Supporting Information

Construction of Multifunctional Materials Based on Tb³⁺ and Croconic Acid Directed by K⁺ Cation: Synthesis, Structures Fluorescent, Magnetic and Ferroelectric Behaviors

Yu-Qi Jia,^a Si-Si Feng,^{*a,b} Mei-Lin Shen,^a Li-Ping Lu^{*a}

Fig. S1 IR curves of 1 (a), 2 (b), 3 (c), 4 (d) and the croconic acid ligand.

Vibration Fashion	Ligand	1	2	3	4
$v_{\text{O-H}}$	3236 s, br	3381 s, br	3395 s, br	3397 s, br	3392 s
$v_{c=0}$	1850 s, br	1525 s	1500 s	1496 s	1540 and 1497 s, sh
UC=C	1450 m, 1512 w, 1598 w	covered	covered	covered	covered
v _{C-O}	1100 m	1113 w	1113 w	1111 w	1111 w

Table S1 The main FT-IR vibrations of the ligand and complexes 1-4 (cm⁻¹)

S (strong), m (medium), w (weak), br (broad), sh (shoulder).

Monodentate ligand

Bidentate ligand

Tridentate ligand

м

М

Tetradentate ligand

Scheme S1 The coordination modes of croconate dianions with metal cations.

Fig. S2 Comparison of the simulated and experimental XRPD patterns of 1 (a), 2 (b), 3 (c) and 4 (d).

Fig. S3 TGA and DSC curves of 1 (a), 2 (b), 3 (c) and 4 (d).

Fig. S4 The coordination of compound 1 and displacement ellipsoids are drawn at the 30% probability (Symmetry codes: i -x+2, -y+2, -z+2). O6 and O6w share one site, while O8 and O8w choose the same mode. The bridged croconate $C_5O_5^{2-}$ marked by open line shows the other part of the croconate with the occupancy of 50%.

Table S2 Selected bond lengths(Å) and bond angles (°)of compound 1.

1 81	Table 52 Selected bold lengths(A) and bold angles ()or compound 1.				
Tb(1)—O(15)	2.340(5)	Tb(1)—O(1)	2.359(4)		
Tb(1)—O(8W)	2.366(13)	Tb(1)—O(11)	2.373(5)		
Tb(1)—O(13)	2.381(5)	$Tb(1) - O(8)^{i}$	2.386(17)		
Tb(1)—O(6)	2.389(5)	Tb(1)—O(14)	2.399(6)		
Tb(1)—O(12)	2.401(5)				
O(15) - Tb(1) - O(1)	74.84(16)	O(15)—Tb(1)—O(8W)	80.8(4)		
O(1)—Tb(1)—O(8W)	84.4(4)	O(15)—Tb(1)—O(11)	140.24(17)		
O(1)— $Tb(1)$ — $O(11)$	77.06(17)	O(8W)— $Tb(1)$ — $O(11)$	69.0(4)		
O(15)—Tb(1)—O(13)	144.93(18)	O(1)— $Tb(1)$ — $O(13)$	137.24(16)		
O(8W)—Tb(1)—O(13)	111.0(4)	O(11)—Tb(1)—O(13)	72.6(2)		
$O(15)$ — $Tb(1)$ — $O(8)^{i}$	74.3(4)	$O(1)$ — $Tb(1)$ — $O(8)^{i}$	75.6(4)		
$O(8W)$ — $Tb(1)$ — $O(8)^{i}$	9.9(5)	$O(11)$ — $Tb(1)$ — $O(8)^{i}$	71.9(4)		
$O(13)$ — $Tb(1)$ — $O(8)^{i}$	120.6(4)	O(15)—Tb(1)—O(6)	79.69(19)		
O(1)—Tb(1)—O(6)	148.25(16)	O(8W)—Tb(1)—O(6)	72.9(4)		
O(11)—Tb(1)—O(6)	113.4(2)	O(13)—Tb(1)—O(6)	73.13(18)		
$O(8)^{i}$ —Tb(1)—O(6)	79.5(4)	O(15)—Tb(1)—O(14)	72.2(2)		
O(1)—Tb(1)—O(14)	114.4(2)	O(8W)—Tb(1)—O(14)	140.5(4)		
O(11)—Tb(1)—O(14)	146.38(19)	O(13)—Tb(1)—O(14)	79.3(2)		
$O(8)^{i}$ —Tb(1)—O(14)	140.4(4)	O(6)—Tb(1)—O(14)	74.3(2)		
O(15)—Tb(1)—O(12)	112.53(19)	O(1)—Tb(1)—O(12)	71.31(16)		
O(8W)—Tb(1)—O(12)	147.0(4)	O(11)—Tb(1)—O(12)	83.76(18)		
O(13)—Tb(1)—O(12)	76.06(18)	$O(8)^{i}$ —Tb(1)—O(12)	142.4(4)		
O(6)—Tb(1)—O(12)	137.42(17)	O(14)—Tb(1)—O(12)	71.69(18)		
	a 1				

