Supporting Information Computational Identification of Organic Porous Molecular Crystals

Jack D. Evans,^{*a‡} David M. Huang,^a Maciej Haranczyk,^{bc} Aaron W. Thornton^{ad}, Christopher J. Sumby^a and Christian J. Doonan^{*a}

^a Centre for Advanced Nanomaterials, School of Physical Sciences, The University of Adelaide, Adelaide, Australia

^b Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, USA

^c IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid, Spain

^d CSIRO Materials Science and Engineering, Clayton, Australia

[‡] Present address: Chimie ParisTech - IRCP, Equipe CTM, Paris, France

^{*} jack.evans@chimie-paristech.fr

^{*} christian.doonan@adelaide.edu.au

Figure SI-1 Parity plot for density for UFF optimized structures and PM6-DH2x optimized structures.

 Table SI-1
 Descriptors calculated by the RDKit program.

-

RDKit Descriptors		
MolWt, exactMolWt, HeavyAtomMolWt, NumRadicalElectrons, NumValenceElectrons, HeavyAtomCount, NumHeteroatoms, NumRotatableBonds, RingCount		
BalabanJ		
BertzCT		
Chi0v, Chi1v, Chi2v, Chi3v, Chi4v, ChiNv, Chi0n, Chi1n, Chi2n, Chi3n, Chi4n, ChiNn, HallKierAlpha , Kappa1, Kappa2, Kappa3		
EState-VSA1 EState-VSA11 VSA-EState1 VSA-EState10		
LabuteASA		
PEOE-VSA1 PEOE-VSA14		
SMR-VSA1 SMR-VSA10		
SlogP-VSA1 SlogP-VSA12		
MolLogP, MolMR		
TPSA		

 Table SI-2
 Molecular fragments calculated by the RDKit program.

fragment title	description	
NumHAcceptors	Number of hydrogen bond acceptors	
NumHDonors	Number of hydrogen bond donors	
NHOHCount	Number of NHs and OHs	
NOCount	Number of nitrogen and oxygen atoms	
fr_ Al_ COO	Number of aliphatic carboxylic acids	
fr_ Al_ OH_ noTert	Number of aliphatic hydroxyl groups excluding tert-OH	
fr_ Al_ OH	Number of aliphatic hydroxyl groups	
fr_ aldehyde	Number of aldehyde groups	
fr_ alkyl_ carbamate	Number of alkyl carbamates	
fr_ alkyl_ halide	Number of alkyl halide groups	
f11.1'	Number of allylic oxidation sites	
Ir_allylic_oxid	excluding steroid dienone	
fr_ amide	Number of amide groups	
fr_ amidine	Number of amidine groups	
fr_ aniline	Number of aniline groups	
fr_Ar_COO	Number of aromatic carboxylic acids	
fr_Ar_N	Number of aromatic nitrogens	
fr_ Ar_ NH	Number of aromatic amines	
$fr_{-}Ar_{-}OH$	Number of aromatic hydroxyl groups	
f., A.N	Number of N functional groups	
II_ AIN	attached to aromatics	
fr_ aryl_ methyl	Number of aryl methyl sites	
fr_ azide	Number of azide groups	
fr_ azo	Number of azo groups	
fr_ barbitur	Number of barbiturate groups	
fr_ benzene	Number of benzene rings	
fr. hanzadiazanina	Number of benzodiazepines with	
	no additional fused rings	
fr_ bicyclic	Number of bicyclic rings	
fr_C_O_noCOO	Number of carbonyl O, excluding COOH	
$fr_{-}C_{-}O$	Number of carbonyl groups	
$fr_{-}C_{-}S$	Number of thiocarbonyl groups	
fr_COO	Number of carboxylic acids	
fr_COO2	Number of carboxylates	
fr_ diazo	Number of diazo groups	
fr_ dihydropyridine	Number of dihydropyridines	
fr_ epoxide	Number of epoxide rings	
fr_ ester	Number of esters	
fr_ ether	Number of ether oxygens (including phenoxy	
fr_ furan	Number of furan rings	

