### **Electronic Supplementary Information**

# Influence of the cavity dimension on encapsulation of halide within the capsular assembly and side-cleft recognition of sulphate-water cluster assisted by polyammonium tripodal receptor

Utsab Manna, Biswajit Nayak, Najbul Hoque and Gopal Das\*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781 03, India,. Fax: +91-361-258-2349; Tel: +91-361-258-2313 E-mail: <u>gdas@iitg.ernet.in</u>

## Characterization of receptor L<sub>1</sub>:



Fig. S1. ESI-mass spectrum of receptor  $L_1$ 



Fig. S2. FTIR spectrum of receptor  $L_1$ 



Fig. S3. <sup>1</sup>H NMR spectrum of receptor  $L_1$  in CDCl<sub>3</sub> at 298 K



Fig. S4. <sup>13</sup>C NMR spectrum of receptor  $L_1$  in CDCl<sub>3</sub> at 298 K

## Characterization of receptor L<sub>2</sub>:



Fig. S5. ESI-mass spectrum of receptor  $L_2$ 



Fig. S6. FTIR spectrum of receptor  $L_2$ 



Fig. S7. <sup>1</sup>H NMR spectrum of receptor  $L_2$  in CDCl<sub>3</sub> at 298 K



Fig. S8. <sup>13</sup>C NMR spectrum of receptor  $L_2$  in CDCl<sub>3</sub> at 298 K

## Characterization of receptor L<sub>3</sub>:



Fig. S9. ESI-mass spectrum of receptor  $L_3$ 



Fig. S10. FTIR spectrum of receptor  $L_3$ 



Fig. S11. <sup>1</sup>H NMR spectrum of receptor L<sub>3</sub> in CDCl<sub>3</sub> at 298 K



Fig. S12. <sup>13</sup>C NMR spectrum of receptor L<sub>3</sub> in CDCl<sub>3</sub> at 298 K

Characterization of complex 1a:



Fig. S13. <sup>1</sup>H NMR spectrum of complex 1a in DMSO-d<sub>6</sub> at 298 K



Fig. S14. <sup>13</sup>C NMR spectrum of complex 1a in DMSO-d<sub>6</sub> at 298 K



**Figure S15.** Powder X-ray diffraction: simulated pattern from the single–crystal X-ray of complex **1a** (blue), experimental pattern from the crystalline solid of complex **1a** (black).

Characterization of complex 1b:



Fig. S16. <sup>1</sup>H NMR spectrum of complex 1b in DMSO-d<sub>6</sub> at 298 K



Fig. S17. <sup>13</sup>C NMR spectrum of complex 1b in DMSO-d<sub>6</sub> at 298 K.



**Figure S18:** Powder X-ray diffraction: simulated pattern from the single–crystal X-ray of complex **1b** (blue), experimental pattern from the crystalline solid of complex **1b** (black).

Characterization of complex 2a:



Fig. S19. <sup>1</sup>H NMR spectrum of complex 2a in DMSO-d<sub>6</sub> at 298 K



Fig. S20. <sup>13</sup>C NMR spectrum of complex 2a in DMSO-d<sub>6</sub> at 298 K



**Figure S21:** Powder X-ray diffraction: simulated pattern from the single–crystal X-ray of complex **2a** (blue), experimental pattern from the crystalline solid of complex **2a** (black).

Characterization of complex 2b:



Fig. S22. <sup>1</sup>H NMR spectrum of complex 2b in DMSO-d<sub>6</sub> at 298 K



Fig. S23: <sup>13</sup>C NMR spectrum of complex 2b in DMSO-d<sub>6</sub> at 298 K



**Figure S24:** Powder X-ray diffraction: simulated pattern from the single crystal X-ray of complex **2b** (blue), experimental pattern from the crystalline solid of complex **2b** (black).

Characterization of complex 3a:



**Fig. S25**: <sup>1</sup>H NMR spectrum of complex **3a** in DMSO-d<sub>6</sub> at 298 K.



Fig. S26: <sup>13</sup>C NMR spectrum of complex 3a in DMSO-d<sub>6</sub> at 298 K.



**Figure S27:** Powder X-ray diffraction: simulated pattern from the single–crystal X-ray of complex **3a** (blue), experimental pattern from the crystalline solid of complex **3a** (black).