Symmetry codes: (i) -x, -y, -z.

Table S3 Hydrogen–bond geometry (\AA) and bond angles (°) of compound 1.

D—H…A	D—H	H···A	D···A	D—H…A
$O(11)$ — $H(11A) \cdots O(4)^{i}$	0.82	1.87	2.667(8)	161.9
$O(11) - H(11B) \cdots O(10)^{ii}$	0.82	1.99	2.765(13)	155.8
$O(12) - H(12A) \cdots O(2)^{iii}$	0.83	2.01	2.711(7)	141.7
$O(12)$ — $H(12A) \cdots O(1)^{iii}$	0.83	2.60	3.260(6)	137.3
$O(12) - H(12B) \cdots O(4)^{iv}$	0.82	2.27	3.073(10)	165.1
$O(13) - H(13A) \cdots O(5)^{i}$	0.83	2.04	2.763(6)	145.4
$O(15) - H(15A) \cdots O(5)$	0.84	1.86	2.685(6)	168.8
$O(15) - H(15B) \cdots O(3)^{v}$	0.82	2.00	2.679(8)	139.5

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z + 1; (v) x, y-1, z.

Fig. S5 Molecule packing diagram for the complex 1 connecting by O-H···O hydrogen bonds, a) along *b* axis, forming 1D chains. b) in *bc* plane, forming 2D sheet. c) 3D net structure with large rectangular channels along *b* direction. (Symmetry codes: i x + 1, y, z; ii x, y + 1, z; iii -x + 1, -y + 1, -z + 1; iv -x, -y + 1, -z + 1; v x, y-1, z).

Table S4 Selected bond lengths (Å) and bond angles (°) of compound 2.

Tb(1)—O(7)	2.368 (5)	$Tb(1) - O(7)^{i}$	2.368 (5)
Tb(1)—O(1)	2.369(5)	$Tb(1) - O(1)^{i}$	2.369(5)
Tb(1)—O(8)	2.370 (5)	$Tb(1) - O(8)^{i}$	2.370 (5)
Tb(1)—O(6)	2.391(6)	$Tb(1) - O(6)^{i}$	2.391(6)
$Tb(1) - K(1)^{i}$	4.357(5)	Tb(1)—H(6B)	2.4650
K(1) - O(1)	3.178(7)	K(1)—O(6)	2.693(7)
K(1)—O(5)	2.783(9)	K(1)—O(3) ⁱⁱ	2.940(8)
$K(1) - O(4)^{ii}$	3.057(8)	$K(1) - C(1)^{i}$	3.463(9)
K(1)—H(6A)	3.0050	K(1)—H(6B)	3.0065
$O(7)$ — $Tb(1)$ — $O(7)^{i}$	143.3(3)	$O(7)$ — $Tb(1)$ — $O(1)^{i}$	73.93(18)
$O(7)^{i}$ —Tb(1)—O(1) ⁱ	140.59(18)	O(7) - Tb(1) - O(1)	140.59(18)
$O(7)^{i}$ —Tb(1)—O(1)	73.92(18)	$O(1)$ — $Tb(1)$ — $O(1)^{i}$	76.2(3)
$O(7)$ — $Tb(1)$ — $O(8)^{i}$	71.54(19)	$O(7)^{i}$ —Tb(1)—O(8) ⁱ	80.0(2)
$O(1)^{i}$ —Tb(1)—O(8) ⁱ	113.56 (19)	$O(1)$ — $Tb(1)$ — $O(8)^{i}$	145.57 (18)
O(7)—Tb(1)—O(8)	80.0 (2)	$O(7)^{i}$ —Tb(1)—O(8)	71.54 (19)
$O(1)^{i}$ —Tb(1)—O(8)	145.57 (18)	O(1)—Tb(1)—O(8)	113.56 (19)
$O(8)^{i}$ —Tb(1)—O(8)	77.8 (3)	O(7)—Tb(1)—O(6)	76.9 (2)
$O(7)^{i}$ —Tb(1)—O(6)	114.3 (2)	$O(1)^{i}$ —Tb(1)—O(6)	80.03 (19)

