Short contacts of the sulphur atoms of a 1,2,3,5-dithiadiazolyl dimer with triphenylstibine: first co-crystal with an aromatic compound

René T. Boeré*

Department of Chemistry and Biochemistry, and the Canadian Centre for Research in Advanced Fluorine Technologies. University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4. Fax: +403-329-2057; Tel. +403-329-2045 E-mail: boere@uleth.ca

Electronic Supplementary Information

Index	Page
Figure S1. The full atom numbering scheme of the structure of 1.	S2
Figure S2. An overlay of structures of DTDA dimers in 2 and 1.	S2
Figure S3. Two views of the layer structure in the crystal lattice of 1.	S 3
Table S1 . Intermolecular contacts in 1 less than ($\Sigma r_{vdW} - 0.1$ Å)	S4
Figure S4. End-to-side contacts of one DTDA dimer with another in the structure of 1.	S4
Figure S5. Two views of the layer structure in the crystal lattice of 2.	S5
Table S2 . Intermolecular contacts in 2 less than Σr_{vdW}	S6
Figure S6. Depiction of the centrosymmetric pseudo-cuboidal in the monoclinic form of 3	S6
Table S3. Summary of Natural Population Analysis in a model system for 2.	S8
Figure S7 . Another view of the C ₆₀ ·6Ph ₃ Sb structure.	S8
Figure S8. PBEPBE/6-311+g(2df,2p) DFT calculated NPA charge distribution in C_{60} : 6 C_6H_6	S9
Table S4. Summary of Natural Population Analysis in a model system for 4	S9
Details of the Crystal Structure Refinement of 1.	S13
Figure S9 . Depiction of the two-component disorder models developed for the CF_3 groups in 1 .	S13
Table S5. Crystal structure report for 1	S14
Details of the Crystal Structure Refinement of 2.	S35
Figure S10. Depiction of the two-component disorder models developed for the CF_3 groups in 2 .	S35
Table S6. Crystal structure report for 2	S36

Figure S1. The full atom numbering scheme of the structure of **1**. The two-part disorder model for the fluorine atoms in dimer **1iii** is also shown (refined occupancy ratio 67:33).

Figure S2. An overlay of structures of dtda dimers in **2** shown as a line diagram and one of the four independent dimers in **1**, shown as displacement ellipsoids.

Figure S3. Two views of the layer structure in the crystal lattice of **1**. The layer is ~8.3 Å thick and parallel to the (1 1 0) Miller plane. Both unique pin-wheel tetramers lie within the plane which is seen from (a) a top view and

(b) a side view. The unit cell boundaries are shown as are the locations of the sites by yellow dots. The sulfur atoms are false-coloured to orange and yellow to distinguish the first and second (S' in Figure 2) pin-wheels.

Atom1	Atom2	Symm. op. 1	Symm. op. 2	Length	Length < Σr_{vdW}
Intra-Dimer					
S2	S4	x,y,z	х,у,z	3.031(2)	-0.569
S6	S8	x,y,z	-1+x,y,z	3.031(2)	-0.569
S14	S16	x,y,z	1+x,y,z	3.043(2)	-0.557
S13	S15	x,y,z	1+x,y,z	3.046(2)	-0.554
S1	S3	x,y,z	х,у,z	3.054(2)	-0.546
S9	S11	x,y,z	х,у,z	3.076(2)	-0.524
S10	S12	x,y,z	х,у,z	3.110(2)	-0.490
S6	S7	х,у,z	-1+x,y,z	3.170(2)	-0.430
			Mean(s.u.) 3.07(5)	-0.53(5)
Dimer-to- neigh	bour				
S15	S10	x,y,z	1-x,1-y,1-z	3.247(2)	-0.353
S6	S2	x,y,z	-1+x,1+y,z	3.259(2)	-0.341
S15	S12	x,y,z	-1+x,y,1+z	3.271(2)	-0.329
N15	S10	x,y,z	1-x,1-y,1-z	3.130(4)	-0.220
S7	S4	-1+x,y,z	-1+x,1+y,z	3.387(2)	-0.213
S13	S10	-1+x,y,z	-1+x,y,1+z	3.391(2)	-0.209
S7	S2	-1+x,y,z	-x,1-y,1-z	3.399(2)	-0.201
S6	N2	x,y,z	3.156(4)	3.156(4)	-0.194
S6	S4	x,y,z	-x,1-y,1-z	3.419(2)	-0.181
S13	S12	-1+x,y,z	-1+x,y,1+z	3.437(2)	-0.163
N15	S9	x,y,z	1-x,1-y,1-z	3.225(4)	-0.125
S16	N12	x,y,z	-1+x,y,1+z	3.230(4)	-0.120
N7	S3	-1+x,y,z	-x,1-y,1-z	3.241(4)	-0.109
			S-S Mean(s.u.) 3.35(8)	-0.25(7)
			S-N Mean(s.u.) 3.23(5)	-0.19(8)
Inter-slice					
S14	S10	x,y,z	1-x,1-y,1-z	3.711(2)	+0.111
S3	S6	x,y,z	x,1+y,z	3.765(2)	+0.165
			N8 S8 N4 N7 S7 S4 N6 S6 S2 N5 S5	N3 S3 S1 N1	

Table S1. Intermolecular Contacts in **1** less than $(\Sigma r_{vdW} - 0.1 \text{ Å})$ (except for inter-slice distances)

Figure S4. Detailed view of the end-to-side contacts of one DTDA dimer with another in the same layer in the structure of **1**. This group is part of the left-hand cluster shown in Figure 2*a*.

Figure S5. Two views of the layer structure in the crystal lattice of **2**. The slice, which is ~8.0 Å thick and lies along the $(1\ 1\ 0)$ Miller plane, contains the centrosymmetric $(DTDA)_2(Ph_3Sb)_2$. It is presented from (a) a top view and (b) a side view. The unit cell boundaries are also shown. In this structure, the closest inter-layer contacts are S…F at 3.231 (9) Å due to an offset packing that precludes any long-range S…S interactions.

Atom1	Atom2	Symm. op. 1	Symm. op. 2	Length	Length- Σr _{vdW}
Intra-Dimer					
S1	S11	х,у,z	х,у,z	3.044(1)	-0.556
S2	S12	х,у,z	х,у,z	3.0913(9)	-0.509
C1	C11	х,у,z	х,у,z	3.380(3)	-0.02
			Mean(s.u.)	3.068(1)	-0.53
Dimer-to-end nei	ghbour				
S11	C44	х,у,z	х,у,z	3.168(3)	-0.332
S11	C43	х,у,z	х,у,z	3.360(3)	-0.14
S12	C43	х,у,z	х,у,z	3.388(4)	-0.112
S1	C45	х,у,z	х,у,z	3.458(3)	-0.042
S12	C42	х,у,z	х,у,z	3.464(3)	-0.036
			Mean(s.u.)	3.37(11)	-0.13(11)
Dimer to side nei	ghbour				
H16	C34	х,у,z	1-x,1-y,1-z	2.742	-0.158
N1	H44	х,ү,z	1-x,1-y,1-z	2.686	-0.064
Inter-slice					
F2	S12	х,ү,z	-1+x,y,z	3.231(9)	-0.039
Inter Ph ₃ Sb					
H22	C43	x,y,z	2-x,-y,1-z	2.915	+0.015
C32	H41	х,ү,z	2-x,-y,1-z	2.932	+0.032
H22	C44	x,y,z	2-x,-y,1-z	2.995	+0.095

Table S2. Intermolecular Contacts in **2** less than Σr_{vdW} (except for intermolecular Ph₃Sb)

Figure S6. Depiction of one of the centrosymmetric pseudo-cuboidal units found in the monoclinic form of **3** (refcode: ZZEHEA02)²⁶ which may be compared to **1** in Figure 1. [Symmetry code: (i), 1-x,-y,1-z.]

Atom	No	Charge	Core	Valence	Rydberg	Total
S	1	0.46284	9.99912	5.46648	0.0716	15.53716
S	2	0.46687	9.99913	5.46319	0.0708	15.53313
Ν	3	-0.71607	1.9994	5.656	0.0607	7.71607
Ν	4	-0.7048	1.99938	5.64458	0.0608	7.7048
С	5	0.49662	1.99911	3.46804	0.0362	5.50338
С	6	-0.11434	1.99907	4.0725	0.0428	6.11434
С	7	-0.13465	1.99903	4.11892	0.0167	6.13465
Н	8	0.19407	0	0.80359	0.0023	0.80593
С	9	-0.15825	1.99903	4.14237	0.0169	6.15825
Н	10	0.19013	0	0.80713	0.0027	0.80987
С	11	-0.10664	1.99896	4.08368	0.024	6.10664
С	12	-0.15995	1.99902	4.1445	0.0164	6.15995
Н	13	0.19026	0	0.80697	0.0028	0.80974
С	14	-0.12985	1.99903	4.11327	0.0176	6.12985
Н	15	0.19433	0	0.80314	0.0025	0.80567
С	16	1.01014	1.99921	2.93246	0.0582	4.98986
F	17	-0.32332	1.99989	7.3104	0.013	9.32332
F	18	-0.31723	1.99989	7.30622	0.0111	9.31723
F	19	-0.34664	1.99991	7.33546	0.0113	9.34664
S	20	0.46868	9.99912	5.46016	0.072	15.53132
S	21	0.46922	9.99913	5.46051	0.0712	15.53078
Ν	22	-0.71008	1.9994	5.65088	0.0598	7.71008
Ν	23	-0.70609	1.99939	5.64654	0.0602	7.70609
С	24	0.49605	1.99911	3.46982	0.035	5.50395
С	25	-0.10808	1.99906	4.06609	0.0429	6.10808
С	26	-0.12959	1.99903	4.11333	0.0172	6.12959
Н	27	0.19504	0	0.80251	0.0025	0.80496
С	28	-0.14988	1.99902	4.13402	0.0168	6.14988
Н	29	0.19302	0	0.80421	0.0028	0.80698
С	30	-0.12312	1.99894	4.10079	0.0234	6.12312
С	31	-0.14986	1.99903	4.13436	0.0165	6.14986
Н	32	0.19027	0	0.80703	0.0027	0.80973
С	33	-0.14171	1.99902	4.12629	0.0164	6.14171
Н	34	0.1955	0	0.8022	0.0023	0.8045
С	35	1.01492	1.99915	2.92881	0.0571	4.98508
F	36	-0.33182	1.9999	7.32075	0.0112	9.33182
F	37	-0.34173	1.99991	7.33036	0.0115	9.34173
F	38	-0.33275	1.9999	7.32284	0.01	9.33275
С	39	-0.20323	1.99924	4.18559	0.0184	6.20323
С	40	-0.17295	1.99912	4.1565	0.0173	6.17295
Н	41	0.17907	0	0.81852	0.0024	0.82093
С	42	-0.16968	1.99915	4.15528	0.0153	6.16968
н	43	0.1798	0	0.81784	0.0024	0.8202

Table S3. Summary of Natural Population Analysis in a model system for 2.

С	44	-0.17936	1.99916	4.16384	0.0164	6.17936	
Н	45	0.18021	0	0.81732	0.0025	0.81979	
С	46	-0.1818	1.99913	4.16438	0.0183	6.1818	
Н	47	0.18112	0	0.81648	0.0024	0.81888	
С	48	-0.18725	1.99912	4.17028	0.0178	6.18725	
Н	49	0.17939	0	0.81825	0.0024	0.82061	
Н	50	0.21321	0	0.78525	0.0015	0.78679	
* Tot	al *	0.01003	103.9732	186.8299	1.1868	291.99	

Determined by a PBEPBE/6-311+g(2df,2p) DFT calculations in Gaussian W03. The numbering scheme for the DFT calculation is shown below.

Figure S7. Another view of the C_{60} ·6Ph₃Sb structure which shares such a close similarity in the interaction of a negative charge region above the Ph ring and the positively charged 6:5 junction point in the fullerene (the latter is rendered orange for contrast).

Figure S8. PBEPBE/6-311+g(2df,2p) DFT calculated NPA charge distribution in C₆₀ : 6 C₆H₆ at the geometry of the Ph_3Sb phenyl rings in YIKVET. Each benzene ring is centred over a 6:5 ring junction in C_{60} .

Table S4 . Summary of Natural Population Analysis in a model system for 4 where six C_6H_6 replace six Ph_3Sb .	

Atom	No		Charge	Core	Valence	Rydberg	Total
C benzene		1	-0.19977	1.9992	4.18313	0.01742	6.19977
C benzene		2	-0.17842	1.9991	.5 4.16298	0.0163	6.17842
C benzene		3	-0.18049	1.9991	.6 4.16537	0.01596	6.18049
C benzene		4	-0.18135	1.9991	.7 4.16622	0.01596	6.18135
C benzene		5	-0.17535	1.9991	.7 4.16005	0.01614	6.17535
C benzene		6	-0.18165	1.9991	.4 4.16623	0.01628	6.18165
Н		7	0.17935		0 0.81835	0.0023	0.82065
Н		8	0.18311		0 0.81467	0.00222	0.81689
Н		9	0.18198		0 0.81577	0.00224	0.81802
Н		10	0.18045		0 0.81724	0.00231	0.81955
Н		11	0.18262		0 0.81524	0.00215	0.81738
С		12	-0.19982	1.9992	4.18318	0.01742	6.19982
С		13	-0.17841	1.9991	.5 4.16296	0.0163	6.17841
С		14	-0.1805	1.9991	.6 4.16538	0.01596	6.1805
С		15	-0.18132	1.9991	.7 4.16619	0.01596	6.18132
С		16	-0.17534	1.9991	.7 4.16004	0.01614	6.17534
С		17	-0.18166	1.9991	.4 4.16624	0.01628	6.18166
Н		18	0.17935		0 0.81835	0.0023	0.82065
Н		19	0.18312		0 0.81466	0.00222	0.81688

