Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for:

Di-phosphonate cavitands as molecular cups for L-lactic acid

T. Barboza, R. Pinalli, C. Massera and E. Dalcanale*

Dipartimento di Chimica and INSTM, UdR Parma, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy. Email: enrico.dalcanale@unipr.it

Figure S1 . ¹ H NMR spectrum of ABii[C ₃ H ₇ , CH ₃ , Ph]	Page S2
Figure S2 . ^{31P} NMR spectrum of ABii[C ₃ H ₇ , CH ₃ , Ph]	Page S2
Figure S3 . ¹ H NMR spectrum of ACii[C ₃ H ₇ , CH ₃ , Ph]	Page S3
Figure S4 . ³¹ P NMR spectrum of ACii[C ₃ H ₇ , CH ₃ , Ph]	Page S3
Figure S5 . ³¹ P NMR titration of ABii[C ₃ H ₇ , CH ₃ , Ph]	Page S4
Figure S6 . ³¹ P NMR titration of ACii[C ₃ H ₇ , CH ₃ , Ph]	Page S4
Figure S7 . ¹ H NMR titration of ABii[C ₃ H ₇ , CH ₃ , Ph]	Page S5
Figure S8 . ¹ H NMR titration of ACii[C ₃ H ₇ , CH ₃ , Ph]	Page S5
Figure S9 . ³¹ P NMR competitive titration (ABii vs ACii with LLA)	Page S6
Figure S10. ³¹ P NMR spectrum of the ABii/ACii mixture at 1:1 ratio	Page S6
Figure S11. ³¹ P NMR competitive guests titration LLA vs EtOH with ACii	Page S7
as host.	
Figure S12. ¹ H NMR spectrum of commercial L-lactic acid	Page S7
Figure S13 . Ortep view of ABii[C_3H_7 , CH_3 , Ph]• $C_3H_6O_6$ • $C_3H_6O_6$ • C_6H_{14}	Page S8
Figure S14 . Ortep view of ACii[C ₃ H ₇ , CH ₃ , Ph]•C ₃ H ₆ O ₆	Page S9
Figure S15. Space and filling view of the two complexes	Page S10
Table S1. ³¹ P NMR titrations data for the determination of binding	Page S11
constants	
Figure S16 . Fitting curves of ³¹ P NMR titrations for ABii and ACii .	Page S12

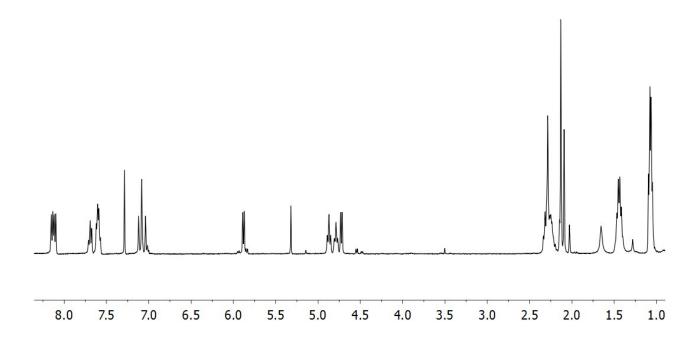


Figure S1. ¹H NMR spectrum of ABii[C₃H₇, CH₃, Ph] (CDCl₃, 400 MHz, 298K).

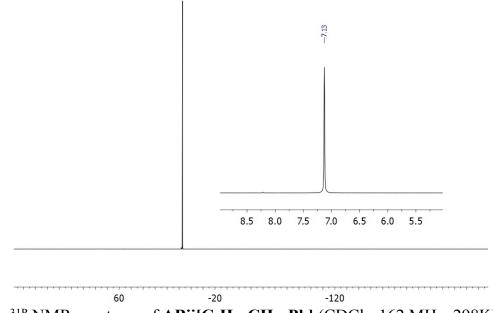


Figure S2. ^{31P} NMR spectrum of ABii[C₃H₇, CH₃, Ph] (CDCl₃, 162 MHz, 298K).