O(1)—Tb(1)—O(6)	73.07 (19)	$O(8)^{i}$ —Tb(1)—O(6)	139.64 (18)
O(8)—Tb(1)—O(6)	72.38 (18)	$O(7)$ — $Tb(1)$ — $O(6)^{i}$	114.3 (2)
$O(7)^{i}$ —Tb(1)—O(6) ⁱ	76.9 (2)	$O(1)^{i}$ —Tb(1)—O(6) ⁱ	73.07 (19)
$O(1)$ — $Tb(1)$ — $O(6)^{i}$	80.02 (19)	$O(8)^{i}$ —Tb(1)—O(6) ⁱ	72.38 (18)
$O(8)$ — $Tb(1)$ — $O(6)^{i}$	139.64 (18)	$O(6)$ — $Tb(1)$ — $O(6)^{i}$	145.7 (2)
O(7)—Tb(1)—K(1) ⁱ	111.04 (17)	$O(7)^{i}$ —Tb(1)—K(1)^{i}	96.85 (16)
$O(1)^{i}$ —Tb(1)—K(1)^{i}	45.37 (14)	$O(8)^{i}$ —Tb(1)—K(1)^{i}	60.51 (15)
$O(8)^{i}$ —Tb(1)—K(1)^{i}	101.64 (15)	O(8)—Tb(1)—K(1) ⁱ	168.34 (15)
$O(6)$ — $Tb(1)$ — $K(1)^{i}$	112.93 (15)	$O(6)^{i}$ —Tb(1)—K(1)^{i}	33.11 (14)
O(7)—Tb(1)—H(6B)	58.9	$O(7)^{i}$ —Tb(1)—H(6B)	133.2
$O(1)^{i}$ —Tb(1)—H(6B)	68.9	O(1)—Tb(1)—H(6B)	86.7
$O(8)^{i}$ —Tb(1)—H(6B)	127.8	O(8)—Tb(1)—H(6B)	78.5
O(6)—Tb(1)—H(6B)	19.7	$O(6)^{i}$ —Tb(1)—H(6B)	141.7
$K(1)^{i}$ —Tb(1)—H(6B)	110.1	O(6) - K(1) - O(5)	113.8 (3)
O(6)—K(1)—O(3) ⁱⁱ	150.9 (3)	$O(5) - K(1) - O(3)^{ii}$	78.0 (2)
$O(6) - K(1) - O(4)^{ii}$	102.2 (2)	$O(5) - K(1) - O(4)^{ii}$	133.1 (3)
$O(3)^{ii}$ — $K(1)$ — $O(4)^{ii}$	56.74 (19)	O(6) - K(1) - O(1)	57.00 (19)
O(5) - K(1) - O(1)	57.70 (18)	$O(3)^{ii}-K(1)-O(1)$	132.6 (2)
$O(4)^{ii}-K(1)-O(1)$	152.2 (2)	$O(6) - K(1) - C(1)^{i}$	65.1 (2)
$O(5) - K(1) - C(1)^{i}$	81.3 (2)	$O(3)^{ii}-K(1)-C(1)^{i}$	92.3 (2)
$O(4)^{ii}$ — $K(1)$ — $C(1)^{i}$	88.1 (2)	$O(1) - K(1) - C(1)^{i}$	66.91 (19)
O(6) - K(1) - H(6A)	15.4	O(5)—K(1)—H(6A)	125.7
$O(3)^{ii}-K(1)-H(6A)$	151.9	$O(4)^{ii}-K(1)-H(6A)$	96.1
O(1)—K(1)—H(6A)	68.0	$C(1)^{i}-K(1)-H(6A)$	78.7
O(6)—K(1)—H(6B)	15.6	O(5) - K(1) - H(6B)	117.1
$O(3)^{ii}-K(1)-H(6B)$	135.4	$O(4)^{ii}-K(1)-H(6B)$	90.8
O(1)—K(1)—H(6B)	64.8	$C(1)^{i}$ — $K(1)$ — $H(6B)$	53.4
H(6A)—K(1)—H(6B)	25.5		

