Supplemental Information

A New Intrinsic Tunable Phosphor: Polymorphism and Structure Specific Blue-White Luminescence in K₃YSi₂O₇

Allison M. Latshaw, Gregory Morrison, Karl D. zur Loye, Alexis R. Myers, Mark D. Smith, Hans-Conrad zur Loye*

University of South Carolina, Department of Chemistry and Biochemistry, Columbia, SC 29208

*Corresponding Author, E-mail: <u>zurloye@mailbox.sc.edu</u>

Figure S-1. PXRD pattern of $K_3YSi_2O_7$ (2). The observed pattern is in good agreement with the calculated pattern with a small amount of three types of SiO₂. The calculated pattern is the red overlay, and the green, blue, and purple overlays are SiO₂.

Figure S-2. PXRD pattern of $K_3YSi_2O_7$ doped with 10 % Dy and 0.1 % Eu (**2-Dy,Eu**). The observed pattern is in good agreement with the calculated pattern with a small amount of SiO₂. The calculated pattern is shown in red and the SiO₂ is shown in green.

Figure S-3. Emission spectrum used for the CIE analysis at an excitation λ of 254 nm for polymorph 2.

Figure S-4. Emission spectrum used for the CIE analysis at an excitation λ of 254 nm of K₃YSi₂O₇:10%Dy,0.1%Eu (**2-Dy,Eu**).

Figure S-5. Emission spectra of polymorph **2**, **2-Dy**, **2-Eu**, and **2-Dy**,**Eu** at an excitation λ of 280 nm. The cut off at ~350 nm is due to the use of a filter to prevent the excitation wavelength to enter the detector.

Figure S-6. Excitation spectra of 2-Dy, Eu at an emission λ of 401 nm.