Electronic Supporting Information

A Kinetic Model for Two-Step Phase Transformation of Hydrothermally Treated Nanocrystalline Anatase

Kairat Sabyrov^a and R. Lee Penn^{*b}

 ^aMaterials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, United States.
^bDepartment of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota, United States.

* To whom correspondence should be addressed. Tel: +1 612 626 4680; Email:rleepenn@umn.edu

Fig. S1 Weight percentage transformation as a function of aging time at pH 1.0 (a) and 3.0 (b).

Fig. S2 Plots presenting the application of combined kinetic model on anatase to rutile phase transformation at 200 °C and pH 1.0. Non-linear (a) and linear (b) regression curve fit performed on the experimental data using eqn 5 and 4, respectively. R^2 values are shown to indicate how well the data points fitted the equations.

Derivation of combined kinetic model (eqn 4)

It has been demonstrated that the kinetics of dissolution-precipitation (DP) and interfacenucleation (IN) are first and second order with respect to number of anatase nanoparticles (N),^{1, 2} respectively. Subsequently, the combination of these two models can be expressed by the kinetic equation (eqn 3):

$$-\frac{dN}{dt} = k_{\rm DP}N + k_{\rm IN}N^2 \tag{3}$$

where k_{DP} and k_{IN} are rate constants for DP and IN, respectively. After rearranging the equation, eqn S1 is obtained:

$$-\frac{dN}{N} = k_{\rm DP}dt + k_{\rm IN}Ndt \tag{S1}$$

As *dt* can be expressed in terms of *N* according to the relation:

$$dt = -\frac{dN}{k_{\rm DP}N + k_{\rm IN}N^2}$$
(S2)

substituting *dt* into the second term ($k_{IN}Ndt$) of the eqn S1 and rearranging the equation lead to the following expression:

$$\frac{k_{\rm IN}dN}{k_{\rm DP} + k_{\rm IN}N} - \frac{dN}{N} = k_{\rm DP}dt$$
(S3)

Eqn S4 can be derived by integrating eqn S3 from N_0 to N_t and from t = 0 to t and rearranging it:

$$\ln\left[k_{\rm DP}\frac{N_0}{N_t} + k_{\rm IN}N_0\right] = k_{\rm DP}t + \ln(k_{\rm DP} + k_{\rm IN}N_0)$$
(S4)

Finally, the combined kinetic model (eqn 4) is derived by substituting N_0/N_t of eqn S4 with righthand-side of eqn S5 (the derivation of eqn S5 is presented in the reference article):²

$$\frac{N_0}{N_t} = \frac{(D_t / D_0)^3}{(1 - \alpha)}$$
(S5)

Derivation of percent ratio of R_{IN} to R_{TOT} (eqn 6)

The percent ratio of the rate by IN (R_{IN}) to the total rate (R_{TOT}) can be expressed in terms of the following expression:

$$\frac{R_{\rm IN}}{R_{\rm TOT}} \cdot 100 = \frac{k_{\rm IN} N_t^2}{k_{\rm DP} N_t + k_{\rm IN} N_t^2} \cdot 100$$
(S6)

Then, the final form of the percent ratio (eqn 6) can be derived from eqn S6 using eqn S5 and eqn 5 as follows:

$$\frac{R_{\rm IN}}{R_{\rm TOT}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_t} + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{N_0}{N_t}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0} \left[\frac{(D_t / D_0)^3}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{N_0} \left[\frac{k_{\rm IN}}{1 - \alpha}\right] + k_{\rm IN}} \cdot 100 = \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{1 - \alpha}} + \frac{k_{\rm IN}}{\frac{k_{\rm IN}}{1 - \alpha}}$$

$$=\frac{k_{\rm IN}}{\frac{k_{\rm DP}}{N_0}\left[\left(1+\frac{k_{\rm IN}N_0}{k_{\rm DP}}\right)(e^{k_{\rm DP}t}-1)+1\right]+k_{\rm IN}}\cdot 100 = \frac{k_{\rm IN}}{\left[\frac{k_{\rm DP}}{N_0}+k_{\rm IN}\cdot e^{k_{\rm DP}t}\right]}\cdot 100 = \frac{k_{\rm IN}N_0\cdot e^{-k_{\rm DP}t}}{(k_{\rm DP}+k_{\rm IN}N_0)}\cdot 100$$

References

- 1 K. Sabyrov, N. D. Burrows and R. L. Penn, *Chem. Mater.*, 2012, **25**, 1408-1415.
- 2 H. Zhang and J. F. Banfield, *Am. Mineral.*, 1999, **84**, 528-535.