Symmetry codes: (i) -x, y, -z + 1/2; (ii) x, -y + 1, z + 1/2.

Table S5 Hydrogen–bond geometry (Å) and bond angles (°) of compound 2.

D—H…A	D—H	Н…А	D…A	D—H…A
$O(6) - H(6A) \cdots O(2)^{iii}$	0.82	2.31	2.774(8)	115.9
$O(8) - H(8B) \cdots O(5)^{iv}$	0.83	1.97	2.718(7)	148.4
$O(8) - H(8A) \cdots O(3)^{iii}$	0.85	1.78	2.631(8)	179.8
$O(7) - H(7B) \cdots O(4)^{ii}$	0.83	1.88	2.676(8)	162.5
$O(7) - H(7A) \cdots O(2)^i$	0.83	2.04	2.695(8)	135.4

Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x, y + 1, -z + 1/2. (iii) x, -y + 2, z + 1/2; (iv) x, y + 1, z;

Fig. S6 Molecule packing diagram for the complex 2, forming 2D layer in the *bc* plane.

Fig. S7 Molecule packing diagram for the complex 2 along *c* axis.

Table S6 Selected bond lengths (Å) and bond angles (°) of compound 3.

Tb(1)—O(6)	2.318(6)	Tb(1)—O(11)	2.350(6)
Tb(1)—O(1)	2.365(5)	Tb(1)—O(12)	2.368(4)
Tb(1)—O(14)	2.377(5)	Tb(1)—O(13)	2.403(4)
Tb(1)—O(10)	2.404(5)	Tb(1)—N(1)	2.602(5)
O(6)—Tb(1)—O(11)	140.8(2)	O(6)—Tb(1)—O(1)	141.09(18)
O(11)—Tb(1)—O(1)	77.47(19)	O(6)—Tb(1)—O(12)	107.00(14)
O(11)— $Tb(1)$ — $O(12)$	85.26(15)	O(1)— $Tb(1)$ — $O(12)$	76.98(15)
O(6)—Tb(1)—O(14)	75.56(17)	O(11)—Tb(1)—O(14)	74.55(18)
O(1)—Tb(1)—O(14)	122.67(16)	O(12)—Tb(1)—O(14)	146.40(16)
O(6)—Tb(1)—O(13)	78.98(14)	O(11)—Tb(1)—O(13)	115.34(15)
O(1)—Tb(1)—O(13)	75.31(14)	O(12)—Tb(1)—O(13)	140.29(16)
O(14)—Tb(1)—O(13)	73.29(15)	O(6)—Tb(1)—O(10)	72.28(17)
O(11)—Tb(1)—O(10)	75.41(18)	O(1)—Tb(1)—O(10)	142.32(15)
O(12)—Tb(1)—O(10)	75.18(16)	O(14)—Tb(1)—O(10)	73.91(18)
O(13)—Tb(1)—O(10)	140.64(16)	O(6) - Tb(1) - N(1)	64.82(18)
O(11)— $Tb(1)$ — $N(1)$	151.44(19)	O(1)— $Tb(1)$ — $N(1)$	80.86(15)
O(12)—Tb(1)—N(1)	71.82(14)	O(14)— $Tb(1)$ — $N(1)$	133.55(15)
O(13)—Tb(1)—N(1)	76.15(15)	O(10)—Tb(1)—N(1)	113.26(16)

