Electronic Supplementary Information

# Controllable Growth of Bulk Cubic-Phase CH<sub>3</sub>NH<sub>3</sub>Pbl<sub>3</sub> Single Crystal with Exciting Room-Temperature Stability

Mengyu Luan,<sup>†</sup> Junling Song,<sup>‡</sup> Xiangfeng Wei,<sup>†,§</sup> Fang Chen <sup>†</sup> and Jiehua Liu <sup>\*,†</sup>

<sup>†</sup>Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of

Technology, 193 Tunxi Road, Hefei, Anhui, 230009, China

<sup>‡</sup>School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, China

<sup>§</sup>Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

Email: <u>liujh@hfut.edu.cn; weixf@hfut.edu.cn</u>

### **Experimental sections**

#### **Chemicals and reagents**

Lead iodide (AR), lead bromide (AR) and lead chloride (AR) were purchased from Aladdin. Hydroiodic acid ( $\geq$ 45wt.% in water), hydrobromic acid ( $\geq$ 40 wt.% in water), hydrochloric acid( $\geq$ 36 wt.% in water), methylamine ( $\geq$ 27 wt.% in methanol), DMF (AR), GBL (AR), DMSO (AR) and CB (AR) were purchased from Sinopharm Chemical Reagent Limited Corporation.

#### **Preparation of Materials**

Methylamine of 15 g was slowly added into hydroiodic acid solution of 30 g. The obtained solution was stirred in the ice bath for 2 hours. After reaction, the clean solution was evaporated at  $60^{\circ}$ C for 2 h to obtain CH<sub>3</sub>NH<sub>3</sub>I salt. The white CH<sub>3</sub>NH<sub>3</sub>I sample was collected after dried in vacuum for 24 h at 70 °C. CH<sub>3</sub>NH<sub>3</sub>Br and CH<sub>3</sub>NH<sub>3</sub>Cl were synthesized in the similar processes.

To obtain MAPbI<sub>3</sub>, CH<sub>3</sub>NH<sub>3</sub>I (3.95 g) and PbI<sub>2</sub> (11.57 g) were dissolved in GBL (20 mL) at room temperature for 3 h with stirring. Then 200 ml CB was added into the above solution with stirring and the black solids (MAPbI<sub>3</sub>) was synthesized. The MAPbI<sub>3</sub> was collected by filtration, washing with CB, and then dried in vacuum for 24 h at 70 °C.

The saturated solubility of MAPbI3 was firstly investigated in GBL solution with excess MAPbI3by increasing temperature form 40 to 100 °C. The saturated solubility of MAPbI<sub>3</sub> was obtained by measuring the obtained perovskite of 0.5 g saturated solution drying at 100 °C for 0.5 hour. The saturated solubility was firstly investigated in mixed GBL and CB solution with different mass ratios (10 to 90% of GBL/ (GBL+CB)). More details are provided in Supporting Information.

#### **Crystal growth**

The growth solutions of single crystal MAPbX<sub>3</sub> were prepared with CB and a solution of MAPbX<sub>3</sub> (30 wt%), then heating at 60 °C temperature. A large number of small (~1–2 mm in size) crystal seeds were obtained once the above solution was heated and kept at 60 °C for overnight. For large crystal growth, only one seed was picked. By putting the seed into fresh solution, heated and kept it at 60 °C for 10–24 hours, the original crystal seed is found to grow into a larger (~4–6 mm) one. Repeating the above processes for 4 times, a larger crystal was formed with the size of 15 mm × 15 mm × 10 mm. Orange CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> and clear CH<sub>3</sub>NH<sub>3</sub>PbCl<sub>3</sub> crystals were also prepared using the above method in CB/DMF (50 °C) and CB/DMSO (40 °C) respectively. More details are provided in Table S1

|                     | Solvent | MAPbX <sub>3</sub> solution | CB added (ml) | Crystal growth   |  |
|---------------------|---------|-----------------------------|---------------|------------------|--|
|                     |         | (ml)                        |               | temperature (°C) |  |
| MAPbI <sub>3</sub>  | GBL     | 10                          | 5.5           | 60               |  |
| MAPbBr <sub>3</sub> | DMF     | 10                          | 1.8           | 50               |  |
| MAPbCl <sub>3</sub> | DMSO    | 10                          | 7             | 40               |  |

Table S1. Crystal growth of MAPbI<sub>3</sub>, MAPbBr<sub>3</sub> and MAPbCl<sub>3</sub> in different conditions.

#### Single-crystal determination

X-ray diffraction data collection for MAPbI<sub>3</sub> was performed on a Rigaku Mercury CCD diffractometer with Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 293(2) K. The data sets were corrected for Lorentz and polarization factors as well as absorption by the multi-scan method <sup>[1]</sup>. The structure was solved by the direct method and refined by full-matrix least-squares fitting on  $F^2$  by SHELX-97 <sup>[2]</sup>. All non-hydrogen atoms were refined with anisotropic thermal parameters. The structure contains

substitutional disorder in which C1 and N1 occupy the same position, thus C and N atoms were refined with 'EDAP' and 'EXYZ' constraint instructions. The ratio of C1 and N1 was fixed to 1: 1 to achieve charge balance. All the H atoms in MAPbI<sub>3</sub> were assigned to protonated MA molecules on account of charge balance, but they were not refined due to the difficulty in the determination of their precise locations. The structure of compounds was also checked for possible missing symmetry with PLATON.

#### **Other characterizations**

Fourier transform infrared (FTIR, Agilent Cary 5000) spectroscopy was conducted with a spectrometer (Thermo Nicolet) with KBr pellets for test the powdered MAPbI<sub>3</sub>.