Н	20	0.18198	0	0.81578	0.00224	0.81802
Н	21	0.18044	0	0.81724	0.00231	0.81956
Н	22	0.18262	0	0.81523	0.00215	0.81738
С	23	-0.19979	1.99922	4.18315	0.01742	6.19979
С	24	-0.17838	1.99915	4.16293	0.0163	6.17838
С	25	-0.18048	1.99916	4.16535	0.01596	6.18048
С	26	-0.18136	1.99917	4.16623	0.01596	6.18136
С	27	-0.17538	1.99917	4.16008	0.01614	6.17538
С	28	-0.1817	1.99914	4.16628	0.01628	6.1817
Н	29	0.17934	0	0.81835	0.0023	0.82066
Н	30	0.18313	0	0.81465	0.00222	0.81687
Н	31	0.18199	0	0.81577	0.00224	0.81801
Н	32	0.18046	0	0.81723	0.00231	0.81954
Н	33	0.18262	0	0.81524	0.00215	0.81738
С	34	-0.19978	1.99922	4.18314	0.01742	6.19978
С	35	-0.17843	1.99915	4.16298	0.0163	6.17843
С	36	-0.18048	1.99916	4.16536	0.01596	6.18048
С	37	-0.18136	1.99917	4.16623	0.01596	6.18136
С	38	-0.17538	1.99917	4.16008	0.01614	6.17538
С	39	-0.18162	1.99914	4.16621	0.01628	6.18162
Н	40	0.17934	0	0.81835	0.0023	0.82066
Н	41	0.18309	0	0.81469	0.00222	0.81691
Н	42	0.18199	0	0.81577	0.00224	0.81801
Н	43	0.18044	0	0.81724	0.00231	0.81956
Н	44	0.1826	0	0.81525	0.00215	0.8174
С	45	-0.19982	1.99922	4.18317	0.01742	6.19982
С	46	-0.1784	1.99915	4.16296	0.0163	6.1784
С	47	-0.18048	1.99916	4.16536	0.01596	6.18048
С	48	-0.18132	1.99917	4.16619	0.01596	6.18132
С	49	-0.17535	1.99917	4.16005	0.01614	6.17535
С	50	-0.18165	1.99914	4.16623	0.01628	6.18165
Н	51	0.17935	0	0.81835	0.0023	0.82065
Н	52	0.1831	0	0.81468	0.00222	0.8169
Н	53	0.18199	0	0.81576	0.00224	0.81801
Н	54	0.18044	0	0.81724	0.00231	0.81956
Н	55	0.18263	0	0.81523	0.00215	0.81737
С	56	-0.19981	1.99922	4.18317	0.01742	6.19981
С	57	-0.17838	1.99915	4.16293	0.0163	6.17838
С	58	-0.18045	1.99916	4.16532	0.01596	6.18045
С	59	-0.18135	1.99917	4.16622	0.01596	6.18135
С	60	-0.17537	1.99917	4.16007	0.01614	6.17537
С	61	-0.18169	1.99914	4.16628	0.01628	6.18169
н	62	0.17934	0	0.81835	0.0023	0.82066
н	63	0.1831	0	0.81468	0.00222	0.8169
н	64	0.182	0	0.81575	0.00224	0.818
н	65	0.18046	0	0.81723	0.00231	0.81954

Н	66	0.18262	0	0.81523	0.00215	0.81738
C 6:5 junct.	67	0.0019	1.99857	3.97641	0.02312	5.9981
С	68	-0.01059	1.99859	3.98873	0.02328	6.01059
C 6:5 junct.	69	0.00839	1.99857	3.96869	0.02435	5.99161
C adj. to 6:5	70	0.00674	1.9986	3.97142	0.02324	5.99326
С	71	-0.00562	1.99859	3.98517	0.02185	6.00562
С	72	-0.01102	1.99857	3.99137	0.02107	6.01102
С	73	-0.03324	1.99867	4.00493	0.02964	6.03324
С	74	0.11304	1.9986	3.86035	0.02802	5.88696
С	75	-0.08405	1.99875	4.04732	0.03798	6.08405
С	76	-0.00436	1.99859	3.98388	0.0219	6.00436
С	77	0.00805	1.99857	3.96904	0.02435	5.99195
С	78	-0.01078	1.99859	3.98893	0.02327	6.01078
С	79	-0.01122	1.99857	3.99156	0.02108	6.01122
С	80	-0.00651	1.99859	3.98607	0.02185	6.00651
С	81	-0.00465	1.99859	3.98418	0.02189	6.00465
С	82	-0.08264	1.99875	4.04592	0.03797	6.08264
С	83	-0.08219	1.99875	4.04546	0.03798	6.08219
С	84	0.11401	1.9986	3.85935	0.02804	5.88599
С	85	0.11488	1.9986	3.85849	0.02802	5.88512
С	86	-0.03415	1.99867	4.00584	0.02964	6.03415
С	87	0.00098	1.99857	3.97734	0.02312	5.99902
С	88	0.00678	1.9986	3.97138	0.02323	5.99322
С	89	0.00154	1.99857	3.97677	0.02312	5.99846
С	90	-0.03326	1.99867	4.00493	0.02966	6.03326
С	91	0.00618	1.9986	3.97199	0.02323	5.99382
С	92	-0.00571	1.99859	3.98527	0.02185	6.00571
С	93	0.11491	1.9986	3.85846	0.02802	5.88509
С	94	0.11397	1.9986	3.85939	0.02804	5.88603
С	95	-0.08223	1.99875	4.0455	0.03798	6.08223
С	96	-0.08263	1.99875	4.04591	0.03797	6.08263
С	97	-0.01	1.99857	3.99033	0.02109	6.01
С	98	-0.01033	1.99859	3.98848	0.02327	6.01033
С	99	-0.00466	1.99859	3.98417	0.02189	6.00466
С	100	0.0085	1.99857	3.96858	0.02435	5.9915
С	101	-0.00468	1.99859	3.98419	0.02189	6.00468
С	102	-0.00996	1.99857	3.9903	0.02109	6.00996
С	103	-0.03417	1.99867	4.00586	0.02964	6.03417
С	104	-0.08407	1.99875	4.04734	0.03798	6.08407
С	105	-0.03333	1.99867	4.005	0.02966	6.03333
С	106	-0.00653	1.99859	3.98609	0.02185	6.00653
С	107	0.11297	1.9986	3.86042	0.02802	5.88703
С	108	-0.00571	1.99859	3.98527	0.02185	6.00571
С	109	0.00842	1.99857	3.96866	0.02434	5.99158
С	110	-0.01039	1.99859	3.98854	0.02327	6.01039
С	111	0.00685	1.9986	3.97132	0.02323	5.99315

С	112	0.00101	1.99857	3.9773	0.02312	5.99899
С	113	-0.00443	1.99859	3.98395	0.0219	6.00443
С	114	-0.00563	1.99859	3.98519	0.02185	6.00563
С	115	-0.01123	1.99857	3.99158	0.02108	6.01123
С	116	-0.01102	1.99857	3.99138	0.02107	6.01102
С	117	-0.03321	1.99867	4.0049	0.02964	6.03321
С	118	0.00618	1.9986	3.97198	0.02323	5.99382
С	119	0.00157	1.99857	3.97675	0.02311	5.99843
С	120	0.00809	1.99857	3.969	0.02434	5.99191
С	121	-0.01056	1.99859	3.98869	0.02328	6.01056
С	122	0.0067	1.9986	3.97146	0.02323	5.9933
С	123	0.00175	1.99857	3.97656	0.02312	5.99825
С	124	-0.00465	1.99859	3.98418	0.02189	6.00465
С	125	-0.01086	1.99859	3.98901	0.02327	6.01086
С	126	0.00846	1.99857	3.96864	0.02434	5.99154
Н	127	0.20794	0	0.79028	0.00178	0.79206
Н	128	0.20793	0	0.79029	0.00178	0.79207
Н	129	0.20793	0	0.79029	0.00178	0.79207
Н	130	0.20793	0	0.79028	0.00178	0.79207
Н	131	0.20793	0	0.79029	0.00178	0.79207
Н	132	0.20794	0	0.79028	0.00178	0.79206
* Total		0.00195	191.8866	417.9184	2.19301	611.9981

Determined by a PBEPBE/6-311+g(2df,2p) DFT calculations in Gaussian W03. The numbering scheme for the DFT calculation is shown below.

Details of the Crystal Structure Refinement of 1

There are four independent dimers (i.e. eight different monomeric dithiadiazolyl radicals comprise the asymmetric unit of this structure.) Of these, one dimer displays CF₃ group (rotational) disorder, specifically involving the C(36)F3 and C(46)F3 CF₃ groups, also identifiable as the two heterocycles containing S6 S8. This disorder could be described adequately a two-part disorder model but to get reasonable geometries (employing SADI restraints) it was found necessary to include the CF₃ carbon atoms in the model. EADP restraints were required to keep the displacement ellipsoids of these two C atoms well behaved, namely C36/C36A and C46/C46A. In addition, a strong tendency for the fluorine atoms to go oblate or NPD was solved by applying the newly developed RIGU restraints in ShelXL-2014, which have been applied globally to this structure. Refined occupancies for the C(36) set is 0.70 (major) and 0.30 (minor); for C(46) is 0.60 (major) and 0.40 (minor).

The SADI restraints on 1,2 C–F and 1,3 F–F distances permitted the two CF₃ groups to rotate apart without requiring the two rotamers to be staggered. The combination of this approach provided a successful disorder model which is depicted in Figure S9. In the final difference Fourier map, the highest peak of 0.47 $e/Å^3$ at (0.3534 0.4237 0.0106) bridges between S13 and S14, whilst the deepest hole of -0.46 $e/Å^3$ is at (0.5938 0.4677 0.0595) is about 0.85 Å from S10. Thus they are associated with the heaviest atoms in the unit cell and are *not* associated with the CF₃ groups. This is considered a positive indication of the adequacy of the disorder models applied to the trifluoromethyl groups.

Figure S9. Depiction of the two-component disorder models developed for the CF₃ groups of the dimer involving S6 S8. The remaining three DTDA dimers exhibited ordered CF₃ groups in the structure at 173 K.

Table S5. Crystal structure report for 1

•		
Empirical formula	C8 H4 F3 N2 S2	
Formula weight	249.25	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.4916(9) Å	$\alpha = 91.5790(10)^{\circ}.$
	b = 18.1887(17) Å	$\beta = 97.3290(10)^{\circ}.$
	c = 22.275(2) Å	$\gamma = 102.7550(10)^{\circ}.$
Volume	3713.8(6) Å ³	
Z	16	
Density (calculated)	1.783 Mg/m ³	
Absorption coefficient	0.583 mm ⁻¹	
F(000)	2000	
Crystal size	0.180 x 0.100 x 0.040 mm ³	
Theta range for data collection	1.847 to 26.220°.	
Index ranges	-11<=h<=11, -22<=k<=22, -27	/<=l<=27
Reflections collected	39140	
Independent reflections	14828 [R(int) = 0.0812]	
Completeness to theta = 25.500°	99.6 %	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	14828 / 1034 / 1137	
Goodness-of-fit on F^2	0.973	
Final R indices [I>2sigma(I)]	R1 = 0.0540, wR2 = 0.0930	
R indices (all data)	R1 = 0.1396, wR2 = 0.1185	
Extinction coefficient	n/a	
Largest diff. peak and hole	$0.470 \text{ and } -0.456 \text{ e.Å}^{-3}$	

 Table S5A. Crystal data and structure refinement for 1

	х	у	Z	U(eq)
S(1)	5498(1)	2298(1)	4562(1)	18(1)
S(2)	6117(1)	1267(1)	4535(1)	15(1)
N(1)	5510(4)	2409(2)	3842(2)	17(1)
N(2)	6146(4)	1237(2)	3805(2)	14(1)
C(1)	5847(4)	1845(3)	3532(2)	14(1)
C(10)	5825(4)	1904(3)	2873(2)	12(1)
C(11)	5856(5)	2598(3)	2625(2)	16(1)
C(12)	5761(4)	2661(3)	2005(2)	16(1)
C(13)	5646(5)	2029(3)	1628(2)	14(1)
C(14)	5654(5)	1339(3)	1870(2)	16(1)
C(15)	5749(5)	1273(3)	2490(2)	15(1)
C(16)	5469(5)	2092(3)	958(2)	21(1)
F(11)	4070(3)	2010(2)	719(1)	37(1)
F(10)	6143(3)	2776(2)	798(1)	33(1)
F(12)	5988(4)	1593(2)	666(1)	49(1)
S(3)	2314(1)	1435(1)	4395(1)	19(1)
S(4)	2958(1)	412(1)	4403(1)	18(1)
N(3)	2132(4)	1460(2)	3658(2)	18(1)
N(4)	2902(4)	321(2)	3668(2)	16(1)
C(2)	2450(5)	872(3)	3372(2)	16(1)
C(20)	2253(4)	828(3)	2703(2)	13(1)
C(21)	2040(5)	1451(3)	2389(2)	14(1)
C(22)	1748(5)	1405(3)	1760(2)	14(1)
C(24)	1934(5)	105(3)	1762(2)	19(1)
C(23)	1682(5)	726(3)	1450(2)	18(1)
C(25)	2235(5)	162(3)	2385(2)	17(1)
C(26)	1267(5)	628(3)	781(2)	23(1)
F(20)	2298(3)	421(2)	498(1)	35(1)
F(21)	1015(3)	1249(2)	524(1)	34(1)
F(22)	54(3)	88(2)	630(1)	50(1)
S(5)	-1507(1)	10264(1)	4339(1)	17(1)
S(6)	-1683(1)	10295(1)	3396(1)	17(1)

Table S5B Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for **1**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(5)	-750(4)	9538(2)	4370(2)	16(1)
N(6)	-861(4)	9612(2)	3318(2)	15(1)
C(3)	-481(5)	9297(3)	3832(2)	15(1)
C(30)	266(5)	8675(2)	3803(2)	14(1)
C(34)	1108(5)	7628(3)	4239(2)	20(1)
C(32)	1475(5)	7935(3)	3222(2)	20(1)
C(33)	1634(5)	7487(3)	3709(2)	17(1)
C(31)	803(5)	8518(3)	3273(2)	18(1)
C(35)	437(5)	8228(3)	4292(2)	17(1)
C(36)	2331(8)	6838(4)	3611(3)	24(1)
F(30)	1398(5)	6254(3)	3298(3)	45(2)
F(31)	3436(5)	6986(2)	3283(2)	39(2)
F(32)	2835(7)	6575(3)	4120(2)	59(2)
C(36A)	2258(15)	6802(8)	3700(6)	24(1)
F(30A)	2155(15)	6535(7)	3130(5)	41(4)
F(31A)	3670(10)	7012(5)	3918(5)	34(3)
F(32A)	1675(10)	6234(5)	4012(5)	28(3)
S(7)	5251(1)	9278(1)	4169(1)	17(1)
S(8)	5280(1)	9281(1)	3237(1)	17(1)
N(7)	5918(4)	8522(2)	4256(2)	17(1)
N(8)	5933(4)	8531(2)	3202(2)	16(1)
C(4)	6183(5)	8229(3)	3735(2)	14(1)
C(43)	7730(5)	6209(3)	3697(2)	20(1)
C(40)	6747(5)	7531(2)	3740(2)	13(1)
C(45)	7169(5)	7284(3)	3210(2)	20(1)
C(42)	7347(5)	6460(3)	4231(2)	17(1)
C(44)	7649(5)	6619(3)	3187(2)	22(1)
C(41)	6859(5)	7120(3)	4255(2)	18(1)
C(46)	8221(10)	5480(5)	3708(4)	24(1)
F(40)	8545(11)	5295(6)	3158(4)	32(2)
F(41)	9412(10)	5489(5)	4104(3)	35(2)
F(42)	7212(8)	4895(3)	3839(6)	50(3)
C(46A)	8131(14)	5464(7)	3607(6)	24(1)
F(40A)	9090(15)	5465(11)	3217(6)	34(3)
F(41A)	8715(17)	5259(8)	4127(5)	36(3)
F(42A)	6987(9)	4914(5)	3396(8)	38(3)
S(9)	7104(1)	4824(1)	1760(1)	18(1)