Fig. S8 (a) Molecule packing diagram for the complex **3** connecting by O-H···O intermolecular hydrogen bonds (Symmetry codes: i -*x*, *y*, -*z*+1/2; ii *x*, -*y*+1, *z*+1/2; iii *x*, -*y*+1, *z*-1/2) and (b) π ··· π interactions between the centroids of C₅O₅²⁻ and pyridine.

Table S7 Hydrogen–bond geometry (Å) and bond angles (°) of compound 3.

D—H···A	D—H	H···A	D····A	D—H···A
$O(15) - H(15B) \cdots O(1)^{i}$	0.85	2.57	3.048(6)	116.4
$O(15) - H(15B) \cdots O(2)^{i}$	0.85	2.04	2.870(7)	166.8
$O(15) - H(15A) \cdots O(5)^{ii}$	0.85	1.86	2.698(7)	169.7
O(14)—H(14B) ····O(2) ⁱⁱⁱ	0.86	1.99	2.742(7)	146.2
$O(14)$ — $H(14A) \cdots O(4)^{iv}$	0.86	1.89	2.716(6)	161.7
$O(13)$ — $H(13B) \cdots O(3)^{iv}$	0.89	2.17	3.039(7)	165.9
$O(13)$ — $H(13A) \cdots O(15)^{v}$	0.89	1.85	2.700(7)	160.2
$O(12)$ — $H(12B) \cdots O(4)^{vi}$	0.86	2.10	2.738(6)	130.7
$O(12)$ — $H(12A) \cdots O(7)^{vii}$	0.86	1.93	2.688(6)	147.4
$O(11) - H(11B) \cdots O(5)$	0.85	2.13	2.671(9)	120.7
$O(11)$ — $H(11A) \cdots O(3)^{iii}$	0.85	2.15	2.886(8)	144.5
O(10)—H(10B) ···O(8) ⁱⁱⁱ	0.83	2.28	2.765(7)	117.4
O(10)—H(10A) ···O(15) ^{viii}	0.92	1.85	2.760(6)	167.4
$O(9) - H(9) \cdots O(7)^{ix}$	0.82	1.77	2.549(7)	158.7
C	1.1.(1) 1/2	1/2 1/2 (11)	1 (1) + 1/2	1/2 1/2 ()

Symmetry codes: (i) x, y, z + 1; (ii) x - 1/2, -y + 1/2, z + 1/2; (iii) x + 1, y, z; (iv) x + 1/2, -y + 1/2, z - 1/2; (v) x, y, z-1; (vi) x, -y, z - 1/2; (vii) x, -y, z + 1/2; (viii) x + 1/2, y - 1/2, z - 1; (ix) x - 1, y, z.

Table S8 Selected bond lengths()	Å) and bond angles	(°) of compound 4 .
----------------------------------	--------------------	----------------------------