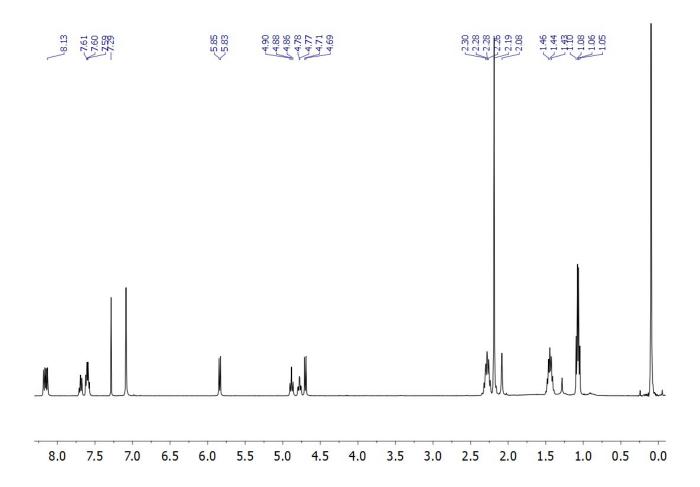


Figure S3. ¹H NMR spectrum of ACii[C₃H₇, CH₃, Ph] (CDCl₃, 400 MHz, 298K).

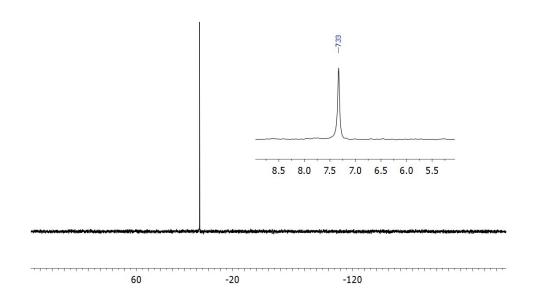


Figure S4. ³¹P NMR spectrum of ACii[C₃H₇, CH₃, Ph] (CDCl₃, 162 MHz, 298K).

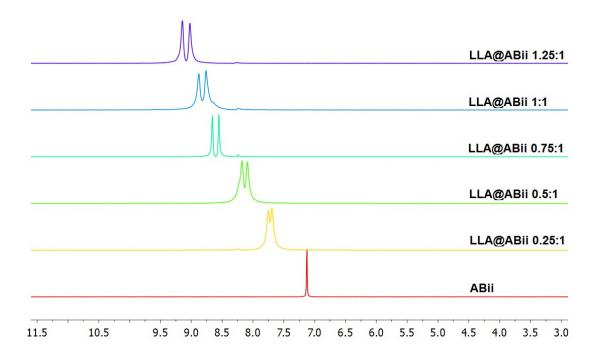


Figure S5. ³¹P NMR titration of ABii[C₃H₇, CH₃, Ph] (CDCl₃, 162 MHz) with LLA.

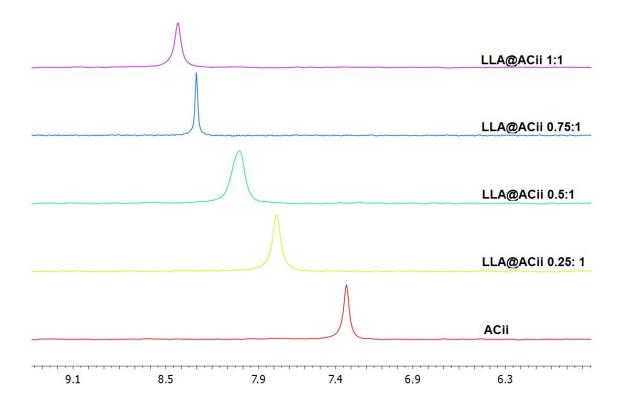


Figure S6. ³¹P NMR titration of ACii[C₃H₇, CH₃, Ph] (CDCl₃, 162 MHz, 298K) with LLA.