S(10)	6761(1)	4735(1)	814(1)	18(1)
N(9)	6330(4)	5533(2)	1806(2)	18(1)
N(10)	5972(4)	5441(2)	749(2)	16(1)
C(5)	5829(5)	5759(3)	1275(2)	13(1)
C(51)	4931(5)	6735(3)	1817(2)	21(1)
C(52)	4240(5)	7333(3)	1824(2)	23(1)
C(50)	5083(5)	6397(3)	1274(2)	15(1)
C(53)	3702(5)	7587(3)	1285(2)	17(1)
C(54)	3832(5)	7241(3)	735(2)	18(1)
C(55)	4525(5)	6649(3)	730(2)	17(1)
C(56)	2989(5)	8235(3)	1277(2)	23(1)
F(51)	3721(3)	8829(2)	1030(2)	45(1)
F(50)	2782(4)	8461(2)	1819(1)	63(1)
F(52)	1671(3)	8078(2)	940(2)	44(1)
S(11)	10195(1)	5808(1)	1777(1)	18(1)
S(12)	9879(1)	5740(1)	836(1)	16(1)
N(11)	9582(4)	6572(2)	1832(2)	18(1)
N(12)	9211(4)	6494(2)	770(2)	15(1)
C(6)	9147(5)	6836(3)	1302(2)	14(1)
C(63)	7705(5)	8893(3)	1409(2)	15(1)
C(60)	8625(4)	7545(2)	1326(2)	12(1)
C(61)	8695(5)	7912(3)	1887(2)	23(1)
C(62)	8241(5)	8579(3)	1928(2)	22(1)
C(64)	7662(5)	8528(3)	850(2)	21(1)
C(66)	7254(5)	9617(3)	1482(2)	20(1)
C(65)	8104(5)	7857(3)	806(2)	17(1)
F(60)	6275(3)	9571(2)	1868(1)	30(1)
F(61)	6665(3)	9844(2)	965(1)	32(1)
F(62)	8373(3)	10178(2)	1718(1)	39(1)
S(13)	7679(1)	5352(1)	9463(1)	18(1)
S(14)	7063(1)	6380(1)	9448(1)	19(1)
N(13)	7534(4)	5226(2)	8728(2)	17(1)
N(14)	6797(4)	6382(2)	8714(2)	18(1)
C(7)	7081(4)	5783(3)	8431(2)	13(1)
C(70)	6842(4)	5715(3)	7762(2)	13(1)
C(73)	6366(5)	5592(3)	6506(2)	16(1)
C(71)	6700(5)	5019(3)	7454(2)	16(1)

C(74)	6520(5)	6288(3)	6808(2)	17(1)
C(72)	6449(5)	4962(3)	6832(2)	17(1)
C(75)	6749(4)	6345(3)	7427(2)	16(1)
C(76)	6128(5)	5494(3)	5827(2)	24(1)
F(70)	5719(3)	6088(2)	5569(1)	35(1)
F(71)	7341(3)	5437(2)	5603(1)	32(1)
F(72)	5139(3)	4874(2)	5629(1)	48(1)
S(15)	850(1)	6191(1)	9513(1)	15(1)
S(16)	240(1)	7223(1)	9546(1)	18(1)
N(15)	845(4)	6155(2)	8776(2)	15(1)
N(16)	212(4)	7327(2)	8825(2)	16(1)
C(8)	521(5)	6759(3)	8511(2)	15(1)
C(80)	489(4)	6820(3)	7847(2)	13(1)
C(83)	310(4)	6951(3)	6610(2)	15(1)
C(81)	342(4)	6185(3)	7462(2)	14(1)
C(84)	468(5)	7583(3)	6988(2)	17(1)
C(85)	569(5)	7525(3)	7605(2)	14(1)
C(86)	127(5)	7027(3)	5935(2)	20(1)
C(82)	254(4)	6249(3)	6844(2)	15(1)
F(80)	-1256(3)	7021(2)	5708(1)	27(1)
F(82)	505(3)	6485(2)	5627(1)	40(1)
F(81)	900(3)	7689(2)	5778(1)	32(1)

S(1)-N(1)	1.623(4)	C(23)-C(26)	1.488(6)
S(1)-S(2)	2.0880(17)	C(25)-H(25)	0.9500
S(2)-N(2)	1.628(4)	C(26)-F(21)	1.335(5)
N(1)-C(1)	1.338(5)	C(26)-F(22)	1.336(5)
N(2)-C(1)	1.343(5)	C(26)-F(20)	1.342(5)
C(1)-C(10)	1.474(6)	S(5)-N(5)	1.637(4)
C(10)-C(11)	1.387(6)	S(5)-S(6)	2.0881(17)
C(10)-C(15)	1.396(6)	S(6)-N(6)	1.623(4)
C(11)-C(12)	1.384(6)	N(5)-C(3)	1.337(5)
C(11)-H(11)	0.9500	N(6)-C(3)	1.339(5)
C(12)-C(13)	1.381(6)	C(3)-C(30)	1.467(6)
C(12)-H(12)	0.9500	C(30)-C(35)	1.390(6)
C(13)-C(14)	1.380(6)	C(30)-C(31)	1.391(6)
C(13)-C(16)	1.491(6)	C(34)-C(33)	1.377(6)
C(14)-C(15)	1.382(6)	C(34)-C(35)	1.390(6)
C(14)-H(14)	0.9500	C(34)-H(34)	0.9500
C(15)-H(15)	0.9500	C(32)-C(31)	1.363(6)
C(16)-F(12)	1.317(5)	C(32)-C(33)	1.387(6)
C(16)-F(11)	1.340(5)	C(32)-H(32)	0.9500
C(16)-F(10)	1.348(5)	C(33)-C(36A)	1.494(16)
S(3)-N(3)	1.631(4)	C(33)-C(36)	1.498(9)
S(3)-S(4)	2.0841(18)	C(31)-H(31)	0.9500
S(4)-N(4)	1.634(4)	C(35)-H(35)	0.9500
N(3)-C(2)	1.339(6)	C(36)-F(32)	1.318(8)
N(4)-C(2)	1.332(5)	C(36)-F(30)	1.337(8)
C(2)-C(20)	1.477(6)	C(36)-F(31)	1.337(8)
C(20)-C(25)	1.382(6)	C(36A)-F(32A)	1.319(13)
C(20)-C(21)	1.387(6)	C(36A)-F(30A)	1.331(14)
C(21)-C(22)	1.390(6)	C(36A)-F(31A)	1.332(14)
C(21)-H(21)	0.9500	S(7)-N(7)	1.641(4)
C(22)-C(23)	1.383(6)	S(7)-S(8)	2.0803(17)
C(22)-H(22)	0.9500	S(8)-N(8)	1.622(4)
C(24)-C(25)	1.378(6)	N(7)-C(4)	1.338(5)
C(24)-C(23)	1.392(6)	N(8)-C(4)	1.338(5)
C(24)-H(24)	0.9500	C(4)-C(40)	1.484(6)

 $\label{eq:solution} Table \,\,S5C. \,\, {\rm Bond \,\, lengths} \,\, [{\rm \AA}] \,\, {\rm and \,\, angles} \,\, [^\circ] \,\, {\rm for} \qquad 1$

1.628(4) 2.0758(17) 1.636(4) 1.339(5) 1.338(5) 1.482(6) 1.386(6) 1.389(6) 1.387(6) 1.387(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6)
2.0758(17) 1.636(4) 1.339(5) 1.338(5) 1.482(6) 1.386(6) 1.389(6) 1.484(6) 1.387(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6)
1.636(4) 1.339(5) 1.338(5) 1.482(6) 1.386(6) 1.389(6) 1.387(6) 1.387(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6)
1.339(5) 1.338(5) 1.482(6) 1.386(6) 1.389(6) 1.484(6) 1.387(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6)
 1.338(5) 1.482(6) 1.386(6) 1.389(6) 1.484(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6) 0.9500
1.482(6) 1.386(6) 1.389(6) 1.484(6) 1.387(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6)
1.386(6) 1.389(6) 1.484(6) 1.387(6) 1.387(6) 1.379(6) 0.9500 1.379(6)
 1.389(6) 1.484(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6) 0.9500
1.484(6) 1.387(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6)
 1.387(6) 1.387(6) 1.379(6) 0.9500 0.9500 1.379(6) 0.9500
1.387(6) 1.379(6) 0.9500 0.9500 1.379(6)
1.379(6) 0.9500 0.9500 1.379(6)
0.9500 0.9500 1.379(6)
0.9500 1.379(6)
1.379(6)
0.9500
1.331(5)
1.336(5)
1.340(5)
0.9500
1.629(4)
2.0785(18)
1.623(4)
1.344(5)
1.337(5)
1.477(6)
1.394(6)
1.397(6)
1.384(6)
1.387(6)
1.501(6)
1.374(6)
0.9500
1.266(6)
1.300(0)
0.9500

C(75)-H(75)	0.9500	C(10)-C(11)-H(11)	119.7
C(76)-F(72)	1.321(5)	C(13)-C(12)-C(11)	119.7(4)
C(76)-F(71)	1.334(5)	C(13)-C(12)-H(12)	120.1
C(76)-F(70)	1.346(6)	C(11)-C(12)-H(12)	120.1
S(15)-N(15)	1.641(4)	C(14)-C(13)-C(12)	120.2(4)
S(15)-S(16)	2.0846(17)	C(14)-C(13)-C(16)	120.2(4)
S(16)-N(16)	1.619(4)	C(12)-C(13)-C(16)	119.5(4)
N(15)-C(8)	1.337(6)	C(13)-C(14)-C(15)	120.3(4)
N(16)-C(8)	1.337(6)	C(13)-C(14)-H(14)	119.8
C(8)-C(80)	1.484(6)	C(15)-C(14)-H(14)	119.8
C(80)-C(81)	1.391(6)	C(14)-C(15)-C(10)	119.9(4)
C(80)-C(85)	1.395(6)	C(14)-C(15)-H(15)	120.1
C(83)-C(84)	1.376(6)	C(10)-C(15)-H(15)	120.1
C(83)-C(82)	1.385(6)	F(12)-C(16)-F(11)	106.9(4)
C(83)-C(86)	1.505(6)	F(12)-C(16)-F(10)	106.3(4)
C(81)-C(82)	1.377(6)	F(11)-C(16)-F(10)	104.7(4)
C(81)-H(81)	0.9500	F(12)-C(16)-C(13)	113.5(4)
C(84)-C(85)	1.376(6)	F(11)-C(16)-C(13)	112.4(4)
C(84)-H(84)	0.9500	F(10)-C(16)-C(13)	112.4(4)
C(85)-H(85)	0.9500	N(3)-S(3)-S(4)	94.18(15)
C(86)-F(82)	1.323(5)	N(4)-S(4)-S(3)	94.89(15)
C(86)-F(80)	1.342(5)	C(2)-N(3)-S(3)	114.5(3)
C(86)-F(81)	1.345(5)	C(2)-N(4)-S(4)	113.8(3)
C(82)-H(82)	0.9500	N(4)-C(2)-N(3)	122.6(4)
		N(4)-C(2)-C(20)	119.1(4)
N(1)-S(1)-S(2)	94.35(15)	N(3)-C(2)-C(20)	118.3(4)
N(2)-S(2)-S(1)	94.57(14)	C(25)-C(20)-C(21)	119.6(4)
C(1)-N(1)-S(1)	114.9(3)	C(25)-C(20)-C(2)	120.4(4)
C(1)-N(2)-S(2)	114.4(3)	C(21)-C(20)-C(2)	120.0(4)
N(1)-C(1)-N(2)	121.7(4)	C(20)-C(21)-C(22)	120.9(4)
N(1)-C(1)-C(10)	117.2(4)	C(20)-C(21)-H(21)	119.6
N(2)-C(1)-C(10)	121.1(4)	C(22)-C(21)-H(21)	119.6
C(11)-C(10)-C(15)	119.2(4)	C(23)-C(22)-C(21)	118.8(4)
C(11)-C(10)-C(1)	119.5(4)	C(23)-C(22)-H(22)	120.6
C(15)-C(10)-C(1)	121.3(4)	C(21)-C(22)-H(22)	120.6
C(12)-C(11)-C(10)	120.6(4)	C(25)-C(24)-C(23)	119.9(4)
C(12)-C(11)-H(11)	119.7	C(25)-C(24)-H(24)	120.1

