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Constructing the embedding for the dia and qtz nets
In the case of the labelled quotient graph for the dia net, we construct the  matrix using the 3 𝐵 ∗

cycles   ,  ,  as a basis for the cycle space and one co-cycle, summing ( ‒ 𝑒1 + 𝑒2)  ( ‒ 𝑒1 +  𝑒3)  ( ‒ 𝑒1 + 𝑒4)

the outgoing edges from the vertex A, . The image of these vectors, represented (𝑒1 + 𝑒2 + 𝑒3 + 𝑒4)
in the matrix , has its first 3 rows as the sum of the edge labels associated with the 3 cycle 𝛼𝑑𝑖𝑎

vectors, and the final row as the zero vector, which as stated in the main text, will yield the 
barycentric placement of the vertices.

𝐵 ∗
𝑑𝑖𝑎 = ( ‒ 1 1 0 0

‒ 1 0 1 0
‒ 1 0 0 1
1 1 1 1

), 𝛼𝑑𝑖𝑎 = (1 0 0
0 1 0
0 0 1
0 0 0

) (SE1)

Then invoking Equation 1 from the main text, we obtain a representation of the positive 
orientations of the arcs in the lattice space.

Ω +
𝑑𝑖𝑎 = ( ‒ 1 4 ‒ 1 4 ‒ 1 4 1 4

3 4 ‒ 1 4 ‒ 1 4 1 4
‒ 1 4 3 4 ‒ 1 4 1 4
‒ 1 4 ‒ 1 4 3 4 1 4

)(1 0 0
0 1 0
0 0 1
0 0 0

) = ( ‒ 1 4 ‒ 1 4 ‒ 1 4
3 4 ‒ 1 4 ‒ 1 4

‒ 1 4 3 4 ‒ 1 4
‒ 1 4 ‒ 1 4 3 4

) (SE2)

Each row in the matrix  defines a line in the orthonormal lattice space of the net. With all of Ω +

the lines defined, a lattice representation of the points and lines can be realized by placing the 
point corresponding to vertex A in any lattice position, say (5/8, 5/8, 5/8). The vertex B can be 
found by adding the first line in  to our initial placement of A. Thus B will have the lattice Ω +

coordinates (3/8, 3/8, 3/8).

The labelled quotient graph qtz contains 3 vertices and 6 arcs. The matrix  can be constructing 𝐵 ∗

using the cycles  ,  , , and . We will take the outward ( + 𝑒1 ‒ 𝑒2 + 𝑒3)  ( ‒ 𝑒1 +  𝑒6)  ( ‒ 𝑒2 + 𝑒5)  ( ‒ 𝑒4 + 𝑒3)

oriented arcs from vertices A and B as the basis for the co-cycle space;  and ( + 𝑒1 ‒ 𝑒3 ‒ 𝑒4 + 𝑒6)

 which are represented in the last two rows of the matrix . By summing the ( ‒ 𝑒1 ‒ 𝑒2 ‒ 𝑒5 ‒ 𝑒6) 𝐵 ∗
𝑞𝑡𝑧

labels associated with these edges, as was done in above for dia, we obtain the matrix 𝛼𝑞𝑡𝑧
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𝐵 ∗
𝑞𝑡𝑧 = ( 1 ‒ 1 1 0 0 0

‒ 1 0 0 0 0 1
0 ‒ 1 0 0 1 0
0 0 1 ‒ 1 0 0
1 0 ‒ 1 ‒ 1 0 1

‒ 1 ‒ 1 0 0 ‒ 1 ‒ 1
), 𝛼𝑞𝑡𝑧 = (

0 0 1
0 ‒ 1 0

‒ 1 ‒ 1 0
1 0 0
0 0 0
0 0 0

) (SE3)

Again, using equation 1 from the main text, we obtain lattice representations of the arcs for qtz

Ω +
𝑞𝑡𝑧 = ( 1/3 ‒ 1/3 ‒ 1/6 ‒ 1/6 1/6 ‒ 1/6

‒ 1/3 ‒ 1/6 ‒ 1/3 1/6 ‒ 1/6 ‒ 1/3
1/3 1/6 ‒ 1/6 1/3 ‒ 1/3 ‒ 1/6
1/3 1/6 ‒ 1/6 ‒ 2/3 ‒ 1/3 ‒ 1/6

‒ 1/3 ‒ 1/6 2/3 1/6 ‒ 1/6 ‒ 1/3
1/3 2/3 ‒ 1/6 ‒ 1/6 1/6 ‒ 1/6

)(
0 0 1
0 ‒ 1 0

‒ 1 ‒ 1 0
1 0 0
0 0 0
0 0 0

) = (
0 1/2 1/3

1/2 1/2 ‒ 1/3
1/2 0 1/3

‒ 1/2 0 1/3
‒ 1/2 ‒ 1/2 ‒ 1/3

0 ‒ 1/2 1/3

)(SE4)

VASP calculations
The Vienna Ab initio Simulation Package (VASP)1–4 was used to compute the single point energies 
and stresses of each hypothetical MOF. The energy cutoff for the planewave basis was 500 eV, 
sampling the brillouin zone at the gamma point. The projector-augmented wave (PAW)5,6 
pseudopotentials were used with the PBE functional7,8. The electronic wave function was 
considered converged when the free energy difference between each electronic step was below 
1×10-5 eV.