Fig. S28: (a) space-fill view of  $L_1$  receptor from crystallographic b axis showing there is almost no space or no cavity, (b) depicting distances among each  $L_1$  receptor arms, (c) depicting distances among each three arms of two  $L_1$  receptor units in salt 1a, (d) depicting distances among each three arms of two  $L_1$  receptor units in salt 1b, (e) depicting distances among each three arms of two  $L_2$  receptor units in salt 2a and (f) depicting distances among each three arms of two  $L_2$  receptor units in salt 2b.



Fig. S29: Partial 1H NMR spectra (600 MHz, DMSO d6) of (a) free receptor  $L_1$ , (b) addition of excess HCl to  $L_1$  and (c) addition of excess H<sub>2</sub>SO<sub>4</sub> to  $L_1$ .



Fig. S30: Partial 1H NMR spectra (600 MHz, DMSO d6) of (a) free receptor  $L_2$ , (b) addition of excess HCl to  $L_2$  and (c) addition of excess H<sub>2</sub>SO<sub>4</sub> to  $L_2$ .



Fig. S31: Partial 1H NMR spectra (600 MHz, DMSO d6) of (a) free receptor  $L_3$  and (b) addition of excess HCl to  $L_3$ .

| Complex | D-H…A        | <i>d</i> (D…H)/Å | <i>d</i> (H…A)/Å | <i>d</i> (D…A)/Å | <d-h…a th="" °<=""><th>Symmetry codes</th></d-h…a> | Symmetry codes      |
|---------|--------------|------------------|------------------|------------------|----------------------------------------------------|---------------------|
| 1a      | N2-H2C···Cl6 | 0.90             | 2.22             | 3.092(5)         | 164                                                | x,y,z               |
|         | N2-H2D…Cl3   | 0.90             | 2.28             | 3.155(4)         | 163                                                | х,ү,z               |
|         | N4-H4C···Cl3 | 0.90             | 2.21             | 3.077(5)         | 162                                                | х,ү,z               |
|         | N4-H4D…Cl2   | 0.90             | 2.21             | 3.098(5)         | 170                                                | -х, у-1/2, -z+3/2   |
|         | N6-H6C···Cl3 | 0.90             | 2.31             | 3.177(4)         | 163                                                | х,ү,z               |
|         | N6-H6D…Cl2   | 0.90             | 2.28             | 3.140(5)         | 161                                                | -x+1/2, -y+1, z-1/2 |
|         | N9-H9C…Cl1   | 0.90             | 2.35             | 3.237(4)         | 167                                                | х,ү,z               |
|         | N9-H9D…Cl5   | 0.90             | 2.18             | 3.073(5)         | 171                                                | х,ү,z               |
|         | N11-H11C…Cl1 | 0.90             | 2.31             | 3.184(5)         | 164                                                | х,ү,z               |
|         | N11-H11D…Cl4 | 0.90             | 2.25             | 3.094(5)         | 157                                                | -1/2+x,1/2-y,-z     |
|         | N13-H13C…Cl1 | 0.90             | 2.25             | 3.129(5)         | 167                                                | х,ү,z               |
|         | N13-H13D…Cl4 | 0.90             | 2.21             | 3.085(5)         | 162                                                | -1+x,y,z            |
|         | C2-H2B…O2B   | 0.97             | 2.56             | 3.406(11)        | 146                                                | 1-x,1/2+y,3/2-z     |
|         | C15-H15…O12  | 0.93             | 2.48             | 3.391(10)        | 168                                                | -1/2-x,-y,1/2+z     |
|         | C35-H35…O1A  | 0.93             | 2.51             | 3.385(10)        | 157                                                | 3/2-x,-y,-1/2+z     |
