1)
0(2)	34(1)	35(1)	49(1)	-13(1)	14(1)	7(1)
0(3)	26(1)	35(1)	13(1)	-3(1)	1(1)	-5(1)
N(1)	24(1)	22(1)	26(1)	-7(1)	-1(1)	2(1)
N(2)	17(1)	19(1)	24(1)	0(1)	3(1)	0(1)
N(3)	17(1)	21(1)	14(1)	-1(1)	1(1)	-3(1)
C(1)	17(1)	32(1)	17(1)	2(1)	1(1)	-2(1)
C(2)	15(1)	18(1)	14(1)	0(1)	0(1)	-1(1)
C(3)	17(1)	16(1)	13(1)	1(1)	0(1)	-1(1)
C(4)	16(1)	23(1)	24(1)	0(1)	0(1)	-3(1)
C(5)	21(1)	24(1)	24(1)	1(1)	5(1)	-6(1)
C(6)	26(1)	22(1)	27(1)	3(1)	4(1)	-2(1)
C(7)	34(1)	22(1)	24(1)	3(1)	-3(1)	-4(1)
C(8)	53(1)	33(1)	60(1)	14(1)	13(1)	12(1)
C(9)	16(1)	19(1)	18(1)	-1(1)	3(1)	2(1)
C(10)	20(1)	24(1)	18(1)	1(1)	2(1)	1(1)
C(11)	24(1)	28(1)	22(1)	-3(1)	-4(1)	2(1)
C(12)	19(1)	33(1)	37(1)	-8(1)	-1(1)	-4(1)
C(13)	23(1)	37(1)	33(1)	-3(1)	10(1)	-8(1)
C(14)	22(1)	29(1)	21(1)	-1(1)	6(1)	-1(1)
C(15)	16(1)	17(1)	19(1)	0(1)	1(1)	-2(1)
C(16)	22(1)	21(1)	22(1)	3(1)	-1(1)	0(1)
C(17)	22(1)	21(1)	28(1)	3(1)	3(1)	1(1)
C(18)	28(1)	20(1)	22(1)	-2(1)	0(1)	-1(1)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for mv178_1_a

The anisotropic displacement factor exponent takes the form

2 pi^2 [h^2a*^2U(11) +...+ 2hka*b*U(12)]

atom	Х	У	Z	U(eq)
H(1N)	2020(20)	2551(7)	1550(20)	21
H(1A)	5520	3585	-1192	26
H(1B)	6302	2948	-1764	26
H(2)	4255	2735	1659	19
H(4A)	543	2121	-908	25
H(4B)	-182	2412	408	25
H(5A)	636	1459	1780	28
H(5B)	-378	1238	452	28
H(6A)	2527	1192	398	30
H(6B)	1434	876	-763	30
H(7A)	1902	374	2055	32
H(7B)	840	52	869	32
H(8A)	2649	-266	-438	72
H(8B)	2878	-577	1116	72
H(8C)	3723	74	713	72
H(10)	7109	3303	1832	25
H(11)	9161	3772	2822	30
H(12)	10733	4224	1379	36
H(13)	10251	4199	-1066	37
H(14)	8224	3717	-2066	28
H(16)	3123	3908	-1297	26
H(17)	2830	5085	-613	28
H(18)	4530	3844	2857	28

Table 5. Hydrogen Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for $mv178_1a$