N-Heterocyclic Carbene (NHC) Catalyzed Atom Economical Construction of 2,3-Disubstituted Indoles

Battu Harish, ${ }^{a, b}$ Manyam Subbireddy, ${ }^{a}$ and Surisetti Suresh ${ }^{* a, b}$${ }^{\text {a }}$ Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
${ }^{\mathrm{b}}$ Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology(CSIR-IICT), Hyderabad 500 007, India
Table of Contents:

1. General information S2
2. General experimental procedure for the optimization study S4
3. Optimisation survey S5
4. General procedure for NHC catalysed synthesis of 2-subsituted indole-3-acetic acid derivatives S10
5. Experimental procedure for the NHC catalysed gram-scale synthesis of $1 q$ S11
6. Experimental procedure for Cu catalysed tandem N-arylation followed by amide bond formation (Paullone synthesis) S12
7. Experimental procedure for base mediated ester hydrolysis S13
8. Spectral data of products S14
9. References S33
10. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products S34

1. General information

Unless otherwise noted, all the reactions were performed in oven dried glassware with magnetic stirring and under an atmosphere of argon using Schlenk line technique. Reported temperatures are the oil bath surrounding temperature of the Schlenk tube or reaction vessel.

All the solvents which are used in the reactions were dried and freshly distilled solvents according to their standard procedures and transferred under argon. Dry DMF, DMSO, $\mathrm{CH}_{3} \mathrm{CN}, t-\mathrm{BuOH}, \mathrm{DME}$ and 1,4-dioxane were purchased from Finar scientifics, India. Which were stored over activated 4 Å molecular sieves.

All the reagents, aldehydes, anilines, acrylates and catalysts (NHCs) were purchased from Sigma-Aldrich, Alfa Aesar, and TCI, used without further purification. DBU was used under argon atmosphere.

Analytical thin layer chromatography (TLC) was performed on Merck silica gel $60 \mathrm{~F}_{254}$ plates. Eluted plates were visualised by ultraviolet light (254 nm) lamp, iodine; 2,4-DNP, p-anisaldehyde were used as a developing agents followed by heating. Purification of products was carried out by column chromatography using $60-120$ mesh silica and hexane, ethyl acetate were used as eluents, concentration under reduced pressure was performed by rotary evaporator at $40-45{ }^{\circ} \mathrm{C}$, under reduced pressure. The yields were mentioned to the purified products.
${ }^{1}$ HNMR spectra were recorded at room temperature on a Bruker A V 300, A V 400 and 500 MHz instruments. Chemical shifts (δ) are reported in ppm relative to TMS. The residual solvent signals were used as references like $\left(\mathrm{CDCl}_{3} \delta \mathrm{H} 7.26\right.$ ppm, DMSO $-\mathrm{d}_{6} \delta \mathrm{H} 2.54 \mathrm{ppm}$). Multiplicity of the compounds in the data reported as ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet $)$. Coupling constants (J) are represented in $\mathrm{Hz} .{ }^{13} \mathbf{C N M R}$ spectra were recorded on 75, 100 , and 125 MHz spectrometers. Mass spectra was analysed by Electro spray Ionization (ESI) method was obtained on a Shimadzu LCMS-2020 mass spectrometer. High Resolution Mass Spectra data were obtained on a Thermo scientific Exactive ${ }^{\mathrm{TM}}$ Orbitrap mass spectrometer or Q STAR XL Hybrid MS/MS. Infrared spectroscopy was performed neat on a BRUKER FT-IR spectrophotometer in chloroform, and IR [KBr] spectra were recorded on a THERMO NICOLER NEXUS 670 FT-IR instrument

Melting points (MP) were determined using a Cintex - programmable melting point apparatus. MPs are uncorrected.

Synthesis of substituted ortho-amino cinnamates / cinnamides / cinnamonitiles (3a-h)

ortho-Amino cinnamates 3a-f were synthesized by following literature reports. ${ }^{1}$

3b

3c

3d

3 e

ortho-Amino cinnamide $\mathbf{3 g}$ was synthesized by following literature reports. ${ }^{2}$

ortho-Aminocinnamonitrile $\mathbf{3 g}$ was synthesized by following literature reports. ${ }^{1}$

3h

2. General experimental procedure for the optimization study

Experimental procedure for the synthesis of 1a via sequential aldimine formation-NHC catalysed reaction

A clean and dry round bottom flask was charged with methyl (E)-3-(2-aminophenyl)acrylate 3a ($0.5 \mathrm{mmol}, 88 \mathrm{mg}$), benzaldehyde $4 \mathbf{a}(0.5 \mathrm{mmol}, 53 \mathrm{mg})$ and added dry toluene (4 mL), $4 \AA$ molecular sieves (1.5 g) (CAUTION: activated molecular sieves should be used, otherwise conversion to aldimine is not effective). The reaction mixture was stirred at reflux for 18 h . After completion of the reaction molecular sieves were filtered and solvent was removed and evacuated to obtain the crude aldimine $\mathbf{2 a}$, which was used in the NHC catalysed transformation.

The crude aldimine 2a and NHC were taken in a clean and dry Schlenk tube, it was evacuated and back filled with argon gas (3-5 cycles).Then added dry solvent (4 mL) followed by base (1.2 equiv) under positive pressure of argon. Then reaction mixture was stirred at the temperature and time as mentioned in optimisation tables $\mathrm{S} 1-\mathrm{S} 4$. Then the mixture was diluted with EtOAc (10 mL) and filtered of through a short pad of silica gel, by eluting with EtOAc (20 mL) and concentrated under reduced pressure. The resulting residue was purified by column chromatography to afford methyl 2 -(2-phenyl-1H-indol-3-yl) acetate $\mathbf{1 a}$ as a pure product.