|         | C35-H35…O1B  | 0.93             | 2.39             | 3.296(11)        | 165                                                | 3/2-x,-y,-1/2+z     |
|         | C37-H37B…O4B | 0.97             | 2.52             | 3.382(17)        | 148                                                | -x,1/2+y,1/2-z      |
|         | C50-H50…O4A  | 0.93             | 2.50             | 3.411(9)         | 167                                                | -1/2+x,1/2-y,-z     |
|         |              |                  |                  |                  |                                                    |                     |
| 1b      | N2-H2N…O13   | 0.86             | 2.14             | 2.951(9)         | 158                                                | x,y,z               |
|         | N4-H4N…O13   | 0.86             | 2.30             | 3.063(8)         | 148                                                | х,ү,z               |
|         | N9-H9N…O14   | 0.86             | 2.21             | 2.919(9)         | 140                                                | х,ү,z               |
|         | N11-H11N…O14 | 0.86             | 2.30             | 3.108(9)         | 156                                                | x,y,z               |
|         | N13-H13N…O14 | 0.86             | 2.37             | 3.134(8)         | 148                                                | x,y,z               |
|         | C11-H11B…O21 | 0.97             | 2.59             | 3.529(14)        | 163                                                | x,y,z               |
|         | C19-H19B…O23 | 0.97             | 2.55             | 3.497(10)        | 164                                                | -x,1-y,1-z          |
|         | C23-H23…O18  | 0.93             | 2.45             | 3.283(12)        | 149                                                | -1+x,y,z            |
|         | C28-H28B…O23 | 0.97             | 2.53             | 3.469(9)         | 163                                                | 1-x,-y,1-z          |
|         | C44-H44…O2A  | 0.93             | 2.46             | 3.300(2)         | 151                                                | 1-x,1-y,1-z         |
|         | C47-H47A…O28 | 0.97             | 2.59             | 3.415(14)        | 143                                                | х,ү,z               |
|         | C54-H54…O16  | 0.93             | 2.54             | 3.368(13)        | 148                                                | х,ү,z               |
|         | C55-H55C…O24 | 0.96             | 2.44             | 3.295(11)        | 148                                                | -x,1-y,1-z          |
|         | C59-H59B…O20 | 0.96             | 2.54             | 3.414(13)        | 151                                                | х,у,z               |
|         |              | 0.00             | 4 70             | 2 (14/5)         | 470                                                |                     |
| Za      | N2-H2C-+1    | 0.90             | 1.72             | 2.614(6)         | 1/3                                                | 2/3+x,1/3+y,-2/3+z  |
|         | N2-H2D····F2 | 0.90             | 1./6             | 2.663(10)        | 1/8                                                | 1-x+y,1-x,z         |
|         | C1-H1B…F3    | 0.97             | 2.47             | 3.346(12)        | 150                                                | 2/3-y,1/3+x-y,1/3+z |
|         | C3-H3A…F3    | 0.97             | 2.49             | 3.443(9)         | 167                                                | х,ү,z               |

