Thermally Activated Rotational Disorder in CaMoO₄ Nanocrystals

Sean P. Culver and Richard L. Brutchey*

Department of Chemistry, University of Southern California, Los Angeles, CA 90089 (USA)

Synthesis of CaMoO₄ Nanocrystals. CaMoO₄ nanocrystals were synthesized via a vapor diffusion sol–gel method described in detail elsewhere.^{1,2} Briefly, MoO₂(acac)₂ (95%, Strem Chemicals, Inc.) was dissolved in a Ca(OCH₂CH₂OCH₃)₂ alkoxide solution (19–25 wt. % in methoxypropanol, Gelest, Inc.) in a 1:1 molar ratio. The resulting solution was exposed to a controlled flow of water vapor for 48 h at room temperature and atmospheric pressure. Diffusion of water vapor into the solution resulted in the formation of a highly contracted gel, which was subsequently aged under nitrogen atmosphere for 24 h at 80 °C. The resulting gel was collected, washed with absolute ethanol (3 × 10 mL), and vacuum dried at room temperature to recover an off-white fine powder consisting of CaMoO₄ nanocrystals. These exhibited quasispherical shape with an average diameter of 9.3 ± 2.7 nm, as determined by transmission electron microscopy analysis (N = 250).

Synchrotron X-ray Diffraction. X-ray diffraction patterns were collected at the 11–ID–B beamline of the Advanced Photon Source at Argonne National Laboratory. An incident photon energy of 90.484 keV ($\lambda = 0.137024$ Å) was employed. The sample was loaded in a Kapton tube and diffraction data were collected in transmission mode from 90–480 K at a rate of 6 K/min using the Oxford cryosystems cryostream 700 plus.

Rietveld Analysis. Rietveld structural refinements were carried out using the GSAS software.^{3,4} Experimental data and atomic X-ray scattering factors were corrected for sample absorption and anomalous scattering, respectively. The average crystal structure of AMoO₄ nanocrystals was refined with the tetragonal $I4_1/a$ (no. 88) space group. The following parameters were refined: (1) scale factor, (2) background, which was modeled using a shifted Chebyschev polynomial function, (3) peak shape, which was modeled using a modified Thomson–Cox–Hastings pseudo-Voigt function,⁵ (4) lattice constants (*a* and *c*), (5) fractional atomic coordinates of the oxygen atom (x_0 , y_0 , z_0), and (6) atomic anisotropic displacement parameters constrained by the site symmetry (U^{11} and U^{33} for Ca and Mo, and U^{11} , U^{22} , U^{33} , U^{12} , U^{13} , and U^{23} for O). The R_{wp} indicator was employed to assess the quality of the refined structural models.⁶

Pair Distribution Function Analysis. The pair distribution function G(r) defined as:

$$G(r) = 4\pi r [\rho(r) - \rho_0] = (2 / \pi) \int_Q^{Q_{max}} Q[S(Q) - 1] \sin(Qr) \, dQ$$

was employed for structural analysis. Here, *r* is the radial distance, $\rho(r)$ and ρ_0 are the local and average atomic number density, respectively, and *Q* is the magnitude of scattering vector. The RAD software was employed to extract *G*(*r*) from the raw diffraction data.⁷ These were first corrected for background, sample absorption, and Compton scattering. Then, normalized structure functions *S*(*Q*) were obtained. Finally, *S*(*Q*) was Fourier-transformed to yield *G*(*r*). A maximum scattering vector (Q_{max}) of 24.5 Å⁻¹ was employed in the Fourier transform. Structural refinements were carried out using the PDFgui software.⁸ The local crystal structure of CaMoO₄ nanocrystals was refined with the tetragonal *I*4₁/*a* space group. Fits of this structural model to the experimental PDFs were performed in the 1.5–13 Å interatomic distance range in order to account for all atom–atom pairs along the largest dimension of the unit cell. The following parameters were refined: (1) scale factor, (2) lattice constants (*a* and *c*), (3) fractional atomic coordinates of the oxygen atom (x_0 , y_0 , z_0), and (4) atomic anisotropic displacement parameters constrained by the site symmetry (U^{11} and U^{33} for Ca and Mo, and U^{11} , U^{22} , U^{33} , U^{12} , U^{13} , and U^{23} for O). The R_w indicator was employed to assess the quality of the refined structural models.⁹

Figures and Tables

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S1 Rietveld analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—) and tickmarks (|) corresponding to the phase refined. The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_{wp}. —*Continues on the following page.*

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w. —*Continues on the following page*.

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w. —*Continues on the following page*.

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w.—*Continues on the following page*.

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w.—*Continues on the following page*.

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w.—*Continues on the following page*.

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w.—*Continues on the following page*.

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w.—*Continues on the following page*.

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w.—*Continues on the following page*.

Fig. S2 PDF analysis of X-ray total scattering data for CaMoO₄ nanocrystals from 90–480 K. Experimental (\circ) and calculated (—) patterns are shown, along with the difference curve (—). The temperature at which the pattern was collected is indicated in the top right of each pattern, along with the associated R_w.