C(23)-C(24)-H(24)	120.1	C(30)-C(35)-C(34)	119.8(5)
C(22)-C(23)-C(24)	120.6(4)	C(30)-C(35)-H(35)	120.1
C(22)-C(23)-C(26)	121.1(4)	C(34)-C(35)-H(35)	120.1
C(24)-C(23)-C(26)	118.2(4)	F(32)-C(36)-F(30)	106.3(6)
C(24)-C(25)-C(20)	120.3(4)	F(32)-C(36)-F(31)	106.5(6)
C(24)-C(25)-H(25)	119.9	F(30)-C(36)-F(31)	103.3(6)
C(20)-C(25)-H(25)	119.9	F(32)-C(36)-C(33)	113.2(6)
F(21)-C(26)-F(22)	106.5(4)	F(30)-C(36)-C(33)	112.0(6)
F(21)-C(26)-F(20)	106.1(4)	F(31)-C(36)-C(33)	114.8(6)
F(22)-C(26)-F(20)	106.2(4)	F(32A)-C(36A)-F(30A)	107.1(11)
F(21)-C(26)-C(23)	113.8(4)	F(32A)-C(36A)-F(31A)	107.4(11)
F(22)-C(26)-C(23)	111.3(4)	F(30A)-C(36A)-F(31A)	107.7(11)
F(20)-C(26)-C(23)	112.4(4)	F(32A)-C(36A)-C(33)	117.0(11)
N(5)-S(5)-S(6)	94.68(15)	F(30A)-C(36A)-C(33)	109.4(11)
N(6)-S(6)-S(5)	94.13(14)	F(31A)-C(36A)-C(33)	107.8(10)
C(3)-N(5)-S(5)	113.9(3)	N(7)-S(7)-S(8)	94.95(15)
C(3)-N(6)-S(6)	115.1(3)	N(8)-S(8)-S(7)	94.51(14)
N(5)-C(3)-N(6)	122.0(4)	C(4)-N(7)-S(7)	113.2(3)
N(5)-C(3)-C(30)	119.3(4)	C(4)-N(8)-S(8)	114.5(3)
N(6)-C(3)-C(30)	118.7(4)	N(7)-C(4)-N(8)	122.8(4)
C(35)-C(30)-C(31)	118.9(4)	N(7)-C(4)-C(40)	119.3(4)
C(35)-C(30)-C(3)	121.5(4)	N(8)-C(4)-C(40)	117.9(4)
C(31)-C(30)-C(3)	119.6(4)	C(44)-C(43)-C(42)	120.5(4)
C(33)-C(34)-C(35)	120.1(5)	C(44)-C(43)-C(46)	122.9(6)
C(33)-C(34)-H(34)	120.0	C(42)-C(43)-C(46)	116.5(5)
C(35)-C(34)-H(34)	120.0	C(44)-C(43)-C(46A)	115.2(6)
C(31)-C(32)-C(33)	119.5(5)	C(42)-C(43)-C(46A)	124.0(7)
C(31)-C(32)-H(32)	120.2	C(45)-C(40)-C(41)	119.6(4)
C(33)-C(32)-H(32)	120.2	C(45)-C(40)-C(4)	118.3(4)
C(34)-C(33)-C(32)	120.3(4)	C(41)-C(40)-C(4)	122.1(4)
C(34)-C(33)-C(36A)	114.7(7)	C(44)-C(45)-C(40)	120.3(4)
C(32)-C(33)-C(36A)	124.9(7)	C(44)-C(45)-H(45)	119.9
C(34)-C(33)-C(36)	123.2(5)	C(40)-C(45)-H(45)	119.9
C(32)-C(33)-C(36)	116.4(5)	C(41)-C(42)-C(43)	120.0(4)
C(32)-C(31)-C(30)	121.4(4)	C(41)-C(42)-H(42)	120.0
C(32)-C(31)-H(31)	119.3	C(43)-C(42)-H(42)	120.0
C(30)-C(31)-H(31)	119.3	C(43)-C(44)-C(45)	119.6(5)

C(43)-C(44)-H(44)	120.2	C(55)-C(54)-H(54)	120.1
C(45)-C(44)-H(44)	120.2	C(53)-C(54)-H(54)	120.1
C(42)-C(41)-C(40)	119.9(4)	C(54)-C(55)-C(50)	119.9(5)
C(42)-C(41)-H(41)	120.0	C(54)-C(55)-H(55)	120.0
C(40)-C(41)-H(41)	120.0	C(50)-C(55)-H(55)	120.0
F(42)-C(46)-F(41)	105.7(7)	F(50)-C(56)-F(51)	107.5(4)
F(42)-C(46)-F(40)	105.7(8)	F(50)-C(56)-F(52)	105.9(4)
F(41)-C(46)-F(40)	106.1(8)	F(51)-C(56)-F(52)	103.9(4)
F(42)-C(46)-C(43)	113.6(7)	F(50)-C(56)-C(53)	113.4(4)
F(41)-C(46)-C(43)	114.5(7)	F(51)-C(56)-C(53)	113.0(4)
F(40)-C(46)-C(43)	110.7(8)	F(52)-C(56)-C(53)	112.5(4)
F(41A)-C(46A)-F(42A)	107.3(10)	N(11)-S(11)-S(12)	94.27(15)
F(41A)-C(46A)-F(40A)	106.8(11)	N(12)-S(12)-S(11)	95.15(14)
F(42A)-C(46A)-F(40A)	105.3(10)	C(6)-N(11)-S(11)	114.7(3)
F(41A)-C(46A)-C(43)	110.2(10)	C(6)-N(12)-S(12)	113.6(3)
F(42A)-C(46A)-C(43)	112.6(10)	N(12)-C(6)-N(11)	122.2(4)
F(40A)-C(46A)-C(43)	114.2(13)	N(12)-C(6)-C(60)	120.8(4)
N(9)-S(9)-S(10)	94.02(15)	N(11)-C(6)-C(60)	116.9(4)
N(10)-S(10)-S(9)	94.60(15)	C(64)-C(63)-C(62)	118.6(4)
C(5)-N(9)-S(9)	114.5(3)	C(64)-C(63)-C(66)	123.2(4)
C(5)-N(10)-S(10)	114.0(3)	C(62)-C(63)-C(66)	118.1(4)
N(10)-C(5)-N(9)	122.8(4)	C(65)-C(60)-C(61)	119.5(4)
N(10)-C(5)-C(50)	119.0(4)	C(65)-C(60)-C(6)	122.0(4)
N(9)-C(5)-C(50)	118.2(4)	C(61)-C(60)-C(6)	118.6(4)
C(50)-C(51)-C(52)	120.5(5)	C(62)-C(61)-C(60)	120.3(4)
C(50)-C(51)-H(51)	119.8	C(62)-C(61)-H(61)	119.9
C(52)-C(51)-H(51)	119.8	C(60)-C(61)-H(61)	119.9
C(53)-C(52)-C(51)	119.6(5)	C(61)-C(62)-C(63)	120.7(5)
C(53)-C(52)-H(52)	120.2	C(61)-C(62)-H(62)	119.7
C(51)-C(52)-H(52)	120.2	C(63)-C(62)-H(62)	119.7
C(51)-C(50)-C(55)	119.9(4)	C(65)-C(64)-C(63)	121.1(5)
C(51)-C(50)-C(5)	119.7(4)	C(65)-C(64)-H(64)	119.5
C(55)-C(50)-C(5)	120.4(4)	C(63)-C(64)-H(64)	119.5
C(52)-C(53)-C(54)	120.2(4)	F(61)-C(66)-F(60)	107.0(4)
C(52)-C(53)-C(56)	120.9(5)	F(61)-C(66)-F(62)	107.3(4)
C(54)-C(53)-C(56)	118.8(4)	F(60)-C(66)-F(62)	105.1(4)
C(55)-C(54)-C(53)	119.9(4)	F(61)-C(66)-C(63)	113.5(4)

F(60)-C(66)-C(63)	111.4(4)	F(71)-C(76)-C(73)	112.1(4)
F(62)-C(66)-C(63)	112.0(4)	F(70)-C(76)-C(73)	111.9(4)
C(64)-C(65)-C(60)	119.9(4)	N(15)-S(15)-S(16)	94.81(14)
C(64)-C(65)-H(65)	120.0	N(16)-S(16)-S(15)	94.24(15)
C(60)-C(65)-H(65)	120.0	C(8)-N(15)-S(15)	113.5(3)
N(13)-S(13)-S(14)	95.20(15)	C(8)-N(16)-S(16)	115.1(3)
N(14)-S(14)-S(13)	94.61(15)	N(15)-C(8)-N(16)	122.3(4)
C(7)-N(13)-S(13)	113.1(3)	N(15)-C(8)-C(80)	120.4(4)
C(7)-N(14)-S(14)	114.0(3)	N(16)-C(8)-C(80)	117.3(4)
N(14)-C(7)-N(13)	123.0(4)	C(81)-C(80)-C(85)	119.6(4)
N(14)-C(7)-C(70)	118.8(4)	C(81)-C(80)-C(8)	121.1(4)
N(13)-C(7)-C(70)	118.2(4)	C(85)-C(80)-C(8)	119.2(4)
C(71)-C(70)-C(75)	119.0(4)	C(84)-C(83)-C(82)	120.7(4)
C(71)-C(70)-C(7)	120.4(4)	C(84)-C(83)-C(86)	118.9(4)
C(75)-C(70)-C(7)	120.7(4)	C(82)-C(83)-C(86)	120.4(4)
C(72)-C(73)-C(74)	120.1(4)	C(82)-C(81)-C(80)	120.3(4)
C(72)-C(73)-C(76)	117.9(4)	C(82)-C(81)-H(81)	119.9
C(74)-C(73)-C(76)	122.0(4)	C(80)-C(81)-H(81)	119.9
C(72)-C(71)-C(70)	119.7(4)	C(83)-C(84)-C(85)	120.2(4)
C(72)-C(71)-H(71)	120.1	C(83)-C(84)-H(84)	119.9
C(70)-C(71)-H(71)	120.1	C(85)-C(84)-H(84)	119.9
C(75)-C(74)-C(73)	119.4(4)	C(84)-C(85)-C(80)	119.7(4)
C(75)-C(74)-H(74)	120.3	C(84)-C(85)-H(85)	120.2
C(73)-C(74)-H(74)	120.3	C(80)-C(85)-H(85)	120.2
C(71)-C(72)-C(73)	120.6(4)	F(82)-C(86)-F(80)	106.5(4)
C(71)-C(72)-H(72)	119.7	F(82)-C(86)-F(81)	107.2(4)
C(73)-C(72)-H(72)	119.7	F(80)-C(86)-F(81)	104.3(4)
C(74)-C(75)-C(70)	121.2(4)	F(82)-C(86)-C(83)	113.6(4)
C(74)-C(75)-H(75)	119.4	F(80)-C(86)-C(83)	112.2(4)
C(70)-C(75)-H(75)	119.4	F(81)-C(86)-C(83)	112.4(4)
F(72)-C(76)-F(71)	106.2(4)	C(81)-C(82)-C(83)	119.5(4)
F(72)-C(76)-F(70)	108.6(4)	C(81)-C(82)-H(82)	120.3
F(71)-C(76)-F(70)	105.6(4)	C(83)-C(82)-H(82)	120.3
F(72)-C(76)-C(73)	112.1(4)		

				·····		
	\mathbf{U}^{11}	U^{22}	U ³³	U^{23}	U^{13}	U^{12}
S(1)	24(1)	18(1)	13(1)	-1(1)	2(1)	10(1)
S(2)	17(1)	15(1)	15(1)	1(1)	2(1)	6(1)
N(1)	22(2)	14(2)	16(2)	0(2)	4(2)	5(2)
N(2)	17(2)	14(2)	13(2)	2(2)	4(2)	5(2)
C(1)	8(2)	14(2)	18(2)	2(2)	1(2)	1(2)
C(10)	12(2)	14(2)	12(2)	0(2)	3(2)	4(2)
C(11)	16(3)	16(2)	18(2)	1(2)	2(2)	4(2)
C(12)	13(2)	15(2)	20(2)	4(2)	5(2)	4(2)
C(13)	13(2)	17(2)	15(2)	4(2)	3(2)	5(2)
C(14)	18(3)	14(2)	17(2)	0(2)	4(2)	5(2)
C(15)	17(3)	12(2)	17(2)	3(2)	5(2)	3(2)
C(16)	24(3)	19(3)	20(2)	3(2)	3(2)	5(2)
F(11)	24(2)	57(2)	22(2)	9(2)	-6(1)	-3(2)
F(10)	39(2)	33(2)	22(2)	10(1)	3(1)	-6(2)
F(12)	99(3)	51(2)	16(2)	8(2)	19(2)	48(2)
S(3)	21(1)	27(1)	14(1)	0(1)	3(1)	12(1)
S(4)	20(1)	20(1)	13(1)	4(1)	2(1)	6(1)
N(3)	18(2)	24(2)	16(2)	4(2)	4(2)	10(2)
N(4)	19(2)	13(2)	13(2)	2(2)	-1(2)	0(2)
C(2)	14(2)	19(2)	16(2)	3(2)	0(2)	5(2)
C(20)	10(2)	16(2)	14(2)	-1(2)	0(2)	4(2)
C(21)	15(2)	11(2)	17(2)	-2(2)	0(2)	5(2)
C(22)	16(2)	14(2)	13(2)	4(2)	1(2)	4(2)
C(24)	27(3)	13(2)	17(2)	-2(2)	4(2)	4(2)
C(23)	15(2)	20(2)	17(2)	1(2)	2(2)	2(2)
C(25)	15(3)	14(2)	24(2)	1(2)	1(2)	5(2)
C(26)	28(3)	25(3)	14(2)	-1(2)	-1(2)	5(2)
F(20)	56(2)	42(2)	15(2)	2(1)	11(1)	26(2)
F(21)	55(2)	38(2)	16(2)	5(1)	-1(1)	27(2)
F(22)	51(2)	63(2)	17(2)	-3(2)	-5(2)	-26(2)
S(5)	21(1)	16(1)	14(1)	-3(1)	-1(1)	7(1)
S(6)	22(1)	12(1)	17(1)	2(1)	3(1)	7(1)

Table S5D. Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for **1**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [\text{ h}^2 a^{*2} U^{11} + ... + 2 \text{ h k } a^{*} \text{ b}^{*} U^{12}]$

N(5)	19(2)	14(2)	17(2)	0(2)	0(2)	8(2)
N(6)	19(2)	13(2)	14(2)	2(2)	4(2)	5(2)
C(3)	14(2)	12(2)	16(2)	-3(2)	-2(2)	2(2)
C(30)	11(2)	12(2)	16(2)	-4(2)	0(2)	2(2)
C(34)	19(3)	19(3)	18(3)	0(2)	-4(2)	4(2)
C(32)	23(3)	19(3)	22(3)	-2(2)	8(2)	9(2)
C(33)	13(2)	14(2)	25(3)	-2(2)	-1(2)	4(2)
C(31)	24(3)	13(2)	18(2)	1(2)	7(2)	8(2)
C(35)	17(3)	16(2)	17(2)	-1(2)	-1(2)	1(2)
C(36)	24(2)	18(2)	31(2)	0(2)	3(2)	8(1)
F(30)	34(3)	23(3)	76(4)	-12(3)	3(3)	10(2)
F(31)	28(3)	30(3)	67(4)	4(2)	21(2)	16(2)
F(32)	104(6)	64(4)	32(3)	9(3)	4(3)	72(4)
C(36A)	24(2)	18(2)	31(2)	0(2)	3(2)	8(1)
F(30A)	70(10)	32(7)	34(5)	2(4)	2(4)	39(6)
F(31A)	16(4)	15(5)	72(8)	-5(5)	4(4)	9(3)
F(32A)	12(5)	18(5)	59(6)	13(4)	9(5)	11(4)
S(7)	24(1)	16(1)	15(1)	2(1)	5(1)	9(1)
S(8)	25(1)	16(1)	12(1)	2(1)	0(1)	8(1)
N(7)	24(2)	12(2)	15(2)	0(2)	2(2)	4(2)
N(8)	25(2)	11(2)	13(2)	2(2)	2(2)	5(2)
C(4)	15(2)	11(2)	14(2)	-2(2)	1(2)	-3(2)
C(43)	18(3)	17(2)	24(2)	0(2)	3(2)	5(2)
C(40)	16(2)	9(2)	13(2)	-2(2)	2(2)	0(2)
C(45)	27(3)	17(2)	16(2)	0(2)	4(2)	6(2)
C(42)	19(3)	18(2)	14(2)	4(2)	2(2)	3(2)
C(44)	31(3)	18(2)	16(2)	-4(2)	4(2)	5(2)
C(41)	20(3)	17(2)	15(2)	-1(2)	4(2)	3(2)
C(46)	24(2)	18(2)	31(2)	0(2)	3(2)	8(1)
F(40)	46(6)	29(5)	30(3)	-6(3)	0(3)	29(4)
F(41)	39(4)	34(4)	37(3)	2(3)	1(3)	25(3)
F(42)	44(4)	19(3)	100(8)	14(3)	38(4)	16(3)
C(46A)	24(2)	18(2)	31(2)	0(2)	3(2)	8(1)
F(40A)	25(6)	43(8)	40(5)	2(5)	8(5)	17(5)
F(41A)	45(7)	39(7)	32(4)	9(4)	5(4)	26(6)
F(42A)	26(4)	18(4)	67(8)	-3(4)	-1(4)	3(3)
S(9)	23(1)	16(1)	19(1)	4(1)	7(1)	9(1)
				S26		