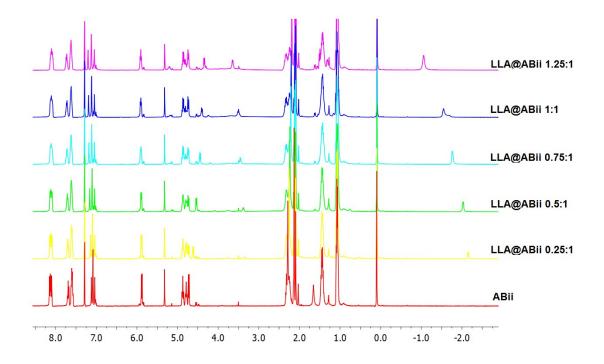


Figure S7. ¹H NMR titration of ABii[C₃H₇, CH₃, Ph] (CDCl₃, 400 MHz) with LLA.

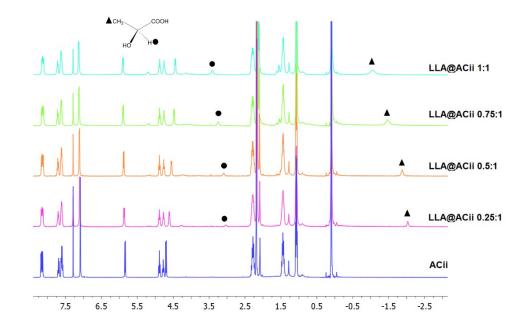


Figure S8. ¹H NMR titration of ACii[C₃H₇, CH₃, Ph] (CDCl₃, 400 MHz, 298K) with LLA.

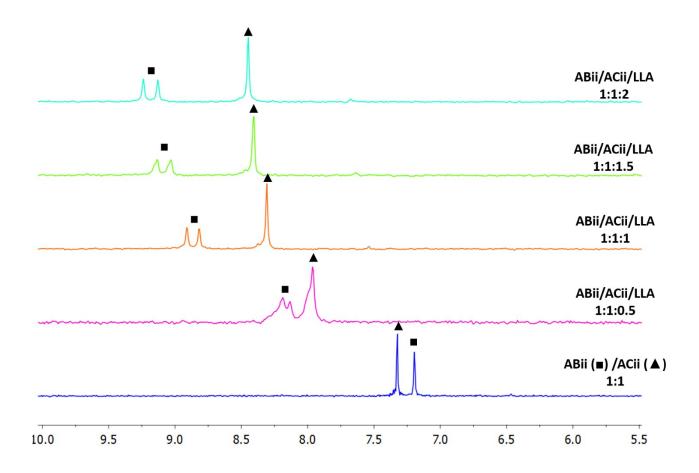


Figure S9. ³¹P NMR competition titration (ABii vs ACii as hosts, LLA as guest).

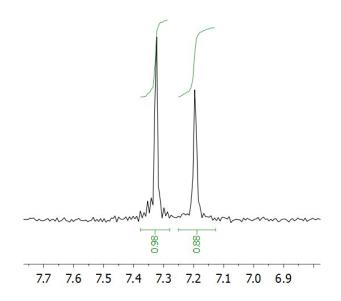
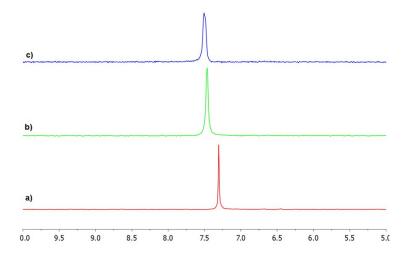



Figure S10. ³¹P NMR spectrum of the ABii/ACii mixture at 1:1 ratio. (162 MHz, CDCl₃).

Figure S11. ³¹P NMR competition experiment with LLA and Ethanol as competitive guest, and **ACii** as host. (162 MHz, CDCl₃). a) **ACii**; b) **ACii**/LLA 1:0.4. c) **ACii**/LLA/Ethanol 1:0.4:0.4.