Note: please see tables S1-S4, for various NHCs, bases, solvents and their ratios/quantities

3. Optimisation survey

Table S1: Screening of various NHC precatalysts

Entry	NHC precatalyst (30 mol \%)	Structure of the NHC precatalyst	\% Yield of 1a
1.	5-(2-Hydroxyethyl)-3,4-dimethylthiazolium iodide		-
2.	3-Benzyl-5-(2-hydroxyethyl)-4methylthiazolium chloride		-
3.	3-Ethylbenzothiazolium bromide		-
4.	3-Methylbenzothiazolium iodide		-
5.	1,3-Bis-(2,6-diisopropylphenyl)imidazolinium chloride		-
6.	1,3-Bis(2,4,6-trimethylpheny))imidazolinium chloride		-

7.	1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride		-
8.	1,3-Di-tert-butylimidazolium tetrafluoroborate		-
9.	1,3-Diisopropylimidazolium chloride		-
10.	1,3-Bis(1-adamantyl)imidazolium tetrafluoroborate		-
11.	1,3-Dicyclohexylimidazolium chloride	$\overbrace{\mathrm{N}} \widehat{\mathrm{~N}}^{\mathrm{Cl}} \mathrm{~N}^{+}-\square$	-
12.	1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride		-
13	1,4-Dimethyl-1,2,4-triazolium iodide (C)		85
14.	2-Mesityl-2,5,6,7-tetrahydropyrrolo[2,1c] [1,2,4]triazol-4-ium chloride		82
15.	6,7-Dihydro-2-pentafluorophenyl-5H-pyrrolo[2,1-c]-1,2,4-triazolium tetrafluoroborate		-

Table S2: Screening of various bases

Entry	Base (1.2 equiv)	\% Yield of 1a
1.	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	60
2.	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	62
3.	$\mathrm{Et}_{3} \mathrm{~N}$	-
4.	1,4 -Diazabicyclo[2.2.2]octane (DABCO)	-
5.	NaH	-
6.	$1,5,7-$ Triazabicyclo[4.4.0]dec-5-ene (TBD)	65
7.	PPh_{3}	-
8.	KOH^{2}	70
9.	$\mathrm{~K}^{t} \mathrm{OBu}$	56
10.	$\mathrm{Cs}_{2} \mathrm{CO}$	

Table S3: Screening of molar equivalents of NHC F, DBU and reaction conditions

Entry	NHC precatalyst C $(\mathbf{1 , 4 - d i m e t h y l - 1 , 2 , 4 - t r i a z o l i u m ~ i o d i d e) ~}$ $(\mathbf{x x ~ m o l ~ \%) ~}$	DBU $(\mathbf{y y ~ m o l ~ \%) ~}$	Temp. $\left({ }^{\mathbf{o}} \mathbf{C}\right)$	Time (\mathbf{h})	\% Yield of 1a 1.$\quad 30$
20	120	60	6	85	
2.	10	120	60	6	64
3.	30	30	60	6	42
4.	30	60	60	6	62
5.	30	100	60	6	80
6.	30	120	rt	6	40
7.	30	120	rt	24	65
8.	30	120	40	6	68
9.	$\mathbf{3 0}$	$\mathbf{1 2 0}$	$\mathbf{8 0}$	$\mathbf{4}$	$\mathbf{9 0}$
$\mathbf{1 0 .}$					

Table S4: Screening of various solvents

Entry	Solvent	\% Yield of 1a
1.	$\mathrm{CH}_{3} \mathrm{CN}$	72
2.	1,4-Dioxane	78
3.	Dimethyl sulfoxide (DMSO)	82
4.	N, N-Dimethylformamide (DMF)	70
5.	1,2 -Dimethoxyethane (DME)	64
6.	t-BuOH	68

Table S5: Reaction without using NHC precatalyst (or) base
(Optimized conditions mentioned entry 10, Table S3 were used)

Entry	NHC precatalyst	Base	Solvent	\% Yield of 1a
1.	1,4-dimethyl-1,2,4-triazolium iodide	No base	THF	-
2.	No catalyst	DBU	THF	-

4. General procedure for NHC catalysed synthesis of 2-subsituted indole-3-acetic acid derivatives

A clean and dry round bottom flask was charged with ortho-amino cinnamate / ortho-amino cinnamide /ortho-amino cinnamonitrile (1 equiv, 0.5 mmol) and aromatic/heteroaromatic/vinyl aldehyde (1 equiv, 0.5 mmol) (solid aldehydes were weighed in atmospheric conditions and liquid aldehydes were transferred via syringe under the positive pressure of argon) and added dry toluene (4 mL) and activated $4 \AA$ molecular sieves $(1.5 \mathrm{~g})$. The reaction mixture was stirred at reflux temperature for 18-24 h to obtain for complete conversion of amine (reaction was monitored by TLC). After completion of the reaction molecular sieves were filtered off and solvent was removed and evacuated to obtain the crude aldimine, which was used in the NHC catalysed transformations.