 Table S1. Hydrogen bonding contacts in complexes 1a-b, 2a-b and 3a

| 2b | N2-H2A…O4A    | 0.97 | 1.77 | 2.738(18) | 173 | x,1+y,z     |
|----|---------------|------|------|-----------|-----|-------------|
|    | N2-H2A…O4B    | 0.97 | 1.78 | 2.715(13) | 162 | x,1+y,z     |
|    | N3-H3B…O12    | 0.97 | 1.75 | 2.710(10) | 168 | x,y,z       |
|    | N6-H6A…O3     | 0.90 | 1.86 | 2.758(9)  | 173 | x+1, y, z   |
|    | N6-H6B…O5     | 0.90 | 2.09 | 2.871(8)  | 145 | х,у,z       |
|    | N7-H7A…O3     | 0.97 | 2.18 | 2.932(9)  | 134 | x+1,y,z     |
|    | N7-H7B…O9     | 0.97 | 1.85 | 2.806(9)  | 167 | x+1,y,z     |
|    | N8-H8C…O9     | 0.97 | 2.07 | 2.910(9)  | 144 | x+1,y,z     |
|    | N8-H8D…O5     | 0.97 | 1.88 | 2.841(9)  | 172 | х,у,z       |
|    | C2-H2D…O11A   | 0.97 | 2.54 | 3.490(2)  | 166 | х,у,z       |
|    | C5-H5…O12     | 0.93 | 2.42 | 3.258(11) | 150 | x,y,z       |
|    | C11-H11B…O7B  | 0.97 | 2.58 | 3.550(2)  | 177 | x,y,z       |
|    | C20-H20B…O1   | 0.97 | 2.57 | 3.535(15) | 175 | x,1+y,z     |
|    | C21A-H21C…O14 | 0.86 | 2.55 | 3.260(4)  | 141 | x,1+y,z     |
|    | C45-H45…O3    | 0.93 | 2.51 | 3.317(16) | 146 | -x,1-y,1-z  |
|    | C47-H47A…O11A | 0.97 | 2.44 | 3.320(2)  | 151 | x+1,y,z     |
|    | C50-H50…O5    | 0.93 | 2.50 | 3.379(16) | 158 | 1-x,1-y,1-z |
|    | C56-H56C…O9   | 0.96 | 2.37 | 3.316(15) | 170 | -x,1-y,1-z  |
|    |               |      |      |           |     |             |
| 3a | N2-H2C···Cl2  | 0.90 | 2.24 | 3.075(10) | 153 | х,у,z       |
|    | N2-H2D…Cl1    | 0.90 | 2.28 | 3.152(10) | 164 | 1+x,1+y,z   |
|    | N4-H4C···Cl2  | 0.90 | 2.40 | 3.285(12) | 167 | х,у,z       |
|    | N4-H4D…Cl6    | 0.90 | 2.21 | 3.078(11) | 163 | х,у,z       |
|    | N6-H6C···Cl5  | 0.90 | 2.25 | 3.137(11) | 166 | 1+x,1+y,z   |
|    | N6-H6D…Cl3    | 0.90 | 2.25 | 3.110(11) | 159 | х,у,z       |
|    | N9-H9C…Cl6    | 0.90 | 2.27 | 3.143(11) | 163 | х,у,z       |
|    | N9-H9D…Cl1    | 0.90 | 2.21 | 3.078(10) | 162 | х,у,z       |
|    | N11-H11C…Cl4  | 0.90 | 2.42 | 3.312(12) | 172 | х,у,z       |
|    | N11-H11D…Cl5  | 0.90 | 2.18 | 3.051(11) | 162 | x,-1+y,z    |
|    | N13-H13C…Cl3  | 0.90 | 2.28 | 3.160(10) | 167 | х,у,z       |
|    | N13-H13D…Cl4  | 0.90 | 2.24 | 3.080(10) | 156 | х,у,z       |
|    | C21-H21B…O5A  | 0.97 | 2.57 | 3.462(2)  | 154 | -1+x,y,z    |
|    | C23-H23…O5A   | 0.93 | 2.23 | 3.120(2)  | 160 | -1+x,y,z    |
|    | C23-H23…O5B   | 0.93 | 2.50 | 3.190(2)  | 160 | -1+x,y,z    |
|    | C23-H23…O6    | 0.93 | 2.57 | 3.375(18) | 145 | -1+x,y,z    |
|    | C30-H30B…O7A  | 0.97 | 2.54 | 3.450(2)  | 157 | -1+x,y,z    |
|    | C32-H32…O7A   | 0.93 | 2.39 | 3.260(2)  | 155 | -1+x,y,z    |
|    | C32-H32…O7B   | 0.93 | 2.38 | 3.270(2)  | 159 | -1+x,y,z    |
|    | C32-H32…O8    | 0.93 | 2.51 | 3.339(18) | 148 | -1+x,y,z    |



**Figure S32**: Packing motif of crystal structure of complex **1a** (as viewed down the *a*-axis) showing capsular assembly formation.



Figure S33: Packing motif of crystal structure of complex 1b (as viewed down the *a*-axis) showing sidecleft binding of sulphate ions around DMF encapsulated receptor  $L_1$ .



**Figure S34**: Packing motif of crystal structure of complex **2a** (as viewed down the *c*-axis) showing encapsulation of fluoride ion (F1) supported by H-bonding interactions with exterior fluorides (F2 and F3)



Figure S35: Packing motif of crystal structure of complex 2b (as viewed down the *c*-axis) showing sidecleft binding of sulphate ions around DMF encapsulated receptor  $L_2$ .



Figure S36: Packing motif of crystal structure of complex 3a (as viewed down the *c*-axis) showing linear architecture of chloride via Y-shaped layer like assembly of receptor  $L_3$ .