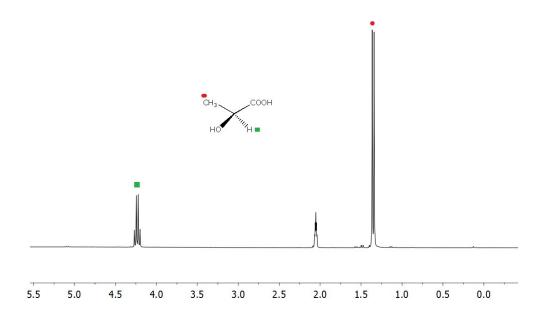


Figure S12. ¹H NMR spectrum of commercial L-lactic acid (300 MHz, d₆-acetone, 298K)

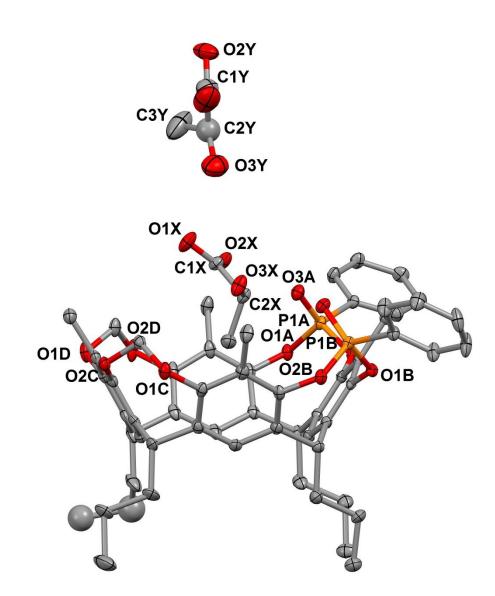
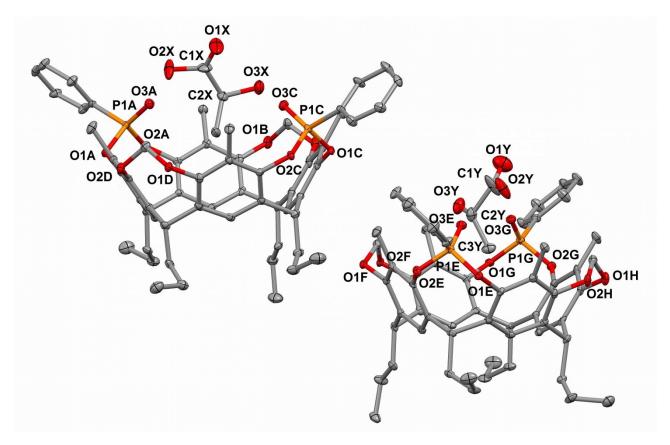



Figure S13. Ortep view (20% probability level) with partial labeling scheme of ABii[C₃H₇, CH₃, Ph]•C₃H₆O₆•C₃H₆O₆•C₆H₁₄. Hydrogen atoms have been omitted for clarity.

Figure S14. Ortep view (20% probability level) with partial labeling scheme of the two indipendent complexes **ACii**[C₃H₇, CH₃, **Ph**]•C₃H₆O₆. Hydrogen atoms have been omitted for clarity.

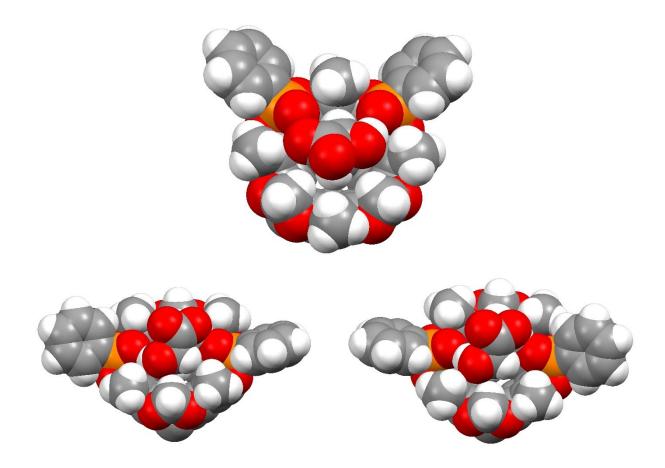


Figure S15. Space and filling view of the two complexes LLA@ABii (above) and LLA@ACii (below, both independent complexes are shown). The alkylic chains at the lower rim have been omitted for clarity. The steric hindrance provided by the frontal methylene bridges is evident for the ACii isomer, but it is not present for the ABii one.

