Electronic Supplementary Information

Self-repairing metal-organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability

Yan Liu,^a Yumei Zhang,^b Xuejian Li,^a Qipeng Yuan,^{a,b} and Hao Liang ^{a,b†}

Materials

Chloroperoxidase (CPO; EC 1.11.1.10; from Caldariomyces fumago: 4699 units/mL) was purchased from Sigma-Aldrich, USA. CPO was used without further purification, and the stock solution is a 20-fold dilution. Bovine serum albumin (BSA) was purchased from Biotopped, China. Modafinil and 2-(diphenylmethylthio) acetamide was purchased from Energy Chemical, China. Hydroquinone was purchased from Tianjin Fuchen Chemical Reagents Factory. The enzyme substrate 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonicacid Ammonium salt) (ABTS²⁻) was obtained from aladdin, China. Sodium alginate (SA) was purchased from Sinopharm Chemical Reagent, China. Tert-butyl hydroperoxide (TBHP) was purchased from XIYA Reagent, China., Trifluoracetic acid (TFA), acetonytrile, methanol, isopropanol and cyclohexane used for analytical

^{a.} State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China.

 ^{b.} Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, P.R. China.
 † Corresponding author: lianghao@mail.buct.edu.cn

HPLC were chromatographic grade and obtained from Honeywell Burdick & Jackson. CaCl₂, Na₂HPO₄, NaH₂PO₄, HCl, H₂O₂ and other reagents and solvents were obtained from Beijing Chemical Works and were of analytical grade.

Preparation of metal-organic hybrid complexes

BSA water solution (1 mg/mL, 100 μ L) or CPO (12 U) and PBS buffer (10 mM, pH 7.4, 900 μ L) were mixed together, followed by adding aqueous CaCl₂ solution (180 mM, 100 μ L). After incubating for 24 h, the mixture was centrifuged at 7378 g for 5 min to obtain the complexes. The encapsulation efficiency was determined by the Bradford's method.^[S2]

Preparation of SA coated metal-organic hybrid complexes

The precipitation of BSA@Ca₃(PO₄)₂ or CPO@Ca₃(PO₄)₂ was redispersed into a PBS buffer (pH 6.5, 20 mM, 600 μ L), then adding 400 μ L of SA solution (20 mg/mL). The mixture was incubated at room temperature for the formation of self-repairing metal-organic hybrid composites. After 12 h, the solution was centrifuged at 10625 g for 5 min to obtain SA coated composites.

Characterization

Transmission electron microscopy (TEM) was performed on a Hitachi H-800 transmission electron microscope. The sample was prepared by pipetting a drop of the aqueous solution of the samples onto a 230 mesh holy carbon copper grid and drying on a filter paper. Scanning electron microscope (SEM) was performed on a Hitachi S-4700 Scanning electron microscope. A drop of the suspension of the prepared samples was added to a cover glass pieces for SEM and dried at room temperature. Confocal laser scanning microscopy (CLSM) was performed on a LEICA TCS SP8 confocal laser scanning microscopy. Isothiocyanate (FITC)labeled BSA was prepared according to the method reported by Wu and the co-authors^[S1].

Powder X-ray diffraction (XRD) patterns were recorded using a D8 Advance X-Ray diffractometer with a Cu K α anode (λ = 0.15406 nm) at 40 kV and 40 mA. Fourier transform infrared spectroscopy (FTIR) spectra of BSA, Ca₃(PO₄)₂, BSA@Ca₃(PO₄)₂ and SA-coated BSA@Ca₃(PO₄)₂ composites were performed on a Nicolet 8700/Continuum XL Imaging Microscopy with measuring wavelength range from 4000 to 400 cm⁻¹. Each sample was lyophilized before XRD measurement.

Activity assay of free and immobilized CPO

The activity of chloroperoxidase was established by following the decrease of absorbance at 414 nm due to the conversion of ABTS²⁻ to ABTS⁻⁻. The activity assay was carried out at room temperature in 10 mM pH 2.75 phosphoric acid buffer solution (10mM, 400 μ L, prepared by phosphoric acid and NaH₂PO₄), 0.25 mM ABTS²⁻, 4.4 mM H₂O₂, and 0.5 U CPO. Immobilized CPO (containing about 0.5 U of enzyme) was introduced in the same assay medium used for determining the activity of

free enzyme. The absorbance at 414 nm was performed on a Shimadzu UV-2450 (Kyoto, Japan) UV-visible Spectrophotometer using quartz cuvettes.

The kinetic parameter of free and immobilized CPO

To determine the enzymatic kinetic parameter of free CPO, CPO@Ca₃(PO₄)₂ and SA-coated CPO@Ca₃(PO₄)₂ (containing about 0.5 U of enzyme) was added to 400 μ L of pH 2.75 phosphoric acid buffer solution (10 mM) containing 0.25 mM ABTS²⁻ and various concentrations of H₂O₂ (9-90 μ M). The activity of both free and immobilized CPO was calculated by the initial reaction rate from the slope of changes in absorbance versus time.

The kinetic parameters of K_m and K_{cat} were calculated using the Lineweaver-Bruke plot:

$$\frac{1}{\theta} = \frac{K_m}{V_{max}[S]} + \frac{1}{V_{max}}$$

Enzyme stability test

Thermal stability was carried out by measuring the residual activity of the enzyme exposed to various temperatures (30°C-80°C) for 30 min. Storage stability was investigated by measuring their remaining activities after being stored at room temperature for a certain period. The activity assay of free and immobilized CPO was measured by the aforementioned method.