S(10)	22(1)	14(1)	19(1)	-2(1)	3(1)	7(1)
N(9)	19(2)	19(2)	19(2)	5(2)	5(2)	5(2)
N(10)	17(2)	14(2)	17(2)	-2(2)	0(2)	3(2)
C(5)	12(2)	12(2)	14(2)	-4(2)	3(2)	-1(2)
C(51)	26(3)	19(3)	17(2)	0(2)	-2(2)	9(2)
C(52)	28(3)	21(3)	19(3)	-6(2)	0(2)	8(2)
C(50)	14(2)	12(2)	18(2)	-1(2)	3(2)	-1(2)
C(53)	16(2)	11(2)	25(3)	0(2)	7(2)	1(2)
C(54)	17(3)	18(3)	21(3)	3(2)	0(2)	5(2)
C(55)	18(3)	18(3)	15(2)	-1(2)	5(2)	5(2)
C(56)	26(3)	21(3)	27(3)	2(2)	4(2)	12(2)
F(51)	33(2)	18(2)	88(3)	14(2)	15(2)	10(1)
F(50)	123(3)	62(3)	31(2)	6(2)	17(2)	75(2)
F(52)	25(2)	35(2)	71(2)	-7(2)	-6(2)	15(2)
S (11)	26(1)	17(1)	13(1)	1(1)	-1(1)	9(1)
S(12)	24(1)	14(1)	14(1)	1(1)	5(1)	8(1)
N(11)	24(2)	18(2)	14(2)	1(2)	4(2)	8(2)
N(12)	18(2)	17(2)	13(2)	3(2)	3(2)	9(2)
C(6)	11(2)	17(2)	15(2)	-1(2)	5(2)	2(2)
C(63)	12(2)	12(2)	22(2)	1(2)	4(2)	1(2)
C(60)	10(2)	12(2)	14(2)	1(2)	6(2)	1(2)
C(61)	39(3)	21(3)	14(2)	4(2)	3(2)	14(2)
C(62)	34(3)	18(3)	17(3)	-2(2)	4(2)	10(2)
C(64)	27(3)	20(3)	17(3)	4(2)	0(2)	8(2)
C(66)	23(3)	16(2)	21(3)	1(2)	4(2)	7(2)
C(65)	22(3)	15(2)	12(2)	-2(2)	0(2)	4(2)
F(60)	38(2)	30(2)	34(2)	4(1)	16(1)	21(2)
F(61)	49(2)	28(2)	26(2)	6(1)	1(1)	23(2)
F(62)	32(2)	14(2)	68(2)	-11(2)	1(2)	5(1)
S(13)	21(1)	22(1)	12(1)	3(1)	1(1)	6(1)
S(14)	21(1)	28(1)	11(1)	-2(1)	1(1)	12(1)
N(13)	21(2)	19(2)	11(2)	0(2)	1(2)	8(2)
N(14)	23(2)	21(2)	11(2)	1(2)	1(2)	10(2)
C(7)	8(2)	17(2)	13(2)	-3(2)	-1(2)	2(2)
C(70)	8(2)	17(2)	14(2)	2(2)	1(2)	2(2)
C(73)	9(2)	25(3)	13(2)	2(2)	0(2)	1(2)
C(71)	21(3)	14(2)	13(2)	0(2)	-1(2)	6(2)

C(74)	13(2)	22(3)	16(2)	7(2)	2(2)	6(2)
C(72)	21(3)	15(2)	15(2)	0(2)	2(2)	6(2)
C(75)	12(2)	17(2)	18(2)	-2(2)	1(2)	4(2)
C(76)	25(3)	28(3)	17(2)	5(2)	3(2)	-2(2)
F(70)	49(2)	44(2)	16(2)	4(1)	0(1)	22(2)
F(71)	45(2)	33(2)	23(2)	3(1)	18(1)	14(2)
F(72)	60(2)	47(2)	14(2)	0(1)	-6(2)	-28(2)
S(15)	20(1)	16(1)	12(1)	2(1)	2(1)	9(1)
S(16)	26(1)	15(1)	14(1)	0(1)	2(1)	8(1)
N(15)	14(2)	18(2)	15(2)	3(2)	0(2)	6(2)
N(16)	22(2)	15(2)	13(2)	2(2)	0(2)	5(2)
C(8)	11(2)	16(2)	19(2)	1(2)	4(2)	3(2)
C(80)	9(2)	17(2)	15(2)	2(2)	1(2)	6(2)
C(83)	8(2)	21(2)	16(2)	4(2)	2(2)	4(2)
C(81)	13(2)	17(2)	14(2)	4(2)	2(2)	4(2)
C(84)	14(2)	15(2)	23(2)	7(2)	6(2)	1(2)
C(85)	16(2)	13(2)	15(2)	-1(2)	3(2)	5(2)
C(86)	19(2)	21(3)	22(3)	5(2)	4(2)	6(2)
C(82)	12(2)	17(2)	16(2)	-2(2)	0(2)	5(2)
F(80)	26(2)	32(2)	20(2)	7(1)	-4(1)	3(1)
F(82)	68(2)	45(2)	20(2)	7(2)	16(2)	36(2)
F(81)	35(2)	35(2)	19(2)	12(1)	5(1)	-8(1)

	Х	У	Ζ	U(eq)
H(11)	5943	3034	2884	20
H(12)	5775	3138	1838	19
H(14)	5595	908	1609	19
H(15)	5763	798	2654	18
H(21)	2095	1915	2606	17
H(22)	1597	1832	1546	17
H(24)	1899	-358	1545	23
H(25)	2430	-258	2598	21
H(34)	1205	7314	4569	23
H(32)	1831	7835	2856	24
H(31)	700	8825	2939	21
H(35)	96	8333	4660	21
H(45)	7129	7573	2862	24
H(42)	7420	6178	4582	21
H(44)	7921	6446	2821	26
H(41)	6599	7294	4623	21
H(51)	5302	6558	2188	25
H(52)	4139	7564	2199	27
H(54)	3445	7412	363	22
H(55)	4620	6414	356	20
H(61)	9058	7703	2245	28
H(62)	8294	8827	2314	27
H(64)	7324	8744	492	25
H(65)	8051	7610	420	20
H(71)	6775	4587	7674	19
H(74)	6466	6722	6585	20
H(72)	6332	4486	6622	20
H(75)	6847	6821	7633	19
H(81)	301	5705	7625	17
H(84)	507	8062	6821	21
H(85)	693	7964	7866	17
H(82)	157	5815	6581	18

Table S5E. Hydrogen coordinates ($x 10^4$) and isotropic displacement parameters (Å²x 10³) for **1**.

Table S	55F.	Torsion	angles	[°]	for	1.
---------	------	---------	--------	-----	-----	----

S(2)-S(1)-N(1)-C(1) 1.3(3)	S(1)-	C(25)-C(20)-C(21)-C(22) 2	.7(7)
S(2)-N(2)-C(1) 2.3(3)		C(2)-C(20)-C(21)-C(22)	-175.3(4)
S(1)-N(1)-C(1)-N(2)	0.1(5)	C(20)-C(21)-C(22)-C(23)	-0.4(7)
S(1)-N(1)-C(1)-C(10)	178.0(3)	C(21)-C(22)-C(23)-C(24)	-1.4(7)
S(2)-N(2)-C(1)-N(1)	-2.0(5)	C(21)-C(22)-C(23)-C(26)	175.5(4)
S(2)-N(2)-C(1)-C(10)	-179.8(3)	C(25)-C(24)-C(23)-C(22)	0.8(7)
N(1)-C(1)-C(10)-C(11)	17.2(6)	C(25)-C(24)-C(23)-C(26)	-176.1(4)
N(2)-C(1)-C(10)-C(11)	-164.9(4)	C(23)-C(24)-C(25)-C(20)	1.5(7)
N(1)-C(1)-C(10)-C(15)	-161.7(4)	C(21)-C(20)-C(25)-C(24)	-3.3(7)
N(2)-C(1)-C(10)-C(15)	16.2(6)	C(2)-C(20)-C(25)-C(24)	174.8(4)
C(15)-C(10)-C(11)-C(12)	2.3(6)	C(22)-C(23)-C(26)-F(21)	1.6(7)
C(1)-C(10)-C(11)-C(12)	-176.7(4)	C(24)-C(23)-C(26)-F(21)	178.5(4)
C(10)-C(11)-C(12)-C(13)	-0.5(7)	C(22)-C(23)-C(26)-F(22)	-118.7(5)
C(11)-C(12)-C(13)-C(14)	-1.3(7)	C(24)-C(23)-C(26)-F(22)	58.2(6)
C(11)-C(12)-C(13)-C(16)	176.9(4)	C(22)-C(23)-C(26)-F(20)	122.3(5)
C(12)-C(13)-C(14)-C(15)	1.3(7)	C(24)-C(23)-C(26)-F(20)	-60.8(6)
C(16)-C(13)-C(14)-C(15)	-176.9(4)	S(6)-S(5)-N(5)-C(3)	3.6(3)
C(13)-C(14)-C(15)-C(10)	0.5(7)	S(5)-S(6)-N(6)-C(3)	2.7(3)
C(11)-C(10)-C(15)-C(14)	-2.3(6)	S(5)-N(5)-C(3)-N(6)	-2.6(6)
C(1)-C(10)-C(15)-C(14)	176.7(4)	S(5)-N(5)-C(3)-C(30)	176.8(3)
C(14)-C(13)-C(16)-F(12)	-29.7(6)	S(6)-N(6)-C(3)-N(5)	-0.7(6)
C(12)-C(13)-C(16)-F(12)	152.1(4)	S(6)-N(6)-C(3)-C(30)	179.9(3)
C(14)-C(13)-C(16)-F(11)	91.8(5)	N(5)-C(3)-C(30)-C(35)	13.3(6)
C(12)-C(13)-C(16)-F(11)	-86.4(5)	N(6)-C(3)-C(30)-C(35)	-167.3(4)
C(14)-C(13)-C(16)-F(10)	-150.3(4)	N(5)-C(3)-C(30)-C(31)	-167.5(4)
C(12)-C(13)-C(16)-F(10)	31.4(6)	N(6)-C(3)-C(30)-C(31)	11.9(6)
S(4)-S(3)-N(3)-C(2)	-0.6(3)	C(35)-C(34)-C(33)-C(32)	-1.1(7)
S(3)-S(4)-N(4)-C(2)	-2.4(3)	C(35)-C(34)-C(33)-C(36A)	-176.9(7)
S(4)-N(4)-C(2)-N(3)	2.6(6)	C(35)-C(34)-C(33)-C(36)	-178.2(5)
S(4)-N(4)-C(2)-C(20)	-175.8(3)	C(31)-C(32)-C(33)-C(34)	0.4(7)
S(3)-N(3)-C(2)-N(4)	-1.1(6)	C(31)-C(32)-C(33)-C(36A)	175.8(8)
S(3)-N(3)-C(2)-C(20)	177.3(3)	C(31)-C(32)-C(33)-C(36)	177.7(5)
N(4)-C(2)-C(20)-C(25)	13.5(6)	C(33)-C(32)-C(31)-C(30)	-0.3(7)
N(3)-C(2)-C(20)-C(25)	-164.9(4)	C(35)-C(30)-C(31)-C(32)	0.7(7)
N(4)-C(2)-C(20)-C(21)	-168.4(4)	C(3)-C(30)-C(31)-C(32)	-178.5(4)
N(3)-C(2)-C(20)-C(21)	13.1(6)	C(31)-C(30)-C(35)-C(34)	-1.4(6)

