Supporting Information

Adsorptive separation performance of 1-butanol onto typical hydrophobic zeolitic imidazolate frameworks (ZIFs)

Chunping Gao,^a Qi Shi,*^a and Jinxiang Dong*^a

^a Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan, 030024,

Shanxi, PR China.

E-mail: shiqi594@163.com, dongjinxiangwork@hotmail.com

Figure S1 Pore size distribution of the three hydrophobic materials-ZIF-8, MAF-6 and TIF-1 Zn.

Figure S2 Water vapor adsorption/desorption isotherm of three hydrophobic materials-ZIF-8, MAF-6 and TIF-1 Zn at 298 K.

Figure S3 (Left) Langmuir plots of the isotherms and (Right) Freundlich plots of the isotherms for 1-butanol adsorption over the three hydrophobic materials at 25 °C.

Adsorbent	Langmuir isotherm model			Freundlich isotherm model							
	Q _{max} (g/g)	^k (L/mol)	R ₁ ²	K_F (L/mol)	n	R_2^2					
ZIF-8	0.304	6.708	0.999	0.223	3.778	0.861					
MAF-6	0.287	4.460	0.999	0.202	3.302	0.911					
TIF-1 Zn	0.199	2.760	0.998	0.131	3.170	0.951					

 Table S1 The adsorption constant of different adsorption models for 1-butanol onto the three

 hydrophobic materials at 25°C.

Figure S4 (Left) The pseudo-first-order and (Right) pseudo-second-order kinetic model of 1butanol onto the three hydrophobic ZIFs at 25°C.

Adsorbent	Pse	udo-first-order	kinetic	Pseudo-second-order kinetic model				
	model							
	<i>K</i> ₁	$Q_{e,cal}$ (g/g)	R_1^2	K_2 (g/g •min)	$Q_{e,exp}(g/g)_{)}$	$Q_{e,cal}(g/g)$	R_2^2	
ZIF-8	0.031	0.093	0.853	0.706	0.294	0.302	0.999	
MAF-6	0.045	0.077	0.833	0.822	0.282	0.275	0.998	
TIF-1 Zn	0.036	0.016	0.610	3.860	0.198	0.194	0.999	

Table S2 The kinetic parameters for adsorption of 1-butanol onto the three hydrophobic ZIFs at 25 $^{\circ}$ C.

Figure S5 (Left) Cycle curves for 1-butanol adsorption isotherm onto the three hydrophobic materials (Right) show PXRD of ZIFs materials before and after adsorption at 25 °C and the sample was regenerated for 2h at 250 °C.

Figure S6 (Left) Cycle curves for 1-butanol breakthrough onto ZIF-8, MAF-6 and TIF-1 Zn packed column and (Right) show PXRD of ZIFs materials before and after adsorption at 25 °C and the sample was regenerated for 2h at 250 °C.

Figure S7 The 1-butnaol desorption data of three hydrophobic materials-ZIF-8, MAF-6 and TIF-1 Zn.