Tb(1)—O(9)	2.309(4)	Tb(1) —O(6)	2.360(6)
$Tb(1) - O(2)^{i}$	2.373(4)	Tb(1) - O(2)	2.373(4)
$Tb(1) - O(8)^{i}$	2.444(2)	Tb(1) - O(8)	2.444(2)
Tb(1) —O(7)	2.620(6)	Tb(1) - O(1)	2.623(4)
$Tb(1) - O(1)^{i}$	2.623(4)	$Tb(1) - K(1)^{ii}$	4.3164(18)
$K(1) - O(7)^{iii}$	2.844(6)	$K(1) - O(4)^{iv}$	2.854(3)
K(1) - O(4)	2.855(3)	$K(1) - O(4)^{v}$	2.900(4)
$K(1) - O(4)^{vi}$	2.900(4)	K(1)O(8) ^{vii}	2.967(4)
$K(1) - O(8)^{viii}$	2.967(4)	$K(1) - O(5)^{iv}$	3.180(4)
K(1) - O(5)	3.180(4)	$K(1) - O(6)^{vii}$	3.359(7)
$K(1) - K(1)^{vi}$	4.2339(9)	$K(1) - K(1)^{ix}$	4.2338(9)
O(9) - Tb(1) - O(6)	100.2(2)	O(9) - Tb(1) - O(2)	79.49(13)
O(6) - Tb(1) - O(2)	131.69(9)	$O(6) - Tb(1) - O(2)^{i}$	131.68(9)
$O(9) - Tb(1) - O(2)^{i}$	79.48(13)	$O(2)^{i}$ —Tb(1)—O(2)	96.14(17)
$O(9) - Tb(1) - O(8)^{i}$	142.09(7)	$O(6) - Tb(1) - O(8)^{i}$	74.9(2)
$O(2) - Tb(1) - O(8)^{i}$	132.11(17)	$O(2)^{i}$ —Tb(1) —O(8)^{i}	76.98(15)
O(6) - Tb(1) - O(8)	74.9(2)	O(9) - Tb(1) - O(8)	142.09(7)
O(2) - Tb(1) - O(8)	76.97(15)	$O(2)^{i}$ —Tb(1)—O(8)	132.11(17)
O(9) - Tb(1) - O(7)	123.65(18)	$O(8)^{i}$ —Tb(1) —O(8)	74.04(11)
O(2)—Tb(1)—O(7)	64.28(12)	O(6) - Tb(1) - O(7)	136.10(14)
$O(8)^{i}$ —Tb(1)—O(7)	70.40(19)	$O(2)^{i}$ —Tb(1)—O(7)	64.28(12)
O(9) - Tb(1) - O(1)	72.14(11)	O(8) - Tb(1) - O(7)	70.40(19)
$O(2)^{i}$ —Tb(1)—O(1)	149.06(11)	O(6) - Tb(1) - O(1)	67.05(11)
$O(8)^{i}$ —Tb(1)—O(1)	133.73(16)	O(2) - Tb(1) - O(1)	67.12(11)
O(7) - Tb(1) - O(1)	123.09(8)	O(8) - Tb(1) - O(1)	71.48(14)
$O(6) - Tb(1) - O(1)^{i}$	67.05(11)	$O(9) - Tb(1) - O(1)^{i}$	72.14(11)
$O(2) - Tb(1) - O(1)^{i}$	149.06(10)	$O(2)^{i}$ —Tb(1) —O(1)^{i}	67.12(11)
$O(8) - Tb(1) - O(1)^{i}$	133.73(16)	$O(8)^{i}$ —Tb(1) —O(1)^{i}	71.48(14)
$O(1) - Tb(1) - O(1)^{i}$	113.81(16)	$O(7) - Tb(1) - O(1)^{i}$	123.09(8)
$O(6) - Tb(1) - K(1)^{ii}$	50.64(18)	$O(9) - Tb(1) - K(1)^{ii}$	150.89(12)
$O(2) - Tb(1) - K(1)^{ii}$	118.17(10)	$O(2)^{i}$ —Tb(1) —K(1) ⁱⁱ	118.17(10)
$O(8) - Tb(1) - K(1)^{ii}$	41.51(10)	$O(8)^{i}$ —Tb(1) —K(1) ⁱⁱ	41.51(10)
$O(1) - Tb(1) - K(1)^{ii}$	92.77(10)	$O(7) - Tb(1) - K(1)^{ii}$	85.46(14)
$O(7)^{iii}$ —K(1) —O(4) ^{iv}	76.50(13)	$O(1)^{i}$ —Tb(1) —K(1)^{ii}	92.76(10)
$O(4)^{iv} - K(1) - O(4)$	67.12(13)	$O(7)^{iii} - K(1) - O(4)$	76.50(13)
$O(4)^{iv} - K(1) - O(4)^{v}$	174.75(8)	$O(7)^{iii} - K(1) - O(4)^{v}$	108.74(13)
$O(7)^{iii} - K(1) - O(4)^{vi}$	108.74(13)	$O(4) - K(1) - O(4)^{v}$	113.21(10)
$O(4) - K(1) - O(4)^{vi}$	174.75(8)	$O(4)^{iv} - K(1) - O(4)^{vi}$	113.22(10)
$O(7)^{iii}$ —K(1) —O(8) ^{vii}	142.03(10)	$O(4)^{v} - K(1) - O(4)^{vi}$	65.93(12)