X-ray photoelectron spectroscopic (XPS, ESCLAB250) measurements were carried out by using a monochromated Al Kα X-ray source at power of 150 W.

Raman spectra of MAPbI<sub>3</sub> single crystal were collected by employing Lab Ram HR Evolution. The system has been calibrated against the 520.5 cm<sup>-1</sup> line of an internal silicon wafer. The excitation used consists of a diode laser at 532 nm. The spectra have been registered in the 50–500 cm<sup>-1</sup> range, particularly sensitive the MA cation and Pb–I modes. The laser power intensity with 1% – 5% of 300 W has been kept to avoid any sample degradation effects.

Thermo-gravitometry (TG) and differential scanning calorimetry (DSC) analysis was carried out by using a simultaneous thermal analyzer (STA409C, Netzsch, Germany) to test phase transition and stability of powdered MAPbI<sub>3</sub> from room temperature to 150 °C with a step of 5 °C min<sup>-1</sup>.

| Pb(1)-I(2)#1        | 3.1361(6) |
|---------------------|-----------|
| Pb(1)-I(2)          | 3.1361(6) |
| Pb(1)-I(2)#2        | 3.1361(6) |
| Pb(1)-I(2)#3        | 3.1361(6) |
| Pb(1)-I(2)#4        | 3.1361(6) |
| Pb(1)-I(2)#5        | 3.1361(6) |
| I(2)-Pb(1)#6        | 3.1361(6) |
| I(2)#1-Pb(1)-I(2)   | 90.0      |
| I(2)#1-Pb(1)-I(2)#2 | 90.0      |
| I(2)-Pb(1)-I(2)#2   | 180.0     |
| I(2)#1-Pb(1)-I(2)#3 | 90.0      |
| I(2)-Pb(1)-I(2)#3   | 90.0      |
| I(2)#2-Pb(1)-I(2)#3 | 90.0      |
| I(2)#1-Pb(1)-I(2)#4 | 90.0      |
| I(2)-Pb(1)-I(2)#4   | 90.0      |
| I(2)#2-Pb(1)-I(2)#4 | 90.0      |
| I(2)#3-Pb(1)-I(2)#4 | 180.0     |
| I(2)#1-Pb(1)-I(2)#5 | 180.0     |
| I(2)-Pb(1)-I(2)#5   | 90.0      |
| I(2)#2-Pb(1)-I(2)#5 | 90.0      |
| I(2)#3-Pb(1)-I(2)#5 | 90.0      |
| I(2)#4-Pb(1)-I(2)#5 | 90.0      |
| Pb(1)#6-I(2)-Pb(1)  | 180.0     |

Table S2. Bond lengths [Å] and angles [deg] for Cubic MAPbI<sub>3</sub>.

Symmetry transformations used to generate equivalent atoms:

#1 z, x, y #2 x, y-1, z #3 -y, x, z #4 -y+1, x, z #5 z, x, y-1 #6 x, y+1, z

Table S3. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (A<sup>2</sup>  $x \ 10^3$ ) for MAPbI<sub>3</sub>.

|       | X    | У    | Z    | U(eq)   |
|-------|------|------|------|---------|
| Pb(1) | 0    | 0    | 0    | 26(1)   |
| I(2)  | 0    | 5000 | 0    | 133(3)  |
| N(1)  | 5000 | 5000 | 5000 | 190(50) |
| C(1)  | 5000 | 5000 | 5000 | 190(50) |

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S4. Anisotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for Cubic MAPbI<sub>3</sub>.

|       | U11     | U22     | U33     | U23 | U13 | U12 |
|-------|---------|---------|---------|-----|-----|-----|
| Pb(1) | 26(1)   | 26(1)   | 26(1)   | 0   | 0   | 0   |
| I(2)  | 189(5)  | 23(2)   | 189(5)  | 0   | 0   | 0   |
| N(1)  | 190(50) | 190(50) | 190(50) | 0   | 0   | 0   |
| C(1)  | 190(50) | 190(50) | 190(50) | 0   | 0   | 0   |

The anisotropic displacement factor exponent takes the form:  $-2 \text{ pi}^2$  [  $h^2 a^{*2} U11 + ... + 2 h k$ 

a\* b\* U12]



Figure S1. TGA curve of cubic MAPbI<sub>3</sub> with temperature range of 30-150 °C.



Figure S2. DSC curves of cubic MAPbI<sub>3</sub> after stored nearly six months in CB at room temperature.



**Figure S3**. XPS spectra of cubic CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>: a) Full XPS spectrum; b–d) High-resolution core level spectra of C 1s, Pb 4f and I 3d respectively.

![](_page_8_Figure_0.jpeg)

Figure S4. High-resolution core level spectra of Pb 4f.

![](_page_9_Figure_0.jpeg)

**Figure S5.** Top-view and side-view pictures of MAPbX<sub>3</sub> single crystals: (a-b) MAPbBr<sub>3</sub> single crystal (c-d) MAPbCl<sub>3</sub> single crystal.

## References

 (a) CrystalClear, Version 1.3.5; Rigaku Corp.: Woodlands, TX, 1999. (b) G. M. Sheldrick, SHELXTL, Crystallographic Software Package, SHELXTL, Version 5.1; Bruker-AXS: Madison, WI, 1998. (c) A. L. Spek, J. Appl. Crystallogr., 36 (2003), p.7.

 (a) I. D. Brown and D. Altermatt, Acta Crystallogr. B 41(1985), p.244; (b) N. E. Brese and M. O'Keeffe, Acta Crystallogr. B 47(1991), p.192.