ESI

Slow Relaxation of Magnetization on 3D-MOFs Based on Dysprosium Dinuclear Entities Bridged by Dicarboxylic Linkers.

Itziar Oyarzabal, Belén Fernández, Javier Cepeda, Santiago Gómez Ruiz, Antonio J. Calahorro, José M. Seco and Antonio Rodríguez-Diéguez

Index:

- 1. Bond Distances
- 2. Continuous Shape Measures Calculations
- 3. Luminescence Properties
- 4. Magnetic Properties
- 5. PXRD
- 6. TG spectra

1. Bond Distances

1	2 3							
Dy1 O1C 2.2365(19) Dy1 O2A 2.2658(19) Dy1 O2C 2.3081(18) Dy1 O1D 2.316(2) Dy1 O1A 2.3255(19) Dy1 O1E 2.334(2) Dy1 O1E 2.3840(19) Dy1 O1B 2.4299(19) Dy1 C1B 2.768(3)	Dy1 O1C 2.275(8) Dy1 O2C 2.277(7) Dy1 O2A 2.326(5) Dy1 O1A 2.338(6) Dy1 O1N 2.348(6) Dy1 O2B 2.389(6) Dy1 O1M 2.417(7) Dy1 O1B 2.461(6) Dy1 C1B 2.761(9)	Dy1 O11B 2.2350(19) Dy1 O12A 2.2806(18) Dy1 O1L 2.3703(19) Dy1 O1L 2.3769(19) Dy1 O1P 2.388(2) Dy1 O12B 2.3976(17) Dy1 O32C 2.4259(17) Dy1 O31C 2.4504(17) Dy1 C31C 2.771(2)	Dy2 O11C 2.2914(18) Dy2 O32A 2.3285(18) Dy2 O31B 2.3526(17) Dy2 O12C 2.3539(17) Dy2 O31 2.3707(18) Dy2 O1M 2.3822(18) Dy2 O1M 2.4252(19) Dy2 O32B 2.5644(19) Dy2 C31B 2.797(2)					

Table S1. Selected Distances (Å)

2. Continuous Shape Measures Calculations

 Table S2. Continuous Shape Measures Calculations for compounds 1-3.

OP-8	1	D8h	Octagon					
HPY-8	2	C7v	Heptagonal	Heptagonal pyramid				
HBPY-8	3	D6h	Hexagonal	Hexagonal bipyramid				
CU-8	4	Oh	Cube					
SAPR-8	5	D4d	Square ant	ziprism				
TDD-8	6	D2d	Triangula	Triangular dodecahedron				
JGBF-8	7	D2d	Johnson gy	Johnson gyrobifastigium J26				
JETBPY-8	8	D3h	Johnson el	Johnson elongated triangular bipyramid J14				
JBTPR-8	9	C2v	Biaugmente	Biaugmentedtrigonal prism J50				
BTPR-8	10	C2v	Biaugmente	edtrigonal pr	ism			
JSD-8	11	D2d	Snub diphe	enoid J84				
TT-8	12	Τd	Id Triakis tetrahedron					
ETBPY-8	13	D3h	Elongated	trigonalbipy	ramid			
Structure	[ML8]		OP-8	HPY-8	HBPY-8			
CU-8	SAPR-8		TDD-8	JGBF-8	JETBPY-8			
JBTPR-8	BTPF	२–४	JSD-8	TT-8	ETBPY-8			
Comp 1	,		30.002,	21.747,	15.708,			
10.390,	0.77	73,	2.667,	15.761,	26.656,			
2.622,	1.897	7,	5.311,	11.043,	22.469			
Comp 2	,		31.338,	23.048,	14.547,			
9.578,	1.869	Э,	1.901,	13.598,	26.173,			
2.006,	1.418	З,	4.198,	10.246,	21.957			
Comp 3 Dy1	· ,		31.638,	21.688,	14.178,			
9.171,	2.218	З,	1.137,	14.403,	26.055,			
2.835,	2.090),	3.401,	9.926,	21.743			
Comp 3 Dy2	<u> </u>		30.648,	22.531,	15.258,			
10.585,	1.38	31,	2.531,	14.164,	26.525,			
1.811,	1.185	5,	4.484,	11.030,	23.402			

3. Luminescence Properties

Figure S1. Experimental emission spectrum of 5-Cyano-1,3-benzenedicarboxylic acid.

4. Magnetic Properties

Figure S2. Temperature dependence of the in-phase χ_{M}' (insets) and out-of-phase χ_{M}'' components of the ac susceptibility at different frequencies under zero external dc field for compounds 1 (top), 2 (middle) and 3 (bottom).

Figure S3. Temperature dependence of the in-phase χ_M' (insets) and out-of-phase χ_M'' components of the *ac* susceptibility at different frequencies under an applied external field of 1000 Oe for compounds **2** (top) and **3** (bottom).

Figure S4. LeBail Refinement for compound 1.

Figure S5. LeBail Refinement for compound 2.

Figure S6. LeBail Refinement for compound 3.

6. TG spectra

Figure S7. TG spectrum for compound 2.

Figure S8. TG spectrum for compound 3.