C(3)-C(30)-C(35)-C(34)	177.9(4)	C(42)-C(43)-C(46)-F(42)	60.6(9)
C(33)-C(34)-C(35)-C(30)	1.6(7)	C(44)-C(43)-C(46)-F(41)	119.4(9)
C(34)-C(33)-C(36)-F(32)	-21.5(9)	C(42)-C(43)-C(46)-F(41)	-60.8(10)
C(32)-C(33)-C(36)-F(32)	161.4(6)	C(44)-C(43)-C(46)-F(40)	-0.5(11)
C(34)-C(33)-C(36)-F(30)	98.6(7)	C(42)-C(43)-C(46)-F(40)	179.3(7)
C(32)-C(33)-C(36)-F(30)	-78.5(7)	C(44)-C(43)-C(46A)-F(41A)	156.0(10)
C(34)-C(33)-C(36)-F(31)	-144.0(6)	C(42)-C(43)-C(46A)-F(41A)	-29.1(14)
C(32)-C(33)-C(36)-F(31)	38.8(8)	C(44)-C(43)-C(46A)-F(42A)	-84.3(11)
C(34)-C(33)-C(36A)-F(32A)	31.7(13)	C(42)-C(43)-C(46A)-F(42A)	90.7(11)
C(32)-C(33)-C(36A)-F(32A)	-143.9(9)	C(44)-C(43)-C(46A)-F(40A)	35.8(14)
C(34)-C(33)-C(36A)-F(30A)	153.7(9)	C(42)-C(43)-C(46A)-F(40A)	-149.3(10)
C(32)-C(33)-C(36A)-F(30A)	-21.8(14)	S(10)-S(9)-N(9)-C(5)	-0.1(3)
C(34)-C(33)-C(36A)-F(31A)	-89.4(10)	S(9)-S(10)-N(10)-C(5)	-1.6(3)
C(32)-C(33)-C(36A)-F(31A)	95.1(10)	S(10)-N(10)-C(5)-N(9)	2.0(6)
S(8)-S(7)-N(7)-C(4)	-0.4(3)	S(10)-N(10)-C(5)-C(50)	-178.2(3)
S(7)-S(8)-N(8)-C(4)	-0.3(3)	S(9)-N(9)-C(5)-N(10)	-1.1(6)
S(7)-N(7)-C(4)-N(8)	0.4(6)	S(9)-N(9)-C(5)-C(50)	179.1(3)
S(7)-N(7)-C(4)-C(40)	-178.2(3)	C(50)-C(51)-C(52)-C(53)	0.1(7)
S(8)-N(8)-C(4)-N(7)	0.0(6)	C(52)-C(51)-C(50)-C(55)	-0.8(7)
S(8)-N(8)-C(4)-C(40)	178.5(3)	C(52)-C(51)-C(50)-C(5)	179.9(4)
N(7)-C(4)-C(40)-C(45)	-172.9(4)	N(10)-C(5)-C(50)-C(51)	-179.7(4)
N(8)-C(4)-C(40)-C(45)	8.5(6)	N(9)-C(5)-C(50)-C(51)	0.0(6)
N(7)-C(4)-C(40)-C(41)	7.3(6)	N(10)-C(5)-C(50)-C(55)	1.0(6)
N(8)-C(4)-C(40)-C(41)	-171.3(4)	N(9)-C(5)-C(50)-C(55)	-179.3(4)
C(41)-C(40)-C(45)-C(44)	2.3(7)	C(51)-C(52)-C(53)-C(54)	0.8(7)
C(4)-C(40)-C(45)-C(44)	-177.5(4)	C(51)-C(52)-C(53)-C(56)	-178.6(4)
C(44)-C(43)-C(42)-C(41)	0.9(7)	C(52)-C(53)-C(54)-C(55)	-1.1(7)
C(46)-C(43)-C(42)-C(41)	-178.8(5)	C(56)-C(53)-C(54)-C(55)	178.4(4)
C(46A)-C(43)-C(42)-C(41)	-173.7(7)	C(53)-C(54)-C(55)-C(50)	0.4(7)
C(42)-C(43)-C(44)-C(45) -0.5	(7)	C(51)-C(50)-C(55)-C(54)	0.6(7)
C(46)-C(43)-C(44)-C(45)	179.3(6)	C(5)-C(50)-C(55)-C(54)	179.9(4)
C(46A)-C(43)-C(44)-C(45)	174.6(7)	C(52)-C(53)-C(56)-F(50)	-7.7(7)
C(40)-C(45)-C(44)-C(43) -1.1	(7)	C(54)-C(53)-C(56)-F(50)	172.8(4)
C(43)-C(42)-C(41)-C(40)	0.2(7)	C(52)-C(53)-C(56)-F(51)	114.9(5)
C(45)-C(40)-C(41)-C(42)	-1.9(7)	C(54)-C(53)-C(56)-F(51)	-64.6(6)
C(4)-C(40)-C(41)-C(42)	178.0(4)	C(52)-C(53)-C(56)-F(52)	-127.9(5)
C(44)-C(43)-C(46)-F(42)	-119.1(8)	C(54)-C(53)-C(56)-F(52)	52.6(6)

S(12)-S(11)-N(11)-C(6)	0.2(3)	C(7)-C(70)-C(71)-C(72)	178.7(4)
S(11)-S(12)-N(12)-C(6)	0.6(3)	C(72)-C(73)-C(74)-C(75)	-0.2(7)
S(12)-N(12)-C(6)-N(11)	-0.6(6)	C(76)-C(73)-C(74)-C(75)	-179.3(4)
S(12)-N(12)-C(6)-C(60)	177.5(3)	C(70)-C(71)-C(72)-C(73)	1.3(7)
S(11)-N(11)-C(6)-N(12)	0.2(6)	C(74)-C(73)-C(72)-C(71)	-0.7(7)
S(11)-N(11)-C(6)-C(60)	-178.0(3)	C(76)-C(73)-C(72)-C(71)	178.5(4)
N(12)-C(6)-C(60)-C(65)	3.9(7)	C(73)-C(74)-C(75)-C(70)	0.5(7)
N(11)-C(6)-C(60)-C(65)	-177.9(4)	C(71)-C(70)-C(75)-C(74)	0.1(7)
N(12)-C(6)-C(60)-C(61)	-174.6(4)	C(7)-C(70)-C(75)-C(74)	-179.6(4)
N(11)-C(6)-C(60)-C(61)	3.6(6)	C(72)-C(73)-C(76)-F(72)	42.8(6)
C(65)-C(60)-C(61)-C(62)	0.5(7)	C(74)-C(73)-C(76)-F(72)	-138.1(5)
C(6)-C(60)-C(61)-C(62)	179.0(4)	C(72)-C(73)-C(76)-F(71)	-76.6(5)
C(60)-C(61)-C(62)-C(63)	0.1(7)	C(74)-C(73)-C(76)-F(71)	102.6(5)
C(64)-C(63)-C(62)-C(61)	-1.2(7)	C(72)-C(73)-C(76)-F(70)	165.0(4)
C(66)-C(63)-C(62)-C(61)	-179.1(4)	C(74)-C(73)-C(76)-F(70)	-15.9(6)
C(62)-C(63)-C(64)-C(65)	1.7(7)	S(16)-S(15)-N(15)-C(8)	1.7(3)
C(66)-C(63)-C(64)-C(65)	179.5(4)	S(15)-S(16)-N(16)-C(8)	1.5(3)
C(64)-C(63)-C(66)-F(61)	6.5(7)	S(15)-N(15)-C(8)-N(16)	-1.0(6)
C(62)-C(63)-C(66)-F(61)	-175.6(4)	S(15)-N(15)-C(8)-C(80)	179.2(3)
C(64)-C(63)-C(66)-F(60)	127.3(5)	S(16)-N(16)-C(8)-N(15)	-0.7(6)
C(62)-C(63)-C(66)-F(60)	-54.8(6)	S(16)-N(16)-C(8)-C(80)	179.1(3)
C(64)-C(63)-C(66)-F(62)	-115.2(5)	N(15)-C(8)-C(80)-C(81)	20.1(6)
C(62)-C(63)-C(66)-F(62)	62.6(6)	N(16)-C(8)-C(80)-C(81)	-159.7(4)
C(63)-C(64)-C(65)-C(60)	-1.2(7)	N(15)-C(8)-C(80)-C(85)	-161.7(4)
C(61)-C(60)-C(65)-C(64)	0.1(7)	N(16)-C(8)-C(80)-C(85)	18.5(6)
C(6)-C(60)-C(65)-C(64)	-178.4(4)	C(85)-C(80)-C(81)-C(82)	-0.9(6)
S(14)-S(13)-N(13)-C(7)	-1.3(3)	C(8)-C(80)-C(81)-C(82)	177.3(4)
S(13)-S(14)-N(14)-C(7)	-1.2(3)	C(82)-C(83)-C(84)-C(85)	-0.1(7)
S(14)-N(14)-C(7)-N(13)	0.6(6)	C(86)-C(83)-C(84)-C(85)	177.0(4)
S(14)-N(14)-C(7)-C(70)	178.5(3)	C(83)-C(84)-C(85)-C(80)	-1.0(7)
S(13)-N(13)-C(7)-N(14)	0.7(6)	C(81)-C(80)-C(85)-C(84)	1.5(6)
S(13)-N(13)-C(7)-C(70)	-177.3(3)	C(8)-C(80)-C(85)-C(84)	-176.8(4)
N(14)-C(7)-C(70)-C(71)	-160.8(4)	C(84)-C(83)-C(86)-F(82)	156.9(4)
N(13)-C(7)-C(70)-C(71)	17.2(6)	C(82)-C(83)-C(86)-F(82)	-26.0(6)
N(14)-C(7)-C(70)-C(75)	18.9(6)	C(84)-C(83)-C(86)-F(80)	-82.2(5)
N(13)-C(7)-C(70)-C(75)	-163.1(4)	C(82)-C(83)-C(86)-F(80)	94.9(5)
C(75)-C(70)-C(71)-C(72)	-1.0(7)	C(84)-C(83)-C(86)-F(81)	35.0(6)

C(82)-C(83)-C(86)-F(81)	-147.9(4)	C(84)-C(83)-C(82)-C(81)	0.7(7)
C(80)-C(81)-C(82)-C(83)	-0.2(6)	C(86)-C(83)-C(82)-C(81)	-176.3(4)

Table S5G. Least-squares planes (x,y,z in crystal coordinates) and deviations from them in **1** 8.3112 (0.0058) x + 4.6772 (0.0221) y + 0.0375 (0.0292) z = 3.6256 (0.0300)

- * 0.0008 (0.0027) C8
- * -0.0113 (0.0023) N15
- * 0.0102 (0.0023) N16
- * 0.0122 (0.0014) S15
- * -0.0120 (0.0015) S16

Rms deviation of fitted atoms = 0.0102

8.2937 (0.0060) x + 5.1137 (0.0225) y - 2.7637 (0.0287) z = 6.5003 (0.0280) Angle to previous plane (with approximate esd) = 7.348 (0.157)

- * -0.0002 (0.0027) C7
- * 0.0085 (0.0023) N13
- * -0.0082 (0.0023) N14
- * -0.0095 (0.0015) S13
- * 0.0094 (0.0015) S14

Rms deviation of fitted atoms = 0.0080

7.8677 (0.0071) x + 6.5943 (0.0225) y - 3.1754 (0.0280) z = 11.2893 (0.0076) Angle to previous plane (with approximate esd) = 5.061 (0.174)

- * 0.0018 (0.0027) C6
- * 0.0014 (0.0023) N11
- * -0.0039 (0.0022) N12
- * -0.0026 (0.0015) S11
- * 0.0034 (0.0015) S12

Rms deviation of fitted atoms = 0.0028

7.3324 (0.0080) x + 8.1602 (0.0215) y - 3.2936 (0.0278) z = 8.5612 (0.0066) Angle to previous plane (with approximate esd) = 5.422 (0.192) * -0.0078 (0.0027) C5 * -0.0001 (0.0023) N9 * 0.0110 (0.0022) N10 * 0.0047 (0.0015) S9 * -0.0077 (0.0015) S10 Rms deviation of fitted atoms = 0.0073 7.7091 (0.0074) x + 6.7552 (0.0226) y + 0.2073 (0.0282) z = 10.4044 (0.0188) Angle to previous plane (with approximate esd) = 10.269 (0.185)

- * -0.0010 (0.0027) C4
- * 0.0029 (0.0023) N7
- * -0.0016 (0.0023) N8
- * -0.0028 (0.0014) S7
- * 0.0024 (0.0015) S8

Rms deviation of fitted atoms = 0.0023

7.2549 (0.0081) x + 8.2058 (0.0215) y - 0.5861 (0.0280) z = 7.0504 (0.0253) Angle to previous plane (with approximate esd) = 5.367 (0.196)

- * 0.0049 (0.0027) C3
- * -0.0243 (0.0023) N5
- * 0.0177 (0.0023) N6
- * 0.0244 (0.0015) S5
- * -0.0227 (0.0015) S6

Rms deviation of fitted atoms = 0.0202

8.2070 (0.0061) x + 5.3673 (0.0220) y - 1.6812 (0.0301) z = 1.9215 (0.0126) Angle to previous plane (with approximate esd) = 10.086 (0.176)

- * -0.0093 (0.0028) C2
- * -0.0033 (0.0023) N3
- * 0.0163 (0.0023) N4
- * 0.0092 (0.0015) S3
- * -0.0129 (0.0015) S4

Rms deviation of fitted atoms = 0.0111

8.2744 (0.0058) x + 4.6863 (0.0220) y + 0.5628 (0.0289) z = 5.8958 (0.0115) Angle to previous plane (with approximate esd) = 6.150 (0.160) * 0.0054 (0.0026) C1 * 0.0085 (0.0022) N1

- * -0.0161 (0.0022) N2
- * -0.0127 (0.0015) S1
- * 0.0149 (0.0015) S2
- Rms deviation of fitted atoms = 0.0122

Details of the Crystal Structure Refinement of 2

Both CF₃ groups in the structure of **2** display rotational disorder. This disorder could be described adequately a two-part disorder model but to get reasonable geometries (employing SADI restraints) it was found necessary to include the CF₃ carbon atoms in the model. Because of the relatively high thermal motion in this structure, possibly a consequence of collecting data at only 263(2) K, the newly developed RIGU restraints in ShelXL-2014 have been applied globally to this structure. However, in addition, a strong tendency for the fluorine atoms to go oblate or NPD was solved by applying ISOR restraints. Refined occupancies for both groups came very close to 50%, so the occupancies were frozen at 50:50 in the final cycles of refinement.

The SADI restraints on 1,2 C–F and 1,3 F–F distances permitted the two CF₃ groups to rotate apart without requiring the two rotamers to be staggered. The combination of this approach provided a successful disorder model which is depicted in Figure S10. In the final difference Fourier map, the highest peak of 0.66 $e/Å^3$ at (0.2723 0.9619 0.4493) and the deepest hole of -0.29 $e/Å^3$ at (0.3184 0.9178 0.4642) associated with the heaviest atoms in the unit cell, namely antimony, and are *not* associated with the CF₃ groups. This is considered a positive indication of the adequacy of the disorder models applied to the trifluoromethyl groups.

Figure S10. Depiction of the two-component disorder models developed for the CF_3 groups of the dimer in **2**. Displacement ellipsoids drawn at 20%. The refined occupancies are 48:52 for C8/C8A and 51:49 for C18/C18A.

Table S6. Crystal structure report for 2

Empirical formula	C34 H23 F6 N4 S4 Sb	
Formula weight	851.55	
Temperature	263(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.4543(10) Å	$\alpha = 73.3640(10)^{\circ}.$
	b = 11.7399(10) Å	$\beta = 73.2470(10)^{\circ}.$
	c = 13.9480(12) Å	$\gamma = 82.5790(10)^{\circ}.$
Volume Z	1718.6(3) Å ³ 2	
Density (calculated)	1.646 Mg/m ³	
Absorption coefficient F(000)	1.110 mm ⁻¹ 848	
Crystal size Theta range for data collection	0.460 x 0.420 x 0.280 mm ³ 1.813 to 28.578°.	
Index ranges	-15<=h<=15, -15<=k<=15, -18	8<=l<=18
Reflections collected	19773	
Independent reflections	8041 [R(int) = 0.0195]	
Completeness to theta = 25.250°	99.6 %	
Refinement method Data / restraints / parameters	Full-matrix least-squares on F 8041 / 594 / 516	2
Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	1.054 R1 = 0.0313, wR2 = 0.0789	
R indices (all data)	R1 = 0.0404, wR2 = 0.0864	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.664 and -0.590 e.Å ⁻³	

 Table S6A.
 Crystal data and structure refinement for [CF3Phdtda]2.SbPh3 (2) in P-1.

