Alkaline reagents-induced structural diversity of four metal-organic frameworks based on flexible bicarboxylate ligand

Yue-Ling Bai,*^a Liangzhen Xu,^a Xiaoli Bao,^b Chaoyi Hou,^a Yongmei Zhao,^a Shourong Zhu*^a

^aInnovative Drug Center, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China.

^bInstrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

E-mail: yuelingbai@shu.edu.cn.

Scheme S1 The coordination modes reported (I-III) previously and found (IV-VII) in this work of H₃bci ligand.

Scheme S2 The ligand conformation of *cis-cis* and *cis-trans*.

Fig. S1 The 2D Cd-bci layer structure and its uninodal 3-connected *hcb* topology with the point symbol of $\{6^3\}$ in **1**.

Fig. S2 The infinite 1D ladder-like Na-bci chain in 1.

Fig. S3 The 2D potassium double-layer structure and its uninodal 4-connected *sp* topology with the point symbol of $\{4^3 \cdot 6^3\}$ in **2**.

Fig. S4 The 2D cadmium layer structure and its uninodal 3-connected *hcb* topology with the point symbol of $\{6^3\}$ in **2**.

Fig. S5 The schematic representations of the 3-nodal 3,4,7-connected new topology with the point symbol of $\{4\cdot 6^2\}\{4^4\cdot 6^2\}\{4^5\cdot 6^{12}\cdot 8^4\}$ along the *b*-axis of complex **2**.

Fig. S6 The 3D MOF structure of 3 is view along the *a*-axis.

2 Multuluuluu simulated simulated 10 40 50 20 30 2θ

Fig. S7 The PXRD patterns of 1-4, 4a and 4b, respectively.

Fig. S8 Infrared spectra of complexes 1-4.

Table S1. Hydrogen bonds (\AA) for 4.

D-HA	DA
N4-H4CO2W	2.778(3)
N4-H4DO1W	2.814(2)
N4-H4EO7	2.784(3)
O1W-H1AO6	2.866(3)
O2W-H2AO1	3.012(2)
O2W-H2BO4	2.689(2)