The crude aldimine and NHC precatalyst C ($30 \mathrm{~mol} \%$) were taken into a clean and dry Schlenk tube, and it was evacuated and back filled with argon gas ($3-5$ cycles). Then added dry freshly distilled THF (4 mL) via syringe followed by the addition of DBU (1.2 equiv) via syringe under positive pressure of argon. Then reaction mixture was stirred in a pre-heated oil bath at $80^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was brought to room temperature and diluted with EtOAc (10 mL) and filtered of through a short pad of silica gel by eluting with EtOAc (20 mL) and concentrated under reduced pressure. The resulting residue was purified by column chromatography to afford 2 -subsituted indole-3-acetic acid derivatives.

5. Experimental procedure for the NHC catalysed gram-scale synthesis of $1 q$

A clean and oven dried two necked round bottom flask was charged with methyl (E)-3-(2-aminophenyl) acrylate 3a, (20 mmol , $3.54 \mathrm{~g})$, 2-bromobenzaldehyde ($20 \mathrm{mmol}, 2.32 \mathrm{~mL}$) and dry toluene $(160 \mathrm{~mL}$). To this added activated $4 \AA$ molecular sieves (10 $\mathrm{g})$. The reaction mixture was stirred at reflux temperature for 18 h . Then molecular sieves were filtered off, solvent was removed and evacuated to obtain the crude aldimine 2q. Which was used in the NHC catalysed transformation.

The crude aldiimine $\mathbf{2 q}$ and 1,4-dimethyl-1,2,4-triazolium iodide $\mathbf{C}(30 \mathrm{~mol} \%, 4.48 \mathrm{~g})$ were taken into a clean and dry round bottom flask and it was evacuated and back filled with argon gas ($3-5$ cycles). Then dry freshly distilled THF (160 mL) was added via cannula under the positive pressure of argon gas followed by the addition of DBU (1.2 equiv, 3 mL , from a freshly opened bottle) under positive pressure of argon. Then reaction mixture was stirred in a pre-heated oil bath at $80{ }^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction, it was brought to room temperature and diluted with EtOAc (100 mL) and filtered of through a short pad of silica gel, by eluting with EtOAc $(200 \mathrm{~mL})$ and concentrated under reduced pressure. The resulting residue was purified by column chromatography to afford methyl 2-(2-(2-bromophenyl)-1H-indol-3-yl) acetate $\mathbf{1 q}(5.71 \mathrm{~g})$ as a yellow solid, with 83% yield.

6. Experimental procedure for copper catalysed tandem- N -arylation followed by amide bond formation (Paullone synthesis)

Copper iodide ($10 \mathrm{~mol} \%, 0.2 \mathrm{mmol}, 38 \mathrm{mg}$), L-proline ($20 \mathrm{~mol} \%, 0.4 \mathrm{mmol} 46 \mathrm{mg}$), potassium carbonate (2 equiv, 4 mmol , 552 mg) and methyl 2-(2-(2-bromophenyl)-1 H -indol-3-yl) acetate $\mathbf{1 q}$, (1 equiv, $2 \mathrm{mmol}, 688 \mathrm{mg}$) were taken in a pressure tube under argon atmosphere. Then dry DMSO (8 mL), ammonium ($2 \mathrm{~mL}, \mathrm{NH}_{3}$ in 25% aq.solution) were added under argon atmosphere. The tube was sealed and the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 6 h .

The reaction mixture was brought to room temperature and diluted with ethyl acetate (20 mL) and washed with ice cold water ($3 \times 20 \mathrm{~mL}$). The organic phase was further diluted with ethyl acetate (50 mL) and washed with water (100 mL). Then it was dried over anhydrous sodium sulphate, filtered and concentrated. The crude was purified by column chromatography on silica gel to obtain paullone 5 .

7. Experimental procedure for base mediated ester hydrolysis

To a solution of methyl 2-(2-(2-bromophenyl)-1H-indol-3-yl) acetate $\mathbf{1 q}$ (1 equiv, $1 \mathrm{mmol}, 343 \mathrm{mg}$) in THF/ $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL} / 2$ mL) was added $\mathrm{LiOH}(4$ equiv, $1 \mathrm{mmol}, 96 \mathrm{mg}$) and the reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure. The crude was diluted in ethyl acetate (30 mL) and neutralised using 1 N HCl . The contents were extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The organic phase was separated, dried over anhydrous sodium sulphate, filtered and concentrated. The crude was purified by column chromatography on silica gel to obtain the product 2-(2-(2-bromophenyl)- 1 H -indol-3-yl) acetic acid $\mathbf{6}$ in 96% yield.

8. Spectral data of products

methyl 2-(2-phenyl-1H-indol-3-yl)acetate (1a):- white solid, $120 \mathrm{mg}(0.45 \mathrm{mmol}), 90 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 118$120^{\circ} \mathrm{C}$; IR 742, 1009, 1171, 1435, 1723, 2922, $3369 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.71(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.25(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 3 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.0,51.8,105.6,110.9$, 119.3 120.1, 122.6, 128.1, 128.2, 129.0, 132.4, 135.7, 136.2, 172.7; MS (ESI) m/z $266[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 266.11756$, found 266.11773 . The spectroscopic data were in good agreement with the reported data. ${ }^{1}$

ethyl 2-(2-phenyl-1H-indol-3-yl)acetate (1b):- pale yellow solid, $110 \mathrm{mg}(0.395 \mathrm{mmol}), 79 \%$, $\mathrm{R}_{\mathrm{f}}=0.5$ ($\mathrm{EtOAc} / \mathrm{Hexane}$, 10:90); MP $102-104{ }^{\circ} \mathrm{C}$; IR 740, 1026, 1156, 1453, 1712, $3363 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.65$ $(\mathrm{m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{br}, 1 \mathrm{H}),{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.3,31.3,61.0,105.6,111.1,119.3,120.0,122.5$, $128.0,128.3,129.0,129.1,132.5,136.0,136.3,172.6$; MS (ESI) m/z $280[\mathrm{M}+\mathrm{H}]^{+} \mathbf{H R M S}(\mathrm{ESI}, \mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO} \mathrm{N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 280.13321, found 280.13403. The spectroscopic data were in good agreement with the reported data. ${ }^{2}$

