## **Electronic supplementary information (ESI):**

## Dealloying induced plasmonic Au nanoparticles modified mesoporous TiO<sub>2</sub> for enhanced visible light photocatalysis

Zhengfeng Zhao, Xiaoxia Zhu, Min Zuo, Jing Xu and Yan Wang\*

School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, PR China

\* Corresponding author. Tel: +86-531-82765473; Fax: +86-531-87974453 E-mail address: mse\_wangy@ujn.edu.cn (Yan Wang).



Fig. S1 The SEM images of the (a)  $TiO_2$ -C and (b)  $TiO_2$ -H.

The pure  $TiO_2$  was fabricated using the Al-Ti precursor alloy. The  $TiO_2$ -C obtained by the calcination of the H-titanate presents the 3D network structure (Fig. S1(a)). Fig. S1(b) shows the spindle-like anatase  $TiO_2$  obtained by hydrothermal treatment of H-titanate.



Fig. S2 The TEM images of the Au/TiO<sub>2</sub>-C photocatalyst.

Fig. S2 shows that the Au nanoparticles are embedded in the 3D network structure of anatase  $TiO_2$  matrix.

![](_page_3_Picture_0.jpeg)

Fig. S3 The TEM images of the Au/TiO<sub>2</sub>-H photocatalyst.

Fig. S3 shows the uneven distribution of Au nanoparticles (the black spots). The regular shaped  $TiO_2$  and the Au nanoparticles are separated from each other.

![](_page_4_Figure_0.jpeg)

Fig. S4 (a)UV-Vis diffuse reflectance spectra (DRS) of different photocatalysts, (b) plots transformed according to the Kubelka-Munk function versus energy of light for the photocatalysts.

Fig. S4(a) shows the DRS of the pure TiO<sub>2</sub>. The TiO<sub>2</sub>-C and TiO<sub>2</sub>-H samples present the absorption for visible light by comparing with the commercial P25. Fig. S4(b) shows the plots of  $(F(R)E)^{1/2}$  versus the energy of absorbed light. Obviously, the TiO<sub>2</sub>-C and TiO<sub>2</sub>-H present the narrower band gap than P25. These results may result from the multiple reflection of light in the mesopores which extends in the path way of light.

![](_page_5_Figure_0.jpeg)

Fig. S5 (a-c) UV-vis absorption spectra of MO solution under different irradiation time in the presence of Au/TiO<sub>2</sub>-C with different dosages. (d) Comparison of photocatalytic efficiencies of Au/TiO<sub>2</sub>-C with different dosages.

The photocatalyst can shade part of the light, which reduces the photocatalytic efficiency. In order to obtain the optimum photocatalytic efficiency, the different dosages of the Au/TiO<sub>2</sub>-C were used to photodegrade the MO solution. Fig. S5(a-c) show the UV-vis absorption spectra of MO solutions during the photocatalysis by different dosages of the Au/TiO<sub>2</sub>-C. Fig. S5(d) presents the comparison of photocatalytic efficiencies. When the dosage of Au/TiO<sub>2</sub>-C is 10 mg, the fastest degradation rate is reached.

![](_page_6_Figure_0.jpeg)

Fig. S6 UV-vis absorption spectra of MO solution under different irradiation time in the presence of different photocatalysts with10 mg. (a) Blank, (b) P25, (c) TiO<sub>2</sub>-C, (d) TiO<sub>2</sub>-H, (e) Au/TiO<sub>2</sub>-H and (f) Au/TiO<sub>2</sub>-C.

![](_page_7_Figure_0.jpeg)

Fig. S7 Comparison of photocatalytic efficiencies between pure TiO<sub>2</sub> and Au/TiO<sub>2</sub> composites. The photocatalysts were fabricated by the (a) hydrothermal and (b) calcination methods.

Fig. S7(a) shows the photocatalytic efficiencies of  $TiO_2$ -H and Au/TiO\_2-H samples. Obviously, the induced Au nanoparticles do not improve the photocatalytic activity. However, the Au/TiO\_2-C shows the enhanced photocatalytic activity by comparing with the TiO\_2-C (Fig. S7(b)). Of importance, the two kinds of pure TiO\_2

with different specific surface area show the similar photocatalytic activities (the photodegradation efficiencies are about 40%). It means that the specific surface area is not a decisive factor for the photocatalytic activities.

![](_page_8_Figure_1.jpeg)

Fig. S8 XPS survey spectrum of the Au/TiO<sub>2</sub>-C.