fragment title	description	
fr_ guanido	Number of guanidine groups	
fr_ halogen	Number of halogens	
fr_ hdrzine	Number of hydrazine groups	
fr_ hdrzone	Number of hydrazone groups	
fr_ HOCCN	Number of C(OH)CCN-Ctert-alkyl or C(OH)CCNcyclic	
fr_ imidazole	Number of imidazole rings	
fr_ imide	Number of imide groups	
fr_ Imine	Number of imine groups	
fr_ isocyan	Number of isocyanates	
fr_ isothiocvan	Number of isothiocvanates	
	Number of ketones	
tr_ketone_Topliss	excluding diaryl, a and b-unsat	
fr_ ketone	Number of ketones	
fr_ lactam	Number of beta lactams	
fr_ lactone	Number of cyclic esters (lactones)	
fr_ methoxy	Number of methoxy groups -OCH3	
fr_ morpholine	Number of morpholine rings	
fr_N_O	Number of hydroxylamine groups	
fr_ Ndealkylation1	Number of XCCNR groups	
fr_ Ndealkylation2	Number of tert-alicyclic amines	
fr NHO	Number of tertiary amines	
fr NH1	Number of secondary amines	
fr NH2	Number of primary amines	
fr Nhpyrrole	Number of H-pyrrole nitrogens	
fr nitrile	Number of nitriles	
fr_ nitro_ arom_ nonortho	Number of non-ortho nitro benzene	
fr nitro arom	Number of nitro benzene ring substituents	
fr nitro	Number of nitro groups	
fr nitroso	Number of nitroso groups excluding NO?	
fr oxazole	Number of oxazole rings	
fr oxime	Number of oxime groups	
fr para hydroxylation	Number of para-hydroxylation sites	
	Number of phenolic OH excluding	
fr phenol noOrthoHbond	ortho intramolecular hydrogen bond	
	substituents	
fr phenol	Number of phenols	
fr phose acid	Number of phosphoric acid groups	
fr phose ester	Number of phosphoric ester groups	
fr piperdine	Number of pinerdine rings	
fr piperzine	Number of piperaine rings	
II_ piperzine	rumon or processo rings	

fragment title	description
fr_ priamide	Number of primary amides
fr_ prisulfonamd	Number of primary sulfonamides
fr_ pyridine	Number of pyridine rings
fr₋ quatN	Number of quarternary nitrogens
fr_ SH	Number of thiol groups
fr_ sulfide	Number of thioether
fr₋ sulfonamd	Number of sulfonamides
fr_ sulfone	Number of sulfone groups
fr_ term_ acetylene	Number of terminal acetylenes
fr_ tetrazole	Number of tetrazole rings
fr_ thiazole	Number of thiazole rings
fr_ thiocyan	Number of thiocyanates
fr_ thiophene	Number of thiophene rings
fr unbrob allong	Number of unbranched alkanes of at least
II_ UIIDICII_ alkalle	4 members (excludes halogenated alkanes)
fr_ urea	Number of urea groups
FractionCSP3	Fraction of C atoms that are SP3 hybridized

Figure SI-2 Correlation of pore volume and crystal density demonstrated for the structures identified in the oPMC database.

Figure SI- 3 Histogram of the dimensionality of largest pore identified for the oPMC database. Dimensionality was analyzed for probe sizes equivalent to the kinetic diameters of He (2.60 Å) and N_2 (3.64 Å).

 $\label{eq:size} \mbox{Table SI- 3 List of identified structures with total surface areas (probe size equivalent to N_2) >1000 $m^2.g^{-1}$.}$

	total surface area / m ² .g ⁻	
FEQXAC	3855.37	
GIPCAJ	2659.76	
DEBXIT	2375.55	
DIHGOR	1898.28	
RERNEI	1843.72	
MAVSIL	1515.66	
TADWAY	457.37	
CXPMSO01	1350.74	
ZEXRIF02	1193.9	
ABINOP	1188.37	
VEWGOT	1178.08	
ZEXRIF	1164.87	
RIYQEW	1069.02	
XOKTAS	1030.20	
LOMDAS	1010.12	
WUCJEJ	1009.07	

Table SI- 4 List of identified structures with limiting pore diameters equivalent to the size of xenon (4.1 ± 0.1 Å).

	limiting pore diameter / Å
VOLCOP	4.19
HXANAL10	4.18
KEFJEK	4.18
DADLEA	4.18
HORMOQ	4.15
PILLOL	4.14
REBGUB	4.14
OVOPOF	4.14
LAXNEF	4.11
IFAREO	4.10
CEXGAP	4.10
TONYOL	4.09
BEMYAU	4.06
REYXAW	4.05
EVIBEQ	4.05
JURPOB	4.04
NEDPAN	4.04
QAMHAN	4.02
HEBLIJ	4.02
ZIKZOK	4.01
RAXTIT	4.01
QEKMUO	4.00

Table SI- 5 Average total, non-porous (NP) and porous(P) accuracy percentage for SVM classifiers applied to the labuteASA descriptor.

kernel function	total / %	NP / %	P / %
linear	69.7	74.6	64.8

A link to the database which includes a spreadsheet of the porosities calculated and the MOPAC optimized structures can be found below.

https://github.com/jackevansadl/oPMCdatabase