Reusability of metal-organic hybrid complexes

The recycling use of enzyme catalysts was performed by ABTS method. The composites (including 0.5 U CPO) were mixed with pH 2.75 phosphoric acid buffer solution (10 mM, 400 μ L) containing H₂O₂ (4.4 mM) and ABTS²⁻ (0.25 mM). After 10 minutes, the mixture was centrifuged at 7378 g for 5 min. The supernatant was separated and the absorbance was determined at 414 nm on a UV/Vis spectrophotometer. The precipitates of enzyme composites were used for the next batch of the enzymatic reaction.

Synthesis of Modafinil

Asymmetric sulfoxidation of 2-(diphenylmethylthio) acetamide to (R)-modafinil was chosen as the target reaction to investigate the catalysis and the recycling of the hybrid composites. The 2 mL of 10 mM phosphoric acid buffer solution (pH 4.5) containing 0.2 mM 2-(diphenylmethylthio) acetamide and the enzyme containing 6 U/mL CPO were mixed. Finally, added 12 mM TBHP to start reaction at room temperature. The supernatant was separated by centrifugation at 7378 g, 5 min for monitoring the product formation.

Reverse phase HPLC was used to quantitatively analyze the product formation with a SHIMADZU 15C serial HPLC apparatus equipped with reversed-phase C-18 column ($250 \times 4.6 \text{ mm}$, 5 µm, DiamodsilTM) and UV detector at 225 nm. The solvent system consists of 30% acetonytrile and 0.2‰ TFA in water. The column temperature was maintained at 30°C. The flow rate was 0.5 mL/min, and 20 μ L portions were injected into the column. The retention time for modafinil was 7.3 min, for 2-(diphenylmethylthio) acetamide was 8.6 min. The epimeric purity was determined by chiral HPLC with AD-H column (250 × 4.6 mm, 5 μ m, Daicel). All the aqueous samples were extracted by ethyl acetate and collected the organic phase. The eluent was methanol with a flow rate of 0.5 mL/min. The retention time was 8.7 min for (R)-modafinil, 10.6 min for (S)-modafinil. The procedure was repeated to determine the reusability of enzyme catalysts.

The degradation of hydroquinone

A solution of 0.45mM hydroquinone and the hybrid composites containing 0.7 U CPO in 183 μ L of pH 3 phosphoric acid buffer solution (10 mM) was mixed at room temperature. Finally, 4 μ L H₂O₂ (88.3 mM) was added to start reaction. After 20 min, the mixture was separated by centrifugation at 7378 g, 5 min. The sedimentation for continue to use in the next time and the supernatant for monitoring the degradation spectrometrically at 290 nm.

Fig.S1 CLSM micrograph of (a)BSA@Ca₃(PO₄)₂ and (b)SA-coated BSA@Ca₃(PO₄)₂.

Fig. S2 The FTIR spectra of BSA (Curve (a)), BSA@Ca₃(PO₄)₂ (Curve (b)), SA-coated BSA@Ca₃(PO₄)₂ (Curve (c)), and Ca₃(PO₄)₂ (Curve (d)).

Fig. S3 X-ray diffraction (XRD) spectra of Ca₃(PO₄)₂ (Curve (a)), BSA@Ca₃(PO₄)₂ (Curve (b)): SA-coated BSA@Ca₃(PO₄)₂ (Curve (c)).

Fig. S4 TEM photos of CPO@Ca₃(PO₄)₂ hybrid composites with or without SA coating.

Fig. S5 The immobilization capacity of CPO@Ca₃(PO₄)₂ and SA-coated
CPO@Ca₃(PO₄)₂ hybrid composites. (Experiment conditions: PBS buffer (10mM, pH 7.4, 180 μL), aqueous CaCl₂ solution (180 mM, 20 μL), containing different amount of CPO.)

Table S1. Kinetic parameters for free CPO and SA-coated CPO@Ca₃(PO₄)₂

	K _m (µM)	K _{cat} (s ⁻¹)
free CPO	91.42±0.024	5.54±0.012
SA-coated CPO@Ca ₃ (PO ₄) ₂	90.64±0.036	6.18±0.007

Fig. S6 The reusability of SA-coated CPO@Ca₃(PO₄)₂ and CPO@Ca₃(PO₄)₂ in different buffer solution. (a) citrate buffer; (b) acetate buffer; (c) citric acid-Na₂HPO₄ buffer. CPO activities were measured as follows: Experiments were carried out at room temperature using 0.25 mM ABTS²⁻ in 400 μ L of phosphoric acid buffer (pH 2.75, 10 mM) with 0.5 U CPO and 4.4 mM H₂O₂.

Fig. S7 Thermal stability of SA-coated CPO@Ca₃(PO₄)₂ and free CPO. The residual activity of the enzyme was measured as follow: 400 μL of phosphoric acid buffer solution (pH 2.75, 10 mM) containing 0.5 U CPO and 0.25 mM ABTS²⁻, 4.4 mM H₂O₂ followed by reaction for 10 min at room temperature.

Fig. S8 (a) The enzyme activity with of different additives coating CPO@Ca₃(PO₄)₂, inset: photographs showing visible detection; (b) The reusability of CMC-coated CPO@Ca₃(PO₄)₂. (For the CPO activity assay, 400 μL of phosphoric acid buffer solution (pH 2.75, 10 mM) containing 0.5 U CPO and 0.25 mM ABTS²⁻, 4.4 mM H₂O₂ followed by reaction for 10 min at room temperature).

Supplementary Reference

[S1] J. G. Xiaoling Wu, Cheng Yang, Miao Hou and Zheng Liu, *Chem. Commun.* 2015, *51*, 13408-13411.

[S2] M. M. Bradford, Analytical Biochemistry 1976, 72, 248-254.