	X	у	Z	U(eq)
S(1)	4731(1)	3841(1)	4461(1)	59(1)
S(2)	5263(1)	2693(1)	3496(1)	56(1)
N(1)	3712(2)	4590(2)	3885(2)	54(1)
N(2)	4284(2)	3284(2)	2822(2)	51(1)
C(1)	3610(2)	4204(2)	3101(2)	46(1)
C(2)	2732(2)	4841(2)	2507(2)	47(1)
C(3)	2450(3)	4361(2)	1803(2)	57(1)
C(4)	1668(3)	4969(3)	1221(2)	64(1)
C(5)	1160(2)	6074(3)	1329(2)	58(1)
C(6)	1429(3)	6559(3)	2022(2)	64(1)
C(7)	2205(2)	5949(2)	2613(2)	57(1)
C(8)	329(12)	6808(11)	698(10)	78(3)
F(1)	310(7)	7942(5)	596(7)	124(3)
F(2)	-749(6)	6417(9)	1061(7)	157(4)
F(3)	673(9)	6713(8)	-265(6)	117(3)
C(8A)	328(11)	6674(10)	663(9)	73(3)
F(1A)	-392(7)	7517(9)	1000(6)	141(3)
F(2A)	-357(8)	5980(7)	489(7)	127(2)
F(3A)	939(7)	7216(7)	-279(5)	98(2)
S(11)	6673(1)	5563(1)	3050(1)	62(1)
S(12)	7171(1)	4483(1)	2016(1)	61(1)
N(11)	5768(2)	6462(2)	2431(2)	58(1)
N(12)	6319(2)	5253(2)	1277(2)	57(1)
C(11)	5709(2)	6195(2)	1576(2)	50(1)
C(12)	4962(2)	7002(2)	922(2)	49(1)
C(13)	4760(3)	6690(2)	96(2)	60(1)
C(14)	4099(3)	7449(3)	-529(2)	64(1)
C(15)	3645(3)	8528(3)	-350(2)	60(1)
C(16)	3834(3)	8845(3)	472(2)	69(1)
C(17)	4487(3)	8083(2)	1108(2)	63(1)
C(18)	3050(10)	9376(11)	-1103(9)	73(3)
F(11)	2242(8)	10124(7)	-703(5)	136(3)

Table S6B. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for **2**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(12)	2420(6)	8910(9)	-1547(7)	101(2)
F(13)	3864(6)	9984(7)	-1901(4)	114(2)
C(18A)	2942(13)	9399(12)	-1037(10)	88(3)
F(11A)	1805(8)	9552(7)	-580(7)	120(2)
F(12A)	2964(7)	8987(9)	-1844(6)	105(2)
F(13A)	3414(8)	10439(5)	-1414(8)	150(3)
Sb(1)	6584(1)	301(1)	5808(1)	53(1)
C(20)	7487(2)	-974(2)	4966(2)	46(1)
C(21)	8361(2)	-1831(2)	5274(2)	55(1)
C(22)	8864(3)	-2670(3)	4723(2)	63(1)
C(23)	8505(3)	-2662(3)	3856(2)	62(1)
C(24)	7644(3)	-1827(3)	3546(2)	62(1)
C(25)	7137(2)	-993(2)	4093(2)	56(1)
C(30)	7609(2)	-147(2)	6953(2)	47(1)
C(31)	8667(2)	394(2)	6833(2)	55(1)
C(32)	9284(3)	66(3)	7598(2)	61(1)
C(33)	8863(3)	-817(3)	8486(2)	65(1)
C(34)	7818(3)	-1372(3)	8617(2)	64(1)
C(35)	7188(3)	-1033(2)	7862(2)	55(1)
C(40)	7636(2)	1798(2)	4804(2)	47(1)
C(41)	8515(2)	1743(2)	3888(2)	55(1)
C(42)	9207(3)	2708(2)	3299(2)	60(1)
C(43)	9036(3)	3745(2)	3619(2)	60(1)
C(44)	8159(3)	3815(2)	4524(2)	57(1)
C(45)	7457(2)	2856(2)	5100(2)	51(1)

Table S6C. Bond lengths [Å] and angles [°] for 2

S(1)-N(1)	1.629(2)	C(15)-C(16)	1.382(4)
S(1)-S(2)	2.0865(9)	C(15)-C(18)	1.483(16)
S(2)-N(2)	1.629(2)	C(15)-C(18A)	1.510(17)
N(1)-C(1)	1.336(3)	C(16)-C(17)	1.379(4)
N(2)-C(1)	1.330(3)	C(16)-H(16)	0.9300
C(1)-C(2)	1.479(3)	C(17)-H(17)	0.9300
C(2)-C(3)	1.390(3)	C(18)-F(11)	1.308(10)
C(2)-C(7)	1.391(4)	C(18)-F(13)	1.318(10)
C(3)-C(4)	1.376(4)	C(18)-F(12)	1.325(11)
C(3)-H(3)	0.9300	C(18A)-F(11A)	1.289(11)
C(4)-C(5)	1.381(4)	C(18A)-F(13A)	1.303(11)
C(4)-H(4)	0.9300	C(18A)-F(12A)	1.339(11)
C(5)-C(6)	1.373(4)	Sb(1)-C(20)	2.145(2)
C(5)-C(8A)	1.494(15)	Sb(1)-C(30)	2.155(2)
C(5)-C(8)	1.504(16)	Sb(1)-C(40)	2.160(3)
C(6)-C(7)	1.379(4)	C(20)-C(21)	1.392(3)
C(6)-H(6)	0.9300	C(20)-C(25)	1.393(3)
C(7)-H(7)	0.9300	C(21)-C(22)	1.386(4)
C(8)-F(2)	1.282(11)	C(21)-H(21)	0.9300
C(8)-F(1)	1.295(11)	C(22)-C(23)	1.382(4)
C(8)-F(3)	1.320(11)	C(22)-H(22)	0.9300
C(8A)-F(1A)	1.309(11)	C(23)-C(24)	1.369(4)
C(8A)-F(2A)	1.313(11)	C(23)-H(23)	0.9300
C(8A)-F(3A)	1.314(10)	C(24)-C(25)	1.380(4)
S(11)-N(11)	1.626(2)	C(24)-H(24)	0.9300
S(11)-S(12)	2.0972(10)	C(25)-H(25)	0.9300
S(12)-N(12)	1.629(2)	C(30)-C(31)	1.386(3)
N(11)-C(11)	1.339(3)	C(30)-C(35)	1.394(3)
N(12)-C(11)	1.334(3)	C(31)-C(32)	1.385(4)
C(11)-C(12)	1.485(4)	C(31)-H(31)	0.9300
C(12)-C(17)	1.380(4)	C(32)-C(33)	1.375(4)
C(12)-C(13)	1.390(3)	C(32)-H(32)	0.9300
C(13)-C(14)	1.375(4)	C(33)-C(34)	1.377(5)
C(13)-H(13)	0.9300	C(33)-H(33)	0.9300
C(14)-C(15)	1.368(4)	C(34)-C(35)	1.383(4)
C(14)-H(14)	0.9300	C(34)-H(34)	0.9300

0.9300	C(6)-C(7)-C(2)	120.4(3)
1.391(3)	C(6)-C(7)-H(7)	119.8
1.392(3)	C(2)-C(7)-H(7)	119.8
1.382(4)	F(2)-C(8)-F(1)	111.5(11)
0.9300	F(2)-C(8)-F(3)	104.5(11)
1.385(4)	F(1)-C(8)-F(3)	104.0(10)
0.9300	F(2)-C(8)-C(5)	110.3(9)
1.384(4)	F(1)-C(8)-C(5)	114.3(10)
0.9300	F(3)-C(8)-C(5)	111.7(10)
1.380(4)	F(1A)-C(8A)-F(2A)	107.4(10)
0.9300	F(1A)-C(8A)-F(3A)	104.2(10)
0.9300	F(2A)-C(8A)-F(3A)	102.7(10)
	F(1A)-C(8A)-C(5)	113.3(9)
94.40(8)	F(2A)-C(8A)-C(5)	116.4(9)
94.42(8)	F(3A)-C(8A)-C(5)	111.7(9)
114.27(18)	N(11)-S(11)-S(12)	94.56(8)
114.39(17)	N(12)-S(12)-S(11)	94.12(8)
122.5(2)	C(11)-N(11)-S(11)	114.21(19)
118.7(2)	C(11)-N(12)-S(12)	114.57(19)
118.7(2)	N(12)-C(11)-N(11)	122.5(2)
118.6(2)	N(12)-C(11)-C(12)	119.1(2)
120.5(2)	N(11)-C(11)-C(12)	118.4(2)
120.9(2)	C(17)-C(12)-C(13)	119.1(3)
120.8(3)	C(17)-C(12)-C(11)	120.6(2)
119.6	C(13)-C(12)-C(11)	120.3(2)
119.6	C(14)-C(13)-C(12)	120.5(2)
119.9(3)	C(14)-C(13)-H(13)	119.7
120.1	C(12)-C(13)-H(13)	119.7
120.1	C(15)-C(14)-C(13)	120.1(3)
120.0(3)	C(15)-C(14)-H(14)	119.9
123.7(5)	C(13)-C(14)-H(14)	119.9
116.3(5)	C(14)-C(15)-C(16)	119.9(3)
117.0(5)	C(14)-C(15)-C(18)	118.7(5)
123.0(5)	C(16)-C(15)-C(18)	121.2(5)
120.3(3)	C(14)-C(15)-C(18A)	121.7(5)
119.8	C(16)-C(15)-C(18A)	118.4(5)
119.8	C(17)-C(16)-C(15)	120.3(3)
	0.9300 1.391(3) 1.392(3) 1.382(4) 0.9300 1.385(4) 0.9300 1.384(4) 0.9300 0.9300 0.9300 94.40(8) 94.42(8) 114.27(18) 114.27(18) 114.39(17) 122.5(2) 118.7(2) 118.7(2) 118.7(2) 118.7(2) 118.6(2) 120.5(2) 120.9(2) 120.8(3) 119.6 119.6 119.6 119.9(3) 120.1 120.1 120.1 120.1 120.1 120.0(3) 123.7(5) 116.3(5) 117.0(5) 123.0(5) 120.3(3) 119.8 119.8	0.9300 C(6)-C(7)-C(2) 1.391(3) C(6)-C(7)-H(7) 1.392(3) C(2)-C(8)-F(1) 0.9300 F(2)-C(8)-F(3) 1.382(4) F(1)-C(8)-F(3) 0.9300 F(2)-C(8)-F(3) 1.385(4) F(1)-C(8)-C(5) 0.9300 F(2)-C(8)-C(5) 1.384(4) F(1)-C(8)-C(5) 0.9300 F(3)-C(8)-F(2A) 0.9300 F(1A)-C(8A)-F(2A) 0.9300 F(2A)-C(8A)-F(3A) 0.9300 F(2A)-C(8A)-F(3A) 0.9300 F(2A)-C(8A)-C(5) 94.40(8) F(2A)-C(8A)-C(5) 94.40(8) F(2A)-C(8A)-C(5) 114.27(18) N(11)-S(11)-S(12) 114.39(17) N(12)-S(12)-S(11) 122.5(2) C(11)-N(11)-S(11) 118.7(2) N(12)-C(11)-N(11) 118.7(2) N(12)-C(11)-N(11) 118.7(2) N(12)-C(11)-C(12) 120.9(2) C(17)-C(12)-C(13) 120.9(2) C(17)-C(12)-C(13) 120.9(2) C(17)-C(12)-C(13) 120.9(3) C(14)-C(13)-H(13)

C(17)-C(16)-H(16)	119.9	C(20)-C(25)-H(25)	119.4
C(15)-C(16)-H(16)	119.9	C(31)-C(30)-C(35)	118.2(2)
C(16)-C(17)-C(12)	120.1(3)	C(31)-C(30)-Sb(1)	123.56(19)
C(16)-C(17)-H(17)	120.0	C(35)-C(30)-Sb(1)	118.21(18)
C(12)-C(17)-H(17)	120.0	C(32)-C(31)-C(30)	120.8(3)
F(11)-C(18)-F(13)	108.8(10)	C(32)-C(31)-H(31)	119.6
F(11)-C(18)-F(12)	102.3(11)	C(30)-C(31)-H(31)	119.6
F(13)-C(18)-F(12)	103.0(9)	C(33)-C(32)-C(31)	120.3(3)
F(11)-C(18)-C(15)	113.9(9)	C(33)-C(32)-H(32)	119.9
F(13)-C(18)-C(15)	111.2(9)	C(31)-C(32)-H(32)	119.9
F(12)-C(18)-C(15)	116.6(10)	C(32)-C(33)-C(34)	119.8(3)
F(11A)-C(18A)-F(13A)	108.1(11)	C(32)-C(33)-H(33)	120.1
F(11A)-C(18A)-F(12A)	105.9(11)	C(34)-C(33)-H(33)	120.1
F(13A)-C(18A)-F(12A)	107.1(11)	C(33)-C(34)-C(35)	120.1(3)
F(11A)-C(18A)-C(15)	113.6(10)	C(33)-C(34)-H(34)	120.0
F(13A)-C(18A)-C(15)	112.3(10)	C(35)-C(34)-H(34)	120.0
F(12A)-C(18A)-C(15)	109.5(10)	C(34)-C(35)-C(30)	120.8(3)
C(20)-Sb(1)-C(30)	97.46(9)	C(34)-C(35)-H(35)	119.6
C(20)-Sb(1)-C(40)	96.88(9)	C(30)-C(35)-H(35)	119.6
C(30)-Sb(1)-C(40)	95.76(9)	C(45)-C(40)-C(41)	118.3(2)
C(21)-C(20)-C(25)	117.8(2)	C(45)-C(40)-Sb(1)	118.64(18)
C(21)-C(20)-Sb(1)	123.60(18)	C(41)-C(40)-Sb(1)	123.04(18)
C(25)-C(20)-Sb(1)	118.48(18)	C(42)-C(41)-C(40)	120.8(2)
C(22)-C(21)-C(20)	120.7(2)	C(42)-C(41)-H(41)	119.6
C(22)-C(21)-H(21)	119.6	C(40)-C(41)-H(41)	119.6
C(20)-C(21)-H(21)	119.6	C(41)-C(42)-C(43)	120.1(2)
C(23)-C(22)-C(21)	120.2(3)	C(41)-C(42)-H(42)	119.9
C(23)-C(22)-H(22)	119.9	C(43)-C(42)-H(42)	119.9
C(21)-C(22)-H(22)	119.9	C(44)-C(43)-C(42)	119.7(3)
C(24)-C(23)-C(22)	119.8(3)	C(44)-C(43)-H(43)	120.2
C(24)-C(23)-H(23)	120.1	C(42)-C(43)-H(43)	120.2
C(22)-C(23)-H(23)	120.1	C(45)-C(44)-C(43)	120.0(2)
C(23)-C(24)-C(25)	120.3(3)	C(45)-C(44)-H(44)	120.0
C(23)-C(24)-H(24)	119.8	C(43)-C(44)-H(44)	120.0
C(25)-C(24)-H(24)	119.8	C(44)-C(45)-C(40)	121.1(2)
C(24)-C(25)-C(20)	121.2(2)	C(44)-C(45)-H(45)	119.4
C(24)-C(25)-H(25)	119.4	C(40)-C(45)-H(45)	119.4

