Supplementary Information

Engineering the Proton Conductivity of Metal-organic Hybrid

Materials by Varying Coordination Mode of the Ligand

Bailing Liu, Hong-Ying Zang*, Hua-Qiao Tan, Yong-Hui Wang, Yang-Guang Li*

Contents:

Selected bond lengths and angles for compounds			
Table S1. Selected bond lengths (Å) and angles (deg) of 1.			
Cu(1)-N(3)	1.863(3)	C(17)-N(3)-Cu(1)	131.3(3)
N(7)-Cu(2)-N(5)	175.50(15)	C(17)-N(3)-Cu(1)	131.3(3)
Symmetry transformations used to generate equivalent atoms: #1 -x, y,-z+1/2			
#2 -x, y, -z+3/2			
Table S2. Selected bond lengths (Å) and angles (deg) of 2.			
Mo(1)-O(3)	2.240(3)	Mo(1)-O(9)	1.708(3)
Mo(1)-O(15)	1.957(3)	Mo(1)-O(16)	1.945(3)
Mo(1)-O(12)	1.688(3)	Mo(1)-O(13)	2.315(3)
Mo(2)-O(8)	1.687(4)	Mo(2)-O(14)	1.958(3)
Mo(2)-O(2)	2.207(3)	Mo(2)-O(15)	2.258(3)
Mo(2)-O(4)	1.712(4)	O(12)-Mo(1)-O(9)	102.83(18)
O(5)-Mo(4)#1	2.272(3)	O(12)-Mo(1)-O(16)	104.57(16)
O(9)-Mo(1)-O(16)	98.59(15)	O(10)-Mo(3)-	105.14(16)
		O(16)#1	
O(8)-Mo(2)-O(4)	102.56(19)	O(11)-Mo(4)-O(6)	102.76(17)
C(20)-O(1)-Mo(3)	133.0(3)	C(10)-O(2)-Mo(2)	133.6(3)
O(11)-Mo(4)-	103.57(16)	C(10)-O(3)-Mo(1)	130.7(3)
O(14)#2			
Mo(4)-O(13)-Mo(2)	144.99(18)	Mo(4)#1-O(14)-	142.48(18)
		Mo(2)	

Symmetry transformations used to generate equivalent atoms: #1 x-1, y, z, #2 x+1, y, z, #3 -x+1,-y,-z

Fig.S1 (a) The packing diagram of compound **1**; (b) The hydrogen bond of intermolecules and possible proton hopping pathway.

Fig.S2 FT-IR spectroscopy of compound1.

Fig.S3 FT-IR spectroscopy of compound2.

Fig.S4 The solid state UV-vis spectra of compound 1.

Fig.S5 The solid state UV-vis spectra of compound 2.

Fig.S6 Thermogravimetric analysis curve for compound 1

Fig.S7 Thermogravimetric analysis curve for compound 2.

Fig.S8 XPS spectra of Cu⁺ 2p level of compound **1**, showing two partially overlapped peaks. The curve fitting provides peak positions at 932.57eV, 952.57eV, attributed to $2p_{3/2}$, $2p_{1/2}$, respectively.

Fig.S9 PXRD patterns of compound **1**: the simulated pattern (black), as-synthesized sample (blue), after boiled in boiling water (red), after proton conductivity measurement under 97% RH at 25°C (purple curve) are given for comparison.

Fig.S10 PXRD patterns of compound **2**: the simulated pattern (black), as-synthesized sample (red), after boiled in boiling water (blue), after proton conductivity measurement under RH 97% at 25 °C (glaucous) are given for comparison.

Fig.S11Water vapor adsorption isotherm for compound 1 at STP.

Fig. S12 Water vapor adsorption isotherm for compound 2 at STP.

Fig.S13 Nyquist plot of compound **1** at 298K showing decrease in proton conductivity with respect to room temperature. Relative Humidity 45%, σ =1.45×10⁻⁹ S cm⁻¹; 65%, σ =1.71×10⁻⁸ S cm⁻¹; Relative Humidity 75%, σ =4.72×10⁻⁵ S cm⁻¹; Relative Humidity 80%, σ =1.76×10⁻⁴ S cm⁻¹; Relative Humidity 97%, σ =1.08×10⁻³ S cm⁻¹.

Fig.S14 Nyquist plot of compound **2** at 298K showing decrease in proton conductivity with respect to room temperature. Relative Humidity 45%, σ =2.56×10⁻¹¹ S cm⁻¹; Relative Humidity 65%, σ =6.73×10⁻¹¹S cm⁻¹; Relative Humidity 75%, σ =5.81×10⁻¹⁰ S cm⁻¹; Relative Humidity80%, σ =3.09×10⁻⁹ S cm⁻¹; Relative Humidity 97%, σ =1.09×10⁻⁶ S cm⁻¹;

Fig.S15 Impedance plots of compound 1 from 45 to 85 °Cat relative humidity 65%.

Fig.S16 Impedance plots of compound **2** from 45 to 85 °C under relative humidity 65%.