Using TOPOS to identify the underlying net
Several steps are necessary to accomplish the goal of identifying the underlying net of the MOFs 
given only a description of their atomic positions and the lattice vectors. Structures were read in 
to the TOPOS 4.0 program9 in the crystallographic information file (cif) format. Bonds in the MOFs 
were computed using the method of spherical sectors10 within the AutoCN subprogram. Using 
the adjacency matrix computed from the previous step, Automatic Description of Structure (ADS) 
was then run with the cluster simplification method to reduce the MOF atoms to a series of 
enclosed cycles connected to each other by hydrogen bonds, which are used in the program to 
flag connectivity between distinct isolated molecules (the cycles). A standard simplification of the 
net is then computed in ADS, where molecules, flagged by hydrogen bonds, are reduced to single 
vertices within the structure. The resulting simplified structure is cleaned of any 0-, 1-, and 2-
coordinate nodes to yield the final net. To classify this net into a particular topology, sequences 
are generated for all the vertices in the unit cell based on their first 10 coordination spheres. The 
sequences describe the number of vertices at each coordination sphere, and descriptions of the 
number of closed rings found within each angle of the vertex edges. These sequences 
unambiguously classify nets into a particular topology, so they can be compared with the nets 
within the TOPOS Topological Database (TTD) collection. The resulting topology for the example 
in Figure S1 was found to be tbo, which was the net used to build the structure in the structure 
generation program.



Figure S1: Graphical representation of progressing, in TOPOS, from a) the MOF structure, to 
b) the structure where molecules are isolated to clusters of enclosed rings, to finally c) the 
underlying net where the coordination sequence of each vertex is used to classify it as the 
tbo net. 

Format of the labelled quotient graph
Labelled quotient graphs are read in as a single string. The string describes all of the arcs in the 
graph, where each arc is formatted ‘v1 v2 L1 L2 L3’ where v1 is the vertex origin of the arc, v2 is 
the terminal vertex of the arc, and L1 L2 L3 constitute three dimensional lattice coordinate label 
(e.g. 0 0 1). 

Re-creation of the experimental unit cell dimensions of MOF-
210 and NU-110

Following generation of the hypothetical version of MOF-210 and NU-110, the raw structure 
produced from the algorithm possessed cell dimensions which did not agree with the 
experimental structure, and so to obtain the agreement in cell parameters shown in the first two 
columns of Table 2, the unit cell vectors were re-defined using a simple linear algebraic 
transformation. 

𝑍𝑒𝑥𝑝 = 𝑍ℎ𝑦𝑝 × 𝑏 (SE5)



Where  is the 3×3 matrix of unit cell vectors of the experimental unit cell, and  is 𝑍𝑒𝑥𝑝 𝑍ℎ𝑦𝑝

the ‘raw’ 3×3 matrix of the as-built hypothetical unit cell, and b is a 3×3 transformation 
matrix, which we solve for by setting;

𝑏 = 𝑍 ‒ 1
ℎ𝑦𝑝 × 𝑍𝑒𝑥𝑝 (SE6)

To obtain an approximate supercell of the hypothetical structure which best matches that of the 
experimental structure, we round every element in b to it’s nearest integer and then produce the 
new hypothetical unit cell dimensions via

𝑍 '
ℎ𝑦𝑝 = 𝑍ℎ𝑦𝑝 × 𝑏 (SE7)

This way, we effectively generated a supercell from a linear combination of the original vectors 
to yield dimensions which more-or-less agreed with the experimental cell shape. As such the re-
defined structures are in no way different from the output from the structure generation code, 
only their translational period was re-defined. The transformation matrices used to re-define the 
hypothetical versions of MOF-210 and NU-110 are shown in Table S1. The resulting larger 
hypothetical MOF was optimized with a molecular mechanics force field to yield the values 
reported in Table 2 of the main text as well as the agreement in the superposition of atoms of 
the hypothetical (blue) and experimental (red) structures shown in Figure 11b and 11d of the 
main text. The presented values for surface area and pore volume in Table 2 were identical both 
before and after the cell parameters were adjusted, and are in excellent agreement with the 
computed values for the experimental crystal structure.

Table S1. The cell vectors output from the generation program and the transformation 
matrices used to generate experimental-like cells.

MOF-210 NU-110

original cell vectors ( )𝑍ℎ𝑦𝑝 [ 51.4 0.0 0.0
‒ 25.7 44.5 0.0
‒ 0.1 29.9 63.8] [ 48.9 0.0 0.0

‒ 21.6 46.0 0.0
‒ 3.5 ‒ 26.6 43.4]

transformation matrix (b) [ 1 0 0
0 1 0

‒ 1 ‒ 2 3] [1 0 0
1 1 0
1 1 1]

transformed vectors ( )𝑍 '
ℎ𝑦𝑝 [ 51.4 0.0 0.0

‒ 25.7 44.5 0.0
‒ 0.3 0.7 191.4] [48.9 0.0 0.0

27.3 46.0 0.0
23.8 19.4 43.4]

experimental crystal vectors 
( )𝑍𝑒𝑥𝑝 [ 50.7 0.0 0.0

‒ 25.4 43.9 0.0
0.0 0.0 194.2] [48.6 0.0 0.0

24.3 42.1 0.0
24.3 14.0 39.7]



References
1 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169–11186.

2 G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49, 14251–14269.

3 G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558–561.

4 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15–50.

5 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758–1775.

6 P. Blöchl, Phys. Rev. B, 1994, 50, 17953–17979.

7 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396–1396.

8 J. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.

9 V. A. Blatov, A. P. Shevchenko and D. M. Proserpio, Cryst. Growth Des., 2014, 14, 3576–
3586.

10 E. V. Peresypkina and V. A. Blatov, Acta Crystallogr. Sect. B Struct. Sci., 2000, 56, 1035–
1045.