1c
tert-butyl 2-(2-phenyl-1H-indol-3-yl)acetate (1c):- cream solid, $113 \mathrm{mg}(0.366 \mathrm{mmol}), 73 \%, \mathrm{R}_{\mathrm{f}}=0.46$ (EtOAc/Hexane, 10:90); MP $107-109{ }^{\circ} \mathrm{C}$; IR 726, 906, 1138, 1454, 1714, 2927, $3393 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.44(\mathrm{~s}, 9 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.17(\mathrm{~m}$, $1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.72(\mathrm{~m}, 3 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=28.3$, 32.6, 80.9, 106.2, 110.9, 119.5, 119.9, 122.4, 127.9, 128.3, 128.9, 129.2, 132.6, 135.8, 136.1, 171.7; MS (ESI) m/z 308 [M+H] ${ }^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.16451$, found 308.16452.

2-(2-phenyl-1H-indol-3-yl)-1-(piperidin-1-yl)ethan-1-one (1d):- pale yellow solid, $105 \mathrm{mg}(0.33 \mathrm{mmol}), 66 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 30:70); MP 190-192 ${ }^{\circ}$ C; IR 697, 1224, 1455, 1627, 2933, $3251 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.14(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.51(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{br}, 1 \mathrm{H}) ;$ ${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=24.4,25.6,26.0,31.3,43.1,46.9,106.9,110.7,119.8,120.0,122.4,128.0,128.3,128.9,132.7,135.2$, $135.9,169.4 ;$ MS (ESI) m/z $319[\mathrm{M}+\mathrm{H}]^{+}$. The spectroscopic data were in good agreement with the reported data. ${ }^{2}$

2-(2-phenyl-1H-indol-3-yl)acetonitrile (1e):- pale yellow solid, $43 \mathrm{mg}(0.13 \mathrm{mmol}), 26 \%,\left(74 \%, 122 \mathrm{mg}\right.$ with isolated imine) $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 96-98 ${ }^{\circ} \mathrm{C}$; 740, 1212, 1453, 2249, 2922, $3396 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.90(\mathrm{~s}, 2 \mathrm{H}), 7.21-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=13.8,101.1,111.2,118.2,118.4,120.7,123.1,127.8,128.2,128.7,129.3,131.5,135.6,136.3 ;$ MS (ESI) m/z $231[\mathrm{M}-\mathrm{H}]^{+}$ HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 233.10732$, found 233.10684. The spectroscopic data were in good agreement with the literature report.

methyl 2-(5-fluoro-2-phenyl- $\mathbf{H} \boldsymbol{H}$-indol-3-yl)acetate (1f):- Yellow solid, 115 mg (0.405 mmol), $81 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, $10: 90$); MP $112-114{ }^{\circ} \mathrm{C}$; IR 771, $1174,1454,1724,2923,3358 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.74(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{td}, J=$ $9.1 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, $J=9.6 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.44$ (m, 1H), 7.46-7.52 (m, 2H), 7.58$7.65(\mathrm{~m}, 2 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.8,52.1,104.2,105.6,110.8,111.6,128.2,129.0,129.4,132.1,137.9$, 157.1, 159.0, 172.6; MS (ESI) m/z $284[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$284.10813, found 284.10833.

methyl 2-(6-chloro-2-phenyl-1H-indol-3-yl)acetate (1g):- pale yellow solid, $90 \mathrm{mg}(0.30 \mathrm{mmol}), 60 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $104-106^{\circ} \mathrm{C}$; IR 769, 1456, 1722, 2922, $3352 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.72(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 7.10-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.33-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(126$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.8,52.1,105.7,110.8,120.1,120.9,127.6,128.2,128.4,129.1,131.9,136.1,136.9,172.5 ;$ MS (ESI) m/z $298[\mathrm{M}-\mathrm{H}]^{+}$ HRMS (ESI, m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClNO}_{2}[\mathrm{M}-\mathrm{H}]^{+}$298.06293, found 298.06574.

1h
methyl 2-(5,7-dimethyl-2-phenyl-1H-indol-3-yl)acetate (1h):- White solid, $87 \mathrm{mg}(0.295 \mathrm{mmol}), 59 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 140-142 ${ }^{\circ} \mathrm{C}$; IR 768, 1167, 1451, 1722, 2921, $3368 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.46(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=16.6,21.5,31.0,52.1,105.5,116.5,119.8,125.0,128.0,128.3,128.8,128.9,129.7,132.7,133.6$, 136.1, 172.8; MS (ESI) m/z $294[\mathrm{M}+\mathrm{H}]^{+}$. The spectroscopic data were in good agreement with the reported data. ${ }^{1}$

$1 i$
methyl 2-(2-(4-nitrophenyl)-1H-indol-3-yl)acetate (1i):- Yellowish orange solid, 111 mg (0.355 mmol), $71 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 30:70); MP $164-166^{\circ} \mathrm{C}$; IR 772, 1017, 1451, 1859, 2944, $3318 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta=3.63(\mathrm{~s}, 3 \mathrm{H})$, $3.95(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 11.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta=30.0,52.1,107.4,111.6,119.3,119.6,123.1,124.1$, 128.5, 128.6, 133.3, 136.5, 138.9, 146.3, 171.9; MS (ESI) m/z $311[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 333.08458 , found 333.08443 .