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S (1)	63(1)	71(1)	45(1)	-19(1)	-14(1)	1(1)
S(2)	62(1)	46(1)	62(1)	-15(1)	-17(1)	0(1)
N(1)	51(1)	66(1)	49(1)	-26(1)	-10(1)	3(1)
N(2)	53(1)	48(1)	57(1)	-20(1)	-15(1)	-3(1)
C(1)	43(1)	48(1)	46(1)	-16(1)	-3(1)	-8(1)
C(2)	42(1)	50(1)	46(1)	-14(1)	-4(1)	-9(1)
C(3)	63(2)	54(1)	60(2)	-22(1)	-18(1)	-4(1)
C(4)	67(2)	75(2)	58(2)	-22(1)	-22(1)	-9(1)
C(5)	47(1)	67(2)	53(1)	-6(1)	-7(1)	-8(1)
C(6)	59(2)	61(2)	69(2)	-20(1)	-15(1)	4(1)
C(7)	57(2)	60(2)	62(2)	-28(1)	-15(1)	2(1)
C(8)	80(6)	78(5)	75(6)	-4(4)	-33(4)	-8(4)
F(1)	140(6)	84(3)	163(7)	-10(3)	-94(5)	17(3)
F(2)	65(3)	212(9)	148(7)	59(6)	-48(3)	-42(4)
F(3)	154(8)	128(7)	85(4)	-37(4)	-64(4)	33(5)
C(8A)	51(4)	91(5)	63(5)	-1(3)	-10(3)	-10(3)
F(1A)	128(6)	196(7)	123(6)	-84(6)	-78(5)	102(5)
F(2A)	112(5)	142(5)	147(6)	-13(5)	-82(5)	-25(4)
F(3A)	86(3)	117(6)	73(3)	17(3)	-28(2)	-19(4)
S(11)	67(1)	55(1)	74(1)	-23(1)	-30(1)	-5(1)
S(12)	52(1)	59(1)	69(1)	-21(1)	-6(1)	0(1)
N(11)	75(2)	47(1)	62(1)	-22(1)	-25(1)	-2(1)
N(12)	61(1)	53(1)	54(1)	-20(1)	-5(1)	-1(1)
C(11)	55(1)	44(1)	50(1)	-15(1)	-6(1)	-11(1)
C(12)	59(1)	43(1)	42(1)	-12(1)	-4(1)	-12(1)
C(13)	86(2)	46(1)	49(1)	-19(1)	-11(1)	-9(1)
C(14)	89(2)	63(2)	45(1)	-17(1)	-14(1)	-15(1)
C(15)	69(2)	59(2)	47(1)	-8(1)	-11(1)	-12(1)
C(16)	93(2)	54(2)	66(2)	-25(1)	-27(2)	9(1)
C(17)	88(2)	55(2)	57(2)	-27(1)	-26(1)	4(1)
C(18)	74(4)	82(5)	57(4)	-10(3)	-14(3)	-7(4)
F(11)	183(7)	147(7)	88(4)	-56(5)	-75(5)	98(6)

Table S6D. Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for **2**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [\text{ h}^2 a^{*2} U^{11} + ... + 2 \text{ h k } a^{*} b^{*} U^{12}]$

F(12)	90(4)	126(4)	97(5)	-16(4)	-46(4)	-17(4)
F(13)	112(4)	126(5)	71(3)	29(3)	-25(3)	-18(4)
C(18A)	120(6)	73(5)	78(6)	-6(4)	-50(5)	-9(4)
F(11A)	128(4)	114(5)	135(5)	-33(4)	-69(4)	19(4)
F(12A)	126(6)	133(5)	65(3)	-28(4)	-45(4)	17(5)
F(13A)	189(8)	71(3)	203(9)	49(4)	-137(6)	-50(4)
Sb(1)	39(1)	61(1)	57(1)	-15(1)	-13(1)	0(1)
C(20)	43(1)	46(1)	50(1)	-8(1)	-13(1)	-10(1)
C(21)	53(1)	62(2)	58(1)	-15(1)	-27(1)	2(1)
C(22)	61(2)	59(2)	73(2)	-19(1)	-26(1)	6(1)
C(23)	69(2)	55(2)	66(2)	-21(1)	-12(1)	-12(1)
C(24)	73(2)	63(2)	58(2)	-16(1)	-26(1)	-14(1)
C(25)	59(2)	55(1)	60(2)	-9(1)	-31(1)	-4(1)
C(30)	47(1)	45(1)	49(1)	-15(1)	-10(1)	1(1)
C(31)	49(1)	56(1)	58(1)	-9(1)	-14(1)	-5(1)
C(32)	56(2)	62(2)	75(2)	-27(1)	-26(1)	4(1)
C(33)	81(2)	64(2)	60(2)	-26(1)	-33(1)	18(1)
C(34)	89(2)	52(2)	47(1)	-10(1)	-18(1)	1(1)
C(35)	63(2)	49(1)	52(1)	-16(1)	-10(1)	-8(1)
C(40)	46(1)	47(1)	47(1)	-12(1)	-15(1)	9(1)
C(41)	56(1)	49(1)	58(1)	-19(1)	-10(1)	6(1)
C(42)	61(2)	56(2)	54(1)	-14(1)	-4(1)	5(1)
C(43)	65(2)	48(1)	59(2)	-7(1)	-14(1)	2(1)
C(44)	68(2)	45(1)	57(1)	-15(1)	-20(1)	8(1)
C(45)	52(1)	54(1)	46(1)	-15(1)	-16(1)	12(1)

	Х	У	Z	U(eq)
H(3)	2794	3620	1725	68
H(4)	1481	4638	756	77
H(6)	1085	7302	2094	76
H(7)	2377	6282	3084	69
H(13)	5075	5962	-34	72
H(14)	3960	7229	-1075	77
H(16)	3520	9576	597	83
H(17)	4607	8298	1663	75
H(21)	8610	-1841	5855	67
H(22)	9445	-3240	4938	76
H(23)	8847	-3222	3485	75
H(24)	7400	-1822	2964	74
H(25)	6551	-432	3875	67
H(31)	8966	985	6231	66
H(32)	9987	444	7511	73
H(33)	9283	-1039	8996	78
H(34)	7537	-1975	9213	77
H(35)	6474	-1400	7962	66
H(41)	8639	1048	3671	66
H(42)	9787	2662	2687	72
H(43)	9509	4391	3228	72
H(44)	8043	4508	4743	68
H(45)	6853	2919	5696	61

Table S6E. Hydrogen coordinates ($x 10^4$) and isotropic displacement parameters (Å²x 10³) for **2**.

Table S6F.Torsion angles [$^{\circ}$] for 2.

S(2)-S(1)-N(1)-C(1)	0.81(19)	S(11)-S(12)-N(12)-C(11)	1.07(19)
S(1)-S(2)-N(2)-C(1)	1.58(18)	S(12)-N(12)-C(11)-N(11)	-1.9(3)
S(2)-N(2)-C(1)-N(1)	-1.4(3)	S(12)-N(12)-C(11)-C(12)	176.35(17)
S(2)-N(2)-C(1)-C(2)	177.22(16)	S(11)-N(11)-C(11)-N(12)	1.6(3)
S(1)-N(1)-C(1)-N(2)	0.2(3)	S(11)-N(11)-C(11)-C(12)	-176.61(18)
S(1)-N(1)-C(1)-C(2)	-178.47(17)	N(12)-C(11)-C(12)-C(17)	-169.1(3)
N(2)-C(1)-C(2)-C(3)	11.9(3)	N(11)-C(11)-C(12)-C(17)	9.2(4)
N(1)-C(1)-C(2)-C(3)	-169.4(2)	N(12)-C(11)-C(12)-C(13)	9.1(4)
N(2)-C(1)-C(2)-C(7)	-165.8(2)	N(11)-C(11)-C(12)-C(13)	-172.6(2)
N(1)-C(1)-C(2)-C(7)	12.9(3)	C(17)-C(12)-C(13)-C(14)	0.2(4)
C(7)-C(2)-C(3)-C(4)	0.1(4)	C(11)-C(12)-C(13)-C(14)	-178.1(2)
C(1)-C(2)-C(3)-C(4)	-177.6(2)	C(12)-C(13)-C(14)-C(15)	0.7(4)
C(2)-C(3)-C(4)-C(5)	0.4(4)	C(13)-C(14)-C(15)-C(16)	-1.1(5)
C(3)-C(4)-C(5)-C(6)	-0.5(4)	C(13)-C(14)-C(15)-C(18)	173.6(5)
C(3)-C(4)-C(5)-C(8A)	179.7(5)	C(13)-C(14)-C(15)-C(18A)	178.4(6)
C(3)-C(4)-C(5)-C(8)	178.1(6)	C(14)-C(15)-C(16)-C(17)	0.5(5)
C(4)-C(5)-C(6)-C(7)	0.1(4)	C(18)-C(15)-C(16)-C(17)	-174.1(5)
C(8A)-C(5)-C(6)-C(7)	179.9(5)	C(18A)-C(15)-C(16)-C(17)	-179.0(6)
C(8)-C(5)-C(6)-C(7)	-178.6(5)	C(15)-C(16)-C(17)-C(12)	0.5(5)
C(5)-C(6)-C(7)-C(2)	0.5(4)	C(13)-C(12)-C(17)-C(16)	-0.8(4)
C(3)-C(2)-C(7)-C(6)	-0.6(4)	C(11)-C(12)-C(17)-C(16)	177.5(3)
C(1)-C(2)-C(7)-C(6)	177.2(2)	C(14)-C(15)-C(18)-F(11)	153.9(7)
C(6)-C(5)-C(8)-F(2)	-102.9(9)	C(16)-C(15)-C(18)-F(11)	-31.5(10)
C(4)-C(5)-C(8)-F(2)	78.5(10)	C(14)-C(15)-C(18)-F(13)	-82.8(8)
C(6)-C(5)-C(8)-F(1)	23.6(11)	C(16)-C(15)-C(18)-F(13)	91.9(8)
C(4)-C(5)-C(8)-F(1)	-155.0(7)	C(14)-C(15)-C(18)-F(12)	34.9(9)
C(6)-C(5)-C(8)-F(3)	141.4(7)	C(16)-C(15)-C(18)-F(12)	-150.4(6)
C(4)-C(5)-C(8)-F(3)	-37.3(11)	C(14)-C(15)-C(18A)-F(11A)	112.3(8)
C(6)-C(5)-C(8A)-F(1A)	-18.9(11)	C(16)-C(15)-C(18A)-F(11A)	-68.2(10)
C(4)-C(5)-C(8A)-F(1A)	160.9(7)	C(14)-C(15)-C(18A)-F(13A)	-124.7(9)
C(6)-C(5)-C(8A)-F(2A)	-144.1(7)	C(16)-C(15)-C(18A)-F(13A)	54.8(11)
C(4)-C(5)-C(8A)-F(2A)	35.7(9)	C(14)-C(15)-C(18A)-F(12A)	-5.8(11)
C(6)-C(5)-C(8A)-F(3A)	98.4(8)	C(16)-C(15)-C(18A)-F(12A)	173.6(6)
C(4)-C(5)-C(8A)-F(3A)	-81.8(9)	C(25)-C(20)-C(21)-C(22)	0.2(4)
S(12)-S(11)-N(11)-C(11)	-0.6(2)	Sb(1)-C(20)-C(21)-C(22)	176.6(2)

C(20)-C(21)-C(22)-C(23)	0.3(4)	C(33)-C(34)-C(35)-C(30)	1.3(4)
C(21)-C(22)-C(23)-C(24)	-0.4(4)	C(31)-C(30)-C(35)-C(34)	-0.8(4)
C(22)-C(23)-C(24)-C(25)	0.2(4)	Sb(1)-C(30)-C(35)-C(34)	178.9(2)
C(23)-C(24)-C(25)-C(20)	0.2(4)	C(45)-C(40)-C(41)-C(42)	1.1(4)
C(21)-C(20)-C(25)-C(24)	-0.4(4)	Sb(1)-C(40)-C(41)-C(42)	-176.8(2)
Sb(1)-C(20)-C(25)-C(24)	-177.1(2)	C(40)-C(41)-C(42)-C(43)	0.4(4)
C(35)-C(30)-C(31)-C(32)	-0.3(4)	C(41)-C(42)-C(43)-C(44)	-0.9(4)
Sb(1)-C(30)-C(31)-C(32)	180.0(2)	C(42)-C(43)-C(44)-C(45)	-0.2(4)
C(30)-C(31)-C(32)-C(33)	0.9(4)	C(43)-C(44)-C(45)-C(40)	1.9(4)
C(31)-C(32)-C(33)-C(34)	-0.4(4)	C(41)-C(40)-C(45)-C(44)	-2.3(4)
C(32)-C(33)-C(34)-C(35)	-0.6(4)	Sb(1)-C(40)-C(45)-C(44)	175.69(19)

Symmetry transformations used to generate equivalent atoms:

Atom 1	Atom 2	d(DA)	s.u.		
S1	S11	3.0440	(0.0011)		
S2	S12	3.0913	(0.0010)		
S 1	S11_\$1	3.6072	(0.0010)		
S 1	S1_\$1	3.6557	(0.0015)		
S11	S1_\$1	3.6072	(0.0010)		
S 1	C45	3.4580	(0.0025)		
S2	C40	3.5842	(0.0024)		
S11	C44	3.1678	(0.0027)		
S11	C43	3.3601	(0.0028)		
S12	C43	3.3883	(0.0030)		
S12	C42	3.4632	(0.0029)		
H41	C32_\$2	2.9313			
H22	C43_\$2	2.9146			
H22	C44_\$2	2.995			

Table S6G. Short intermolecular contacts for 2 [Å and °].

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.9407 (0.0068) x + 6.4892 (0.0075) y - 4.0782 (0.0099) z = 3.9650 (0.0072)

- * 0.0039 (0.0015) C1
- * 0.0053 (0.0013) N1
- * -0.0108 (0.0013) N2
- * -0.0082 (0.0009) S1
- * 0.0098 (0.0008) S2

Rms deviation of fitted atoms = 0.0080

8.0998 (0.0065) x + 6.2630 (0.0080) y - 2.6676 (0.0108) z = 8.0750 (0.0072) Angle to previous plane (with approximate esd) = 7.868 (0.131)

- * 0.0087 (0.0016) C11
- * -0.0045 (0.0014) N11
- * -0.0076 (0.0013) N12
- * 0.0000 (0.0009) S11
- * 0.0034 (0.0009) S12

Rms deviation of fitted atoms = 0.0058