ABii				ACii				
Preparation of the samples								
[ABii] ₀ = 1.71 mM (0.84 mg in 500 μ L of CDCl ₃) [LLA] ₀ = 57.4 mM (20.7 mg in 4.0 mL of CDCl ₃)				[ACii] ₀ = 1.51 mM (0.74 mg in 500 μ L of CDCl ₃) [LLA] ₀ = 57.4 mM (20.7 mg in 4.0 mL of CDCl ₃)				
NMR measurements								
#	[ABii]	[LLA]	δ(³¹ P)	#	[ACii]	[LLA]	δ(³¹ P)	
0	1,71E-03	0,00E+00	7,060	0	1,51E-03	0,00E+00	7,295	
1	1,68E-03	1,13E-03	7,720	1	1,48E-03	1,13E-03	7,614	
2	1,65E-03	2,21E-03	8,295	2	1,45E-03	2,21E-03	7,958	
3	1,62E-03	3,25E-03	8,636	3	1,42E-03	3,25E-03	8,141	
4	1,59E-03	4,26E-03	8,846	4	1,40E-03	4,26E-03	8,256	
5	1,56E-03	5,22E-03	8,974	5	1,37E-03	5,22E-03	8,329	
6	1,53E-03	6,16E-03	9,049	6	1,35E-03	6,16E-03	8,370	
7	1,50E-03	7,06E-03	9,111	7	1,32E-03	7,06E-03	8,407	
8	1,48E-03	7,92E-03	9,156	8	1,30E-03	7,92E-03	8,436	
9	1,43E-03	9,57E-03	9,215	9	1,28E-03	8,76E-03	8,459	
10	1,38E-03	1,11E-02	9,257	10	1,26E-03	9,57E-03	8,472	
				11	1,24E-03	1,04E-02	8,491	
Association constant determination								
$K_a = 6.74 \cdot 10^2 \pm 0.065 \text{ M}^{-1}$				$K_a = 5.37 \cdot 10^2 \pm 0.065 \text{ M}^{-1}$				
$R^2 = 0.993$				$R^2 = 0.987$				

Table S1. ³¹P NMR titrations data for the determination of association constants.

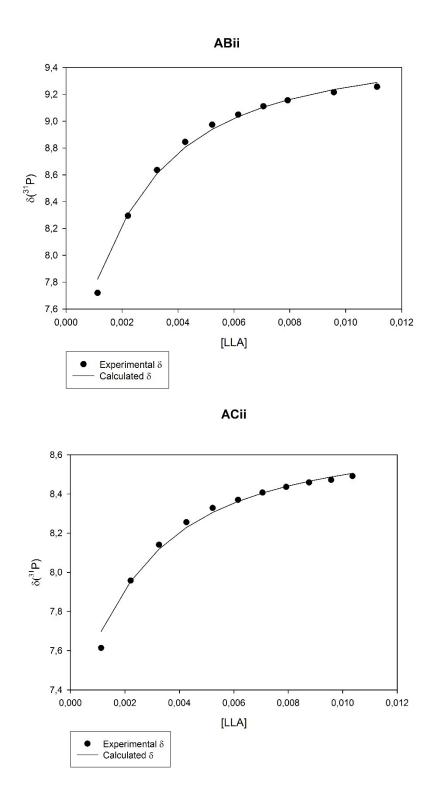


Figure S16. Fitting curves of ³¹P NMR titrations for ABii (top) and ACii (bottom).