methyl 2-(2-(4-cyanophenyl)-1H-indol-3-yl)acetate (1j):- cream colour solid, $128 \mathrm{mg}(0.44 \mathrm{mmol}), 88 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $130-132{ }^{\circ} \mathrm{C}$; IR 746, 1174, 1725, 2226, 2923, $3355 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.74(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 7.17-$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.82(\mathrm{~m}, 5 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.9,52.3$, 107.7, 111.2, 111.3, 118.7, 119.6, 120.6, 123.7, 128.5, 128.8, 132.7, 133.9, 136.2, 136.8, 172.3; MS (ESI) m/z $291[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 313.09475$, found 313.09457. The spectroscopic data were in good agreement with the reported data. ${ }^{1}$

methyl 2-(2-(4-(trifluoromethyl)phenyl)-1H-indol-3-yl)acetate (1k):- off-white solid, 129 mg (0.385 mmol), $77 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $122-124{ }^{\circ} \mathrm{C}$; IR 743, 1120, 1323, 1724, 2923, $3361 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.75$ (s, 3H), $3.86(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.78(\mathrm{~m}, 5 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $16.5,21.5,31.0,52.0,105.6,116.5,119.7,125.0,127.9,128.2,128.8,128.9,129.7,132.7,133.6,136.0,172.8 ;$ MS (ESI) m/z 334 $[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 334.10494$, found 334.10529.

methyl 2-(2-(2-chlorophenyl)-1H-indol-3-yl)acetate (11):- pale Yellow solid, $103 \mathrm{mg}(0.345 \mathrm{mmol}), 69 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $102-104^{\circ} \mathrm{C}$; IR 723, $905,1172,1452,1726,2926,3394 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.67(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H})$, $7.16-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.9 . \mathrm{Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.4,52.0,107.6,111.1,119.4,120.0,122.8,127.0,127.9,130.0,130.1,131.0,132.8,133.24,133.8$, 135.6, 172.5; MS (ESI) m/z $300[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 300.07858$, found 300.07872.

methyl 2-(2-(3-chlorophenyl)-1H-indol-3-yl)acetate (1m):- cream colour solid, $112 \mathrm{mg}(0.37 \mathrm{mmol}), 74 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 130-132 ${ }^{\circ} \mathrm{C}$; IR 772, 1218, 1443, 1608, 2926, $3395 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 7.18$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) 7.64-7.69(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.8,52.1,106.4,111.3,119.4,120.3,123.0,126.4,128.1,128.9,130.2,134.1,134.6,134.9$, 135.8, 172.3; MS (ESI) m/z $300[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 300.07858$, found 300.07867.

methyl 2-(2-(4-chlorophenyl)-1H-indol-3-yl)acetate (1n):- off-white solid, $114 \mathrm{mg}(0.38 \mathrm{mmol}), 76 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $104-106{ }^{\circ} \mathrm{C}$; IR 739, 1092, 1453, 1721, 2924, $3367 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 7.15-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 . \mathrm{Hz} 1 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz} 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13}$ C-NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=30.9,52.1,105.9,111.0,119.2,120.2,122.9,128.9,129.2,129.4,130.8,134.1,135.0,135.8,172.7$; MS (ESI) m/z $300[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 322.06053$, found 322.05997.

methyl 2-(2-(4-fluorophenyl)-1H-indol-3-yl)acetate (10):- Yellow solid, $114 \mathrm{mg}(0.40 \mathrm{mmol}), 80 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 109-111 ${ }^{\circ} \mathrm{C}$; IR 742, 1221, 1457, 1721, 2925, $3366 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.21(\mathrm{~m}$, $3 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.71(\mathrm{~m}, 3 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.8,52.1,105.5,110.9$, 116.0, 119.7, 122.7, 128.5, 128.8, 130.0, 135.5, 161.4, 163.8, 172.7; MS (ESI) $\mathrm{m} / \mathrm{z} 284[\mathrm{M}+\mathrm{H}]{ }^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$284.10813, found 284.10896.

methyl 2-(2-(4-bromophenyl)-1H-indol-3-yl)acetate (1p):- light peach solid, $145 \mathrm{mg}(0.42 \mathrm{mmol}), 84 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $120-122^{\circ} \mathrm{C}$; IR 744, 1172, 1436, 1726, 2923, $3387 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 7.15-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.7,52.0,106.1,111.0,119.3,120.1,122.3,122.9,128.9,129.7,131.2,132.1,135.0,135.7,172.6 ; \mathbf{M S}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $344[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+} 366.01001$, found 366.00944 . The spectroscopic data were in good agreement with the reported data. ${ }^{1}$

methyl 2-(2-(2-bromophenyl)-1 \boldsymbol{H}-indol-3-yl)acetate (1q):- pale yellow solid, $146 \mathrm{mg}(0.425 \mathrm{mmol}), 85 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 110-112 ${ }^{\circ} \mathrm{C}$; IR 740, 1271, 1433, 1722, $3393 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.63(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dt}, J=6.3 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.71(\mathrm{~m}$, $1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.0,51.8,107.2,111.1,119.4,120.0,122.7,124.0,127.4,127.8,130.2,133.0$, 133.2, 133.3, 134.7, 135.5, 172.4; MS (ESI) m/z $346[\mathrm{M}+2 \mathrm{H}]^{+}$HRMS (ESI, m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 344.02807$, found 344.02845 .