$O(4) - K(1) - O(8)^{vii}$	99.61(14)	$O(4)^{iv} - K(1) - O(8)^{vii}$	67.58(12)
$O(4)^{vi} - K(1) - O(8)^{vii}$	76.06(14)	$O(4)^{v} - K(1) - O(8)^{vii}$	107.39(13)
$O(4)^{iv} - K(1) - O(8)^{viii}$	99.61(14)	$O(7)^{iii} - K(1) - O(8)^{viii}$	142.03(10)
$O(4)^{v} - K(1) - O(8)^{viii}$	76.06(14)	$O(4) - K(1) - O(8)^{viii}$	67.58(12)
$O(8)^{vii} - K(1) - O(8)^{viii}$	59.46(11)	$O(4)^{vi} - K(1) - O(8)^{viii}$	107.39(12)
$O(4)^{iv} - K(1) - O(5)^{iv}$	57.70(9)	$O(7)^{iii} - K(1) - O(5)^{iv}$	63.95(7)
$O(4)^{v} - K(1) - O(5)^{iv}$	124.55(10)	$O(4) - K(1) - O(5)^{iv}$	117.07(10)
$O(8)^{vii} - K(1) - O(5)^{iv}$	86.04(8)	$O(4)^{vi} - K(1) - O(5)^{iv}$	65.99(9)
$O(7)^{iii} - K(1) - O(5)$	63.95(7)	$O(8)^{viii} - K(1) - O(5)^{iv}$	144.95(10)
O(4) - K(1) - O(5)	57.70(9)	$O(4)^{iv} - K(1) - O(5)$	117.07(10)
$O(4)^{vi} - K(1) - O(5)$	124.55(10)	$O(4)^{v} - K(1) - O(5)$	65.99(9)
$O(8)^{viii} - K(1) - O(5)$	86.04(8)	$O(8)^{vii} - K(1) - O(5)$	144.95(10)
$O(7)^{iii} - K(1) - O(6)^{vii}$	156.7(2)	$O(5)^{iv} - K(1) - O(5)$	127.00(13)
$O(4) - K(1) - O(6)^{vii}$	122.09(11)	$O(4)^{iv} - K(1) - O(6)^{vii}$	122.09(11)
$O(4)^{vi}$ —K(1) —O(6) ^{vii}	52.99(10)	$O(4)^{v}$ —K(1) —O(6) ^{vii}	52.99(10)
$O(8)^{viii}$ —K(1) —O(6) ^{vii}	54.58(13)	$O(8)^{vii}$ —K(1) —O(6) ^{vii}	54.58(13)
$O(5) - K(1) - O(6)^{vii}$	111.84(7)	$O(5)^{iv} - K(1) - O(6)^{vii}$	111.84(7)
$O(4)^{iv} - K(1) - K(1)^{ix}$	43.04(7)	$O(7)^{iii} - K(1) - K(1)^{ix}$	102.44(13)
$O(4)^{v} - K(1) - K(1)^{ix}$	133.44(8)	$O(4) - K(1) - K(1)^{ix}$	43.04(7)
$O(8)^{vii} - K(1) - K(1)^{ix}$	58.30(12)	$O(4)^{vi} - K(1) - K(1)^{ix}$	133.44(8)
$O(5)^{iv} - K(1) - K(1)^{ix}$	99.87(7)	$O(8)^{viii} - K(1) - K(1)^{ix}$	58.30(12)
$O(6)^{vii} - K(1) - K(1)^{ix}$	100.89(11)	$O(5) - K(1) - K(1)^{ix}$	99.87(7)
$O(4)^{iv} - K(1) - K(1)^{vi}$	140.70(7)	$O(7)^{iii} - K(1) - K(1)^{vi}$	84.50(13)
$O(4)^{v} - K(1) - K(1)^{vi}$	42.21(7)	$O(4) - K(1) - K(1)^{vi}$	140.70(7)
$O(8)^{vii} - K(1) - K(1)^{vi}$	115.98(13)	$O(4)^{vi} - K(1) - K(1)^{vi}$	42.21(7)
$O(5)^{iv} - K(1) - K(1)^{vi}$	83.08(7)	$O(8)^{viii} - K(1) - K(1)^{vi}$	115.98(13)
$O(6)^{vii}$ —K(1) —K(1) ^{vi}	72.17(11)	$O(5) - K(1) - K(1)^{vi}$	83.08(7)
$K(1)^{vi}$ — $K(1)$ — $K(1)^{ix}$	173.06(8)		

