A new series of trivalent lanthanide (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) coordination polymers with the 1,2-cyclohexanedicarboxylate linker: synthesis, crystal structure, luminescence and catalytic properties

Samantha E. Russell,^a Cyrille Gosset,^a Xavier Agache,^a Christophe Volkringer,^{ab} Natacha Henry,^a Roel Decadt,^c Rik Van Deun,^c Marc Visseaux^a and Thierry Loiseau^{*a}

^aUnité de Catalyse et Chimie du Solide (UCCS) – UMR CNRS 8181, Université de Lille, ENSCL, Bat C7, BP 90108, 59652 Villeneuve d'Ascq, France,
^bInstitut Universitaire de France (IUF), 1,rue Descartes, 75231 Paris, France.
^cLuminescent Lanthanide Lab (L³), Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281, S3, 9000 Ghent, Belgium.

* To whom correspondence should be addressed. E-mail: thierry.loiseau@ensc-lille.fr. Phone: (33) 3 20 434 434, Fax: (33) 3 20 43 48 95

SUPPLEMENTARY INFORMATION

To be submitted to CrystEngComm. Version january 2016 Revised version February 24, 2016

FIGURES

Figure S1a: Comparison of calculated and experimental X-ray powder patterns of Ln(1,2-chdc)(form)(H₂O); Ln = Ce³⁺ (1), Pr³⁺ (2), Nd³⁺ (3), Sm³⁺ (4), Eu³⁺ (5), Gd³⁺ (6), Tb³⁺ (7) and Dy³⁺ (8), 2 θ scale, copper radiation. Calculated reference is from the Nd-based single-crystal XRD analysis. Change of Bragg peak intensity is due to preferential orientation of crystallites. For Ce-containing compound, an additional week Bragg peak is observed at 16.5° (2 θ), which does belong to the powder XRD pattern of the phase 1, and could be assigned to an unknown impurity.

Figure S1b: experimental (black) and calculated (red, pdf number: 42-1121) X-ray powder patterns of Pr_6O_{11} . Pr_6O_{11} compound corresponds to the residue generated by the thermogravimetric analysis of compound **2**.

Figure S1c: experimental (black) and calculated (red, pdf number: 65-4511) X-ray powder patterns of $Tb_{11}O_{20}$. $Tb_{11}O_{20}$ corresponds to the residue generated by the thermogravimetric analysis of compound 7.

Figure S2a: Thermogravimetric curve of phases 1 (Ce; left) and 2 (Pr; right) under air atmosphere (heating rate: 1°C/min).

Figure S2b: Thermogravimetric curve of phases **3** (Nd; left) and **4** (Sm; right) under air atmosphere (heating rate: 1°C/min).

Figure S2c: Thermogravimetric curve of phases 5 (Eu; left) and 6 (Gd; right) under air atmosphere (heating rate: 1°C/min).

Figure S2d: Thermogravimetric curve of phases 7 (Tb; left) and 8 (Dy; right) under air atmosphere (heating rate: 1°C/min).

TABLES

Compound	First step ^a Calc.	First step ^a Obs.	Remaining weight ^b value Calc.	Remaining weight ^b value Obs.
1 (Ce)	4.8 %	5.0 % 240°C	44.0 % (Ce ₂ O ₃) 46.1% (CeO ₂)	46.2 %
2 (Pr)	4.8 %	4.8 % 260°C	45.5 % (Pr ₆ O ₁₁)	47.5%
3 (Nd)	4.8 %	4.7% 250°C	44.6 %	44.4%
4 (Sm)	4.7 %	4.9% 240°C	45.4 %	46.3 %
5 (Eu)	4.7 %	4.9 % 260°C	45.7 %	45.8 %
6 (Gd)	4.6 %	5.3% 260°C	46.4 %	46.5 %
7 (Tb)	4.6 %	5.2 % 260°C	46.7 % (Tb ₂ O ₃) 48.2 % (Tb ₁₁ O ₂₀)	47.8 %
8 (Dy)	4.6 %	4.7 % 250°C	47.1 %	48.3 %

Table S1: Experimental and calculated weight loss values from thermogravimetric curves of compounds 1-8.

^aweight loss corresponding to the departure of $1 H_2O$.

^bcalculations based on the Ln_2O_3 residue (Ln = Ce-Dy). For Ce, Pr and Tb, other dense oxides are also known to be formed at high temperature; corresponding stoiechiometries Ln_xO_y also mentioned, related to the remaining weight loss values.

X-ray thermodiffraction. X-ray thermodiffractometry of the compound **3** (Nd) was performed under 5L h⁻¹ air flow in an Anton Paar HTK1200N of a D8 Advance Bruker diffractometer (θ - θ mode, CuK α radiation) equipped with a Vantec1 linear position sensitive detector (PSD). Each powder pattern was recorded in the range 6-35° (2 θ) (at intervals of 20°C up to 600°C) with a 0.34s/step scan, corresponding to an approximate duration of 35mn. The temperature ramps between two patterns were 0.05°C.s⁻¹ up to 600°C.

Figure S3: Powder X-ray thermodiffractogram of Nd(1,2-chdc)(form)(H₂O) (**3**), collected in the range of temperature (40-600°C) under air atmosphere.

Infrared spectroscopy. Infrared spectra of compound **1-8** were measured on Perkin Elmer Spectrum TwoTM spectrometer between 4000 and 400 cm⁻¹, equipped with a diamond Attenuated Total Reflectance (ATR) accessory.

Figure S4a: Infrared spectrum of Ce(1,2-chdc)(form)(H₂O) (1).

Figure S4b: Infrared spectrum of Pr(1,2-chdc)(form)(H₂O) (2).

Figure S4c: Infrared spectrum of Nd(1,2-chdc)(form)(H₂O) (**3**).

Figure S4d: Infrared spectrum of Sm(1,2-chdc)(form)(H₂O) (4).

Figure S4e: Infrared spectrum of Eu(1,2-chdc)(form)(H₂O) (5).

Figure S4f: Infrared spectrum of Gd(1,2-chdc)(form)(H₂O) (6).

Figure S4g: Infrared spectrum of Tb(1,2-chdc)(form)(H₂O) (7).

Figure S4h: Infrared spectrum of Dy(1,2-chdc)(form)(H₂O) (8).

On these spectra, we clearly identified at around:

- 3330 cm⁻¹, the vibration associated to the water molecule linked to the lanthanide
- 2920 and 2850 cm⁻¹, the vibrations corresponding to C-H vibrations of formate and cyclohexane dicarboxylate ligands, respectively.
- 1610 cm⁻¹, the band associated to the vibration of the carboxylate function C-O linked to the lanthanide center.

Figure S5: Mono-exponential decay curve from compound **1** (Ce), recorded at 445 nm upon excitation at 375 nm.

Figure S6: Mono-exponential decay curve from compound **3** (Nd), recorded at 1055 nm upon excitation at 353 nm.

Figure S7: Mono-exponential decay curve from compound **4** (Sm), recorded at 598 nm upon excitation at 401 nm.

Figure S8: Mono-exponential decay curve from compound **5** (Eu), recorded at 618.5 nm upon excitation at 393 nm.

Figure S9: Mono-exponential decay curve from compound 7 (Tb), recorded at 545 nm upon excitation at 351.5 nm.

Figure S10: Mono-exponential decay curve from compound **8** (Dy), recorded at 573.5 nm upon excitation at 351 nm.

Figure S11: ¹H NMR spectrum of polyisoprene 93 % *cis*-regular obtained with compound **3** as pre-catalyst (solvent CDCl₃).