methyl 2-(2-(2-bromo-6-fluorophenyl)-1H-indol-3-yl)acetate (1r):- cream colour solid, 131 mg (0.36 mmol), $72 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 130-132 ${ }^{\circ} \mathrm{C}$; IR 743, 1246, 1438, 1723, 2924, $3393 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.56(\mathrm{~s}, 3 \mathrm{H})$, $3.64(\mathrm{~s}, 2 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.8,51.8,109.0,111.2,115.0,119.7,122.0,122.8,125.9,127.7,128.7,131.5$, 136.0, 160.0, 162.5, 171.8; MS (ESI) m/z $362[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrFNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 362.01865$, found 362.01936 .

1s
methyl 2-(2-(2-hydroxyphenyl)-1H-indol-3-yl)acetate (1s):- reddish brown colour liquid, 79 mg (0.28 mmol), $56 \%, \mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc/Hexane, 10:90); IR 753, 1213, 1457, 1725, 2924, $3381 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H - N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.72(\mathrm{~s}, 5 \mathrm{H}), 6.92-7.02(\mathrm{~m}, 2 \mathrm{H})$, $7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 30.7, 52.5, 107.3, 111.1, 116.8, 118.5, 118.6, 120.1, 120.5, 122.8, 128.1, 130.5, 130.8, 131.8, 136.2, 154.4, 173.9; MS (ESI) m/z 282 $[\mathrm{M}+\mathrm{H}]^{+}$.

methyl 2-(2-(p-tolyl)-1H-indol-3-yl)acetate (1t):- brownish yellow colour liquid, $98 \mathrm{mg}(0.35 \mathrm{mmol}), 70 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90) ; IR 772, 1171, 1436, 1728, 2923, $3394 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.41(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.3,31.1,52.1,105.0,111.0,119.1,120.0,122.4,128.2,129.1,129.6,129.5$, 135.8, 136.4, 138.0, 173.1; MS (ESI) m/z $280[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$280.13321, found 280.13310.

methyl 2-(2-(4-methoxyphenyl)-1H-indol-3-yl)acetate (1u):- cream colour solid, 101 mg (0.34 mmol), $68 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $102-104{ }^{\circ} \mathrm{C}$; IR 728, 1248, $1459,1726,2839,3393 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.72(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 6.98-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.0,52.0,55.3,104.7,110.8,114.4,119.0,120.0,122.2,124.8,129.0,129.5,135.6,136.2,159.5,172.9 ;$ MS (ESI) m/z $296[\mathrm{M}+\mathrm{H}]{ }^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$296.12812, found 296.12805. The spectroscopic data were in good agreement with the reported data. ${ }^{1}$

methyl 2-(2-(3,4,5-trimethoxyphenyl)-1H-indol-3-yl)acetate (1v):- pale Yellow solid, $114 \mathrm{mg}(0.32 \mathrm{mmol}), 64 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 20:80); MP 126-128 ${ }^{\circ} \mathrm{C}$; IR 724, 1120, 1433, 1727, 2935, $3356 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.73$ (s, 3H), $3.86(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.1,52.1,56.2,61.0,105.3,105.5,110.9,119.3,120.1,122.5,127.9,129.0,135.7$, 136.5, 137.9, 153.5, 172.8; MS (ESI) m/z $356[M+H]^{+}$HRMS (ESI, m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 356.14925$, found 356.14956.

methyl 2-(2-(4-(dimethylamino)phenyl)-1H-indol-3-yl)acetate (1w):- yellow colour liquid, $20 \mathrm{mg}(0.065 \mathrm{mmol}), 13 \%$, ($46 \mathrm{mg}(0.15$ mmol), 30%, with isolated imine), $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); IR 746, 1167, 1515, 1610, 1730, 2923, $3374 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.00(\mathrm{~s}, 6 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.60-7.65(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.1,40.5,52.0,104.0,110.6,112.7,118.8,119.8,121.9,129.1$, 135.5, 136.9, 150.0, 173.0; MS (ESI) m/z $309[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z):calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 309.15975$, found 309.15860.

methyl 2-(2-(6-bromobenzo[d][1,3]dioxol-5-yl)-1H-indol-3-yl)acetate (1x):- cream colour solid, $145 \mathrm{mg}(0.375 \mathrm{mmol}), 75 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 120-122 ${ }^{\circ} \mathrm{C}$; IR 772, 1223, 1458, 1727, 2923, $3394 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}$, 1 H); ${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.8,51.9,102.2,107.2,111.0,112.3,113.1,115.1,119.3,120.0,122.7,126.1,127.7,134.7$, 135.3, 147.3, 149.0, 172.3; MS (ESI) $\mathrm{m} / \mathrm{z} 388[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 388.01790$, found 388.01878 .

methyl 2-(2-(2-bromo-5-methoxyphenyl)-1H-indol-3-yl)acetate (1y):- off-white solid, 129 mg (0.345 mmol), $69 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $128-130{ }^{\circ} \mathrm{C}$; IR 745, 1014, $1223,1458,1728,2924,3387 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.87\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.9,52.0,55.6,107.2,111.0,113.9$, 116.7, 118.0, 119.4, 120.0, 122.8, 127.8, 133.7, 134.0, 134.7, 135.4, 158.8, 172.7; MS (ESI) m/z $374[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{NBr}[\mathrm{M}+\mathrm{H}]^{+}$374.03863, found 374.03920.