Symmetry code: (i) -x + 1, y, z; (ii) x - 1/2, y - 1/2, z; (iii) -x + 3/2, -y + 3/2, z - 1/2; (iv) -x + 2, y, z; (v) x, -y + 2, z - 1/2; (vi) -x + 2, -y + 2, z - 1/2; (vii) x + 1/2, y + 1/2, z; (viii) -x + 3/2, y + 1/2, z; (ix) -x + 2, -y + 2, z + 1/2;

Table S9 Hydrogen–bond geometry (Å) and bond angles (°) of compound 4.

D–H…A	D–H	H···A	D····A	D—H…A	
$O(6)$ — $H(6A) \cdots O(10)^{i}$	0.82	2.37	3.041(7)	139.9	
$O(6)$ — $H(6A) \cdots O(4)^i$	0.82	2.29	2.822(6)	123.7	
$O(7)$ — $H(7A) \cdots O(10)^{v}$	0.82	2.40	3.183(6)	158.8	
$O(7)$ — $H(7A) \cdots O(5)^{v}$	0.82	2.81	3.203(5)	111.5	
$O(8)$ — $H(8A) \cdots O(3)^{i}$	0.87	1.79	2.653(5)	171.4	
O(8)—H(8B) ···O(5) ⁱⁱ	0.91	1.95	2.759(7)	146.7	
O(8)—H(8B) ···O(7)	0.91	2.43	2.923(8)	113.7	
$O(9)$ — $H(9A) \cdots O(10)^{iv}$	0.82	1.95	2.759(4)	168.8	
O(9)—H(9A) ···O(2) ⁱⁱⁱ	0.82	2.92	3.370(5)	117.1	
$O(10)$ — $H(10A) \cdots O(1)^{ii}$	0.85	1.94	2.774(6)	167.7	
$O(10)$ — $H(10B) \cdots O(3)^{i}$	0.86	1.98	2.838(5)	177.1	
		1 (0 (11)) 0 (0		1/2 (1)	

Symmetry codes: (i) -x + 3/2, -y + 3/2, z - 1/2; (ii) -x + 3/2, -y + 3/2, z + 1/2; (iii) -x + 1, -y + 2, z - 1/2; (iv) x - 1/2, y + 1/2, z; (v) x - 1/2, -y + 3/2, z + 1/2.

Fig. S9 Molecule packing diagram for the complex **4** linked by coordinated water molecules along crystallographic *b* resulting in the formation of the 2D square grids. K atoms are shown in purple, Tb atoms in blue,

Fig. S10 Temperature dependence of $\chi_m T$ and χ_m collected in an applied field of 1000 Oe for complexes **1** (a), **2** (b) and **3** (c), where χ_m is the molar susceptibility. Magnetic moment data as a function of field are shown in the inset.

Fig. S11 Out-of-phase *ac* magnetic susceptibility (χ_m'') for **1-4** from 2 to 26 K with 2 K intervals.

Fig. S12 In-phase *ac* magnetic susceptibility (χ_m') for 1-4 from 11 to 10000 Hz at temperatures from 2 to 26 K with 2 K intervals.