Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Supporting information:

One-step room temperature rapid synthesis of Cu₂Se nanostructures, phase transformation and formation of p-Cu₂Se/p-Cu₃Se₂ heterojunctions

Lianjie Zhu, a† Yanxing Zhao, a Wenjun Zheng, b† Ningning Ba, a Guangzhi Zhang, a Jing Zhang, b Xiaoting Li, c Hanjie Xie and Lijian Bie c†

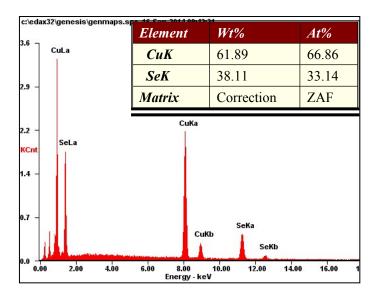
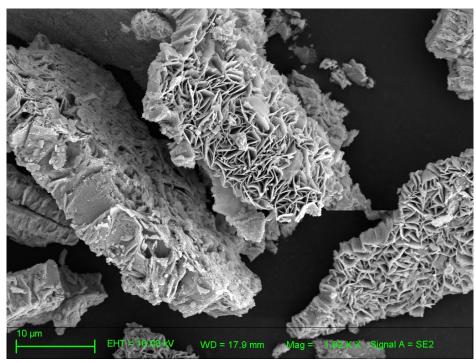
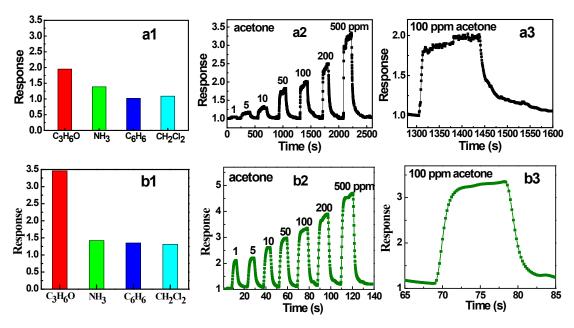



Fig. S1 EDX spectrum and element ratio of the as-prepared Cu₂Se powder.


^a School of Chemistry & Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China.

^b Department of Materials Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

^c School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.

Fig. S2 SEM image of the selected un-detached Cu₂Se powder after calcination at 300 °C for 3 h. The 3D flower-like microstructures on top of the nanosheet array were separated from the surface.

Fig. S3 (a1,b1) Gas-sensing selectivity of the Cu₂Se sensor and Cu₂Se/Cu₃Se₂ sensor, respectively, to various gases (100 ppm) at the operating temperature of 300 °C. (a2,b2) Dynamic response-recovery curves of the Cu₂Se sensor and Cu₂Se/Cu₃Se₂ sensor, respectively, to acetone gas with various concentrations. (a3,b3) Transient responses of the Cu₂Se sensor and Cu₂Se/Cu₃Se₂ sensor, respectively, to 100 ppm acetone gas.