methyl 2-(2-([1,1'-biphenyl]-4-yl)-1H-indol-3-yl)acetate (1z):- pale yellow solid, $137 \mathrm{mg}(0.40 \mathrm{mmol}), 80 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $156-158{ }^{\circ} \mathrm{C}$; IR 789, 1172, 1435, 1727, $2923,3372 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.74(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 7.18$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 4 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.0,52.1,105.8,110.9,119.3,120.2,122.7,127.0,127.6$, 127.7, 128.6, 128.9, 129.1, 131.3, 135.8, 140.4, 140.8, 172.7; MS (ESI) m/z $342[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd C $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 342.14886, found 342.14892 .

methyl 2-(2-(naphthalen-2-yl)-1H-indol-3-yl)acetate (1aa):- light yellowish liquid, $98 \mathrm{mg}(0.31 \mathrm{mmol}), 62 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); IR 744, 1169, $1434,1722,2922,3392 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.75(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 7.17-$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86-7.99(\mathrm{~m}, 3 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}){ }^{13}{ }^{\mathbf{C}}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=31.0,52.1,106.0,110.9,119.3,120.2,122.7$, 125.9, 126.5, 126.7, 127.4, 127.8, 128.2, 128.7, 129.1, 129.7, 132.8, 133.5, 135.9, 136.2, 172.7; MS (ESI) m/z $316[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 316.13321$, found 316.13321.

methyl 2-(2-(pyridin-4-yl)-1H-indol-3-yl)acetate (1ab):- yellow solid, $104 \mathrm{mg}(0.39 \mathrm{mmol}), 78 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 40:60); MP 118-120 ${ }^{\circ} \mathrm{C}$; IR 724, 906, 1217, 1414, 1603, 1728, $2928 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.73(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.71(\mathrm{~m}, 1 \mathrm{H}), 8.62-8.66(\mathrm{~m}, 2 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.3,52.5,108.0,111.4,119.6,120.5,122.3,123.7,128.9,133.1,136.5,140.1,150.4,172.3 ;$ MS (ESI) m/z 267 $[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$267.11280, found 267.11210.

methyl 2-(2-(quinolin-4-yl)-1H-indol-3-yl)acetate (1ac):- cream colour solid, 130 mg (0.41 mmol), $82 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 30:70); MP $138-140{ }^{\circ} \mathrm{C}$; IR 745, 1167, $1435,1732,2923,3345 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.62(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.85-8.87(\mathrm{~m}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.8,52.0,108.8,111.3,119.5,120.4,122.8,123.3,125.9,127.1$, 127.2, 128.2, 129.7, 132.0, 136.4, 138.6, 148.4, 149.8, 172.0; MS (ESI) m/z $317[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 317.12605$, found 317.12802.

methyl 2-(2-(thiophen-2-yl)-1H-indol-3-yl)acetate (1ad):- pale yellow solid, $121 \mathrm{mg}(0.45 \mathrm{mmol}), 89 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $110-112^{\circ} \mathrm{C}$; IR 696, 1191, 1433, 1716, 2950, $3365 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.69(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 7.10-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.64(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}) $\delta=31.0,52.1,106.2,110.9,119.1,120.3,123.0,125.8,125.9,128.0,129.0,130.0,133.9,135.7,172.4 ;$ MS (ESI) m/z 272 $[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NSO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 272.07398$ found 272.07384 .

1ae
methyl 2-(2-(1-tosyl-1H-pyrrol-2-yl)-1H-indol-3-yl)acetate (1ae):- light brown solid, 165 mg (0.405 mmol), $81 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 118-120 ${ }^{\circ} \mathrm{C}$; IR 745, 1170, 1451, 1731, $3399 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H - N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.29(\mathrm{~s}, 3 \mathrm{H}), 3.15$ (s, $2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 6.38(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 2 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.6,30.6,52.0,109.9,111.3,112.0,119.3,119.6$, 120.0, 123.2, 124.3, 124.7, 127.0, 129.5, 134.5, 135.7, 145.1, 172.2; MS (ESI) m/z $409[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{SO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 409.12165$, found 409.12151.

methyl 2-(2-(4-chloro-3-methyl-1-phenyl-1H-pyrazol-5-yl)-1H-indol-3-yl)acetate (1af):- cream colour solid, 165 mg (0.437 mmol), $87 \%, \mathrm{R}_{\mathrm{f}}=0.5(\mathrm{EtOAc} / \mathrm{Hexane}, 20: 80) ; \mathbf{M P} 166-168{ }^{\circ} \mathrm{C}$; IR 745, 1157, 1452, 1732, 2923, $3358 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $2.28(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.70(\mathrm{~m}$, $3 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.0,31.0,51.9,108.5,111.0,119.3,120.0,122.7,124.9,128.1,128.4,129.1$, 136.2, 138.1, 149.9, 172.1; MS (ESI) m/z $380[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 380.11603$ found 380.11612 .

