Supplementary Information

Synthesis and formation mechanism of morphology-controllable indium containing precursors and optical properties of the derived In2O3 particles

Zhijie Lin^a, Qi Zhu^a, Yu Dong^a, Shaohong Liu^{a,b}, Ji-Guang Li^c, Xiaodong Li^a, Di Huo^a, Mu Zhang^a, Ming Xie^b, Xudong Sun^a*

^a Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China

 ^b State Key Laboratory of Advanced Technologyies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming, 650106, China
^c Advanced Materials Processing Unit, National Institute for Materials Science, 1-2-1
Sengen, Tsukuba, Ibaraki 305-0044, Japan

Email: xdsun@mail.neu.edu.cn

Fig. S1 XRD patterns of the In_2O_3 oxides obtained by calcining (a) rods (S1) and (b) cubes (S2), respectively at 600 °C for 1h.

Fig. S2 XRD spectra showing the phase evolutions during calcination of the precursor at various temperatures in air.

Fig. S3 FE-SEM images of the precursor synthesized with 0.06 M urea and 9 M K_2SO_4 at 90 °C for 1 h.