1ag
methyl (\boldsymbol{E})-2-(2-styryl-1H-indol-3-yl)acetate (1ag):- off-white solid, $124 \mathrm{mg}(0.425 \mathrm{mmol}), 85 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 104-106 ${ }^{\circ} \mathrm{C}$; IR 748, 771, 1158, 1436, 1720, 2921, $3382 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.68(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}$, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.1,52.2,108.7,110.6,116.6,119.0,120.0,123.4,126.4$ (2C), 127.5, 127.9, 128.8 (2C), 133.7, 136.4, 136.9, 171.7; MS (ESI) m/z $292[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$292.13080, found 292.13319. The spectroscopic data were in good agreement with the reported data. ${ }^{3}$

(\boldsymbol{E})-2-(2-styryl-1 \boldsymbol{H}-indol-3-yl)acetonitrile (1ah):- yellowish green solid, $73 \mathrm{mg}\left(0.28 \mathrm{mmol}\right.$), 56% (with isolated imine), $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 130-132 ${ }^{\circ} \mathrm{C}$; IR 749, 950, 1322, 1451, 2249, 2924, $3356 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.93$ (s, $2 \mathrm{H}), 6.93(\mathrm{~d}, J=11.64 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=11.7,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23--7.36(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{dd}, J=12.7,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.1,103.5,110.9,115.3,117.8,118.2,120.6,123.8,126.5$, 127.7, 128.3, 128.9, 129.0, 133.5, 136.1, 136.3; MS (ESI) m/z 257 [M-H] ${ }^{+}$.

methyl (\boldsymbol{E})-2-(2-(4-chlorostyryl)-1H-indol-3-yl)acetate (1ai):- yellow solid, $108 \mathrm{mg}(0.33 \mathrm{mmol}), 66 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP $130-132^{\circ} \mathrm{C}$; IR 743, 1163, 1489, 1725, 2924, $3380 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.68(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 6.77$ $(\mathrm{d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.3,52.2,110.7,117.1,119.0,120.1,123.5,126.0,127.5,128.9,130.0,133.3,135.4,136.4,172.1 ; \mathbf{M S}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $326[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$326.09423, found 326.09417.

methyl (\boldsymbol{E})-2-(2-(4-methoxystyryl)-1H-indol-3-yl)acetate (1aj):- pale yellow solid, 102 mg (0.315 mmol), $63 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 10:90); MP 100-102 ${ }^{\circ} \mathrm{C}$; IR 745, 1246, 1430, 1652, 1713, 2952, $3365 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{- N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.68$ (s, $3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.3,52.1,55.4,108.0$, $110.5,114.3,114.6,118.8,120.0,123.1,127.2,127.7,127.8,128.9,129.6,134.0,136.2,159.5,172.1 ;$ MS (ESI) m/z $322[\mathrm{M}+\mathrm{H}]^{+}$ HRMS (ESI, m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 322.14377$, found 322.14362.

methyl (\boldsymbol{E})-2-(2-(1-phenylprop-1-en-2-yl)-1H-indol-3-yl)acetate (1ak):- Brown colour liquid, $86 \mathrm{mg}(0.28 \mathrm{mmol}), 56 \%, \mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc/Hexane, 10:90); IR 772, 1171, 1435, 1725, 2923, $3390 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.33(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.93$ $(\mathrm{s}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=18.1,31.3,52.0,105.4,110.7,119.0,120.0,122.5,127.0,128.3(2 \mathrm{C}), 129.2$, 131.2, 135.2, 137.3, 139.2, 172.7; MS (ESI) m/z $306[\mathrm{M}+\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 306.14886$, found 306.14783.

7,12-dihydrobenzo[2,3]azepino[4,5-b]indol-6(5H)-one (5) :- pale yellow solid, $300 \mathrm{mg}(1.2 \mathrm{mmol}), 60 \%, \mathrm{R}_{\mathrm{f}}=0.3$ (EtOAc/Hexane, 50:50); MP $280-282^{\circ} \mathrm{C}$; IR (KBr) $3221,1643 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta=3.50(\mathrm{~s}, 2 \mathrm{H}), 7.07-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.73(\mathrm{~m}$, $2 \mathrm{H}), 10.10(\mathrm{~s}, 1 \mathrm{H}), 11.6(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right) \delta=31.6,107.5,111.4,117.9,119.1,122.1,122.2,122.8,123.6,126.8$, 127.9, 128.7, 132.4, 135.4, 137.4, 171.5; MS (ESI) m/z $247[\mathrm{M}-\mathrm{H}]^{+}$HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+} 247.08659$, found 247.08905. The spectroscopic data were in good agreement with literature report. ${ }^{1}$

2-(2-(2-bromophenyl)- $\mathbf{H} \boldsymbol{H}$-indol-3-yl)acetic acid (6) :- white solid, $316 \mathrm{mg}(0.96 \mathrm{mmol}), 96 \%, \mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/Hexane, 70:30); MP $192-194{ }^{\circ} \mathrm{C}$; IR 745, 1452, 1705, 2923, $3403 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=3.48(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 11.25(\mathrm{~s}, 1 \mathrm{H}), 12.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ $\delta=30.5,106.3,111.1,118.7,119.0,121.5,123.6,127.5,130.4,132.8,132.8,133.5,134.6,135.5,172.7 ;$ MS (ESI) m/z $330[\mathrm{M}+\mathrm{H}]^{+}$ HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 330.01242$, found 330.01260.

9. References

1. M. Tobisu, H. Fujihara, K. Koh and N. Chatani, J. Org. Chem., 2010, 75, 4841.
2. S. J. Lee, H.-A. Seo and C.-H. Cheon, Adv. Synth. Catal., 2016, 358, 1566.
3. H.-A. Seo and C.-H. Cheon, J. Org. Chem., 2016, 81, 7917.

10. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products

${ }^{13}$ C NMR of 1b

${ }^{13}$ C NMR of 1 h

${ }^{1}$ H NMR of 1w