	90 K	102 K	114 K	127 K	139 K
<i>a</i> (Å)	5.2181(4)	5.2185(4)	5.2188(4)	5.2192(4)	5.2197(4)
<i>c</i> (Å)	11.404(1)	11.406(1)	11.407(1)	11.408(1)	11.410(1)
$V(\text{\AA}^3)$	310.53(7)	310.60(7)	310.68(7)	310.76(7)	310.86(7)
x _O	0.6470(7)	0.6470(7)	0.6470(7)	0.6469(7)	0.6468(7)
Уо	0.5124(7)	0.5125(7)	0.5125(7)	0.5126(7)	0.5126(7)
<i>z</i> ₀	0.2090(4)	0.2090(4)	0.2090(4)	0.2090(4)	0.2090(4)
Ca: $U^{11}, U^{33} (Å^2)^a$	0.3, 0.7	0.3, 0.7	0.4, 0.7	0.4, 0.7	0.4, 0.8
$U_{ m eq}({ m \AA}^2)$	0.4	0.4	0.5	0.5	0.3
Mo: U^{11} , U^{33} (Å ²)	0.2, 0.4	0.3, 0.4	0.3, 0.4	0.3, 0.5	0.3, 0.5
$U_{ m eq}({ m \AA}^2)$	0.3	0.3	0.3	0.4	0.4
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	0.6, 0.4, 1.5	0.7, 0.4, 1.5	0.7, 0.5, 1.5	0.7, 0.5, 1.6	0.7, 0.5, 1.6
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	-0.3, 0.3, -0.1	-0.3, 0.3, -0.1	-0.3, 0.3, -0.2	-0.3, 0.3, -0.1	-0.3, 0.3, -0.2
$U_{ m eq}({ m \AA}^2)$	0.8	0.9	0.9	0.9	0.9
Ca-O (1) (Å)	2.459(4)	2.459(4)	2.460(4)	2.460(4)	2.461(4)
Са-О (2) (Å)	2.487(4)	2.487(4)	2.487(4)	2.488(4)	2.489(4)
V_{CaO_8} (Å ³)	26.88	26.89	26.90	26.92	26.93
$\Delta_{\mathrm{AO}_{8}}$ (×10 ³)	5.6	5.6	5.5	5.7	5.8
Мо-О (Å)	1.745(3)	1.745(3)	1.744(3)	1.744(3)	1.744(3)
V_{MoO_4} (Å ³)	2.71	2.71	2.71	2.71	2.71
Ca-O-Mo (1) (°)	120.4(2)	120.4(2)	120.4(2)	120.4(2)	120.4(2)
Ca-O-Mo (2) (°)	132.9(2)	133.0(2)	132.9(2)	133.0(2)	133.0(2)

Table S1 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From

	151 K	163 K	175 K	188 K	200 K
<i>a</i> (Å)	5.2202(4)	5.2207(4)	5.2213(5)	5.2218(5)	5.2224(5)
<i>c</i> (Å)	11.411(1)	11.413(1)	11.415(1)	11.417(1)	11.419(1)
$V(\text{\AA}^3)$	310.96(7)	311.07(7)	311.19(7)	311.30(7)	311.42(7)
x _O	0.6469(7)	0.6467(8)	0.6467(8)	0.6466(8)	0.6466(8)
Уо	0.5126(7)	0.5126(7)	0.5127(7)	0.5128(7)	0.5128(7)
<i>z</i> ₀	0.2090(4)	0.2090(4)	0.2090(4)	0.2090(4)	0.2090(4)
Ca: $U^{11}, U^{33} (\text{\AA}^2)^a$	0.4, 0.8	0.4, 0.8	0.4, 0.8	0.4, 0.9	0.5, 0.9
$U_{\rm eq}({ m \AA}^2)$	0.5	0.5	0.5	0.6	0.6
Mo: U^{11} , U^{33} (Å ²)	0.3, 0.5	0.3, 0.5	0.4, 0.6	0.4, 0.6	0.4, 0.6
$U_{\rm eq}({ m \AA}^2)$	0.4	0.4	0.5	0.5	0.5
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	0.7, 0.5, 1.6	0.8, 0.5, 1.7	0.8, 0.5, 1.7	0.9, 0.5, 1.7	0.9, 0.6, 1.8
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	-0.3, 0.3, -0.2	-0.3, 0.3 , -0.1	-0.3, 0.3 , -0.1	-0.3, 0.3 , -0.1	-0.3, 0.3 , -0.1
$U_{\rm eq}({ m \AA}^2)$	0.9	1.0	1.0	1.0	1.1
Ca-O (1) (Å)	2.461(4)	2.461(4)	2.462(4)	2.462(4)	2.463(4)
Ca-O (2) (Å)	2.489(4)	2.490(4)	2.491(4)	2.491(4)	2.492(4)
V_{CaO_8} (Å ³)	26.94	26.96	26.98	27.00	27.01
$\varDelta_{\rm AO_8}(\times 10^3)$	5.7	5.9	5.9	5.9	5.8
Мо-О (Å)	1.744(3)	1.744(3)	1.744(3)	1.744(3)	1.744(3)
V_{MoO_4} (Å ³)	2.71	2.71	2.71	2.71	2.71
Ca-O-Mo (1) (°)	120.4(2)	120.3(2)	120.3(2)	120.3(2)	120.3(2)
Ca-O-Mo (2) (°)	133.0(2)	133.0(2)	133.0(2)	133.1(2)	133.1(2)

Table S1 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From

	212 K	224 K	236 K	248 K	261 K	
<i>a</i> (Å)	5.2230(5)	5.2236(5)	5.2242(5)	5.2248(5)	5.2254(5)	
<i>c</i> (Å)	11.421(1)	11.423(1)	11.425(1)	11.427(2)	11.429(2)	
$V(\text{\AA}^3)$	311.56(8)	311.68(8)	311.81(8)	311.94(8)	312.06(8)	
x _O	0.6465(8)	0.6465(8)	0.6463(8)	0.6463(8)	0.6462(8)	
Уо	0.5129(7)	0.5129(7)	0.5130(7)	0.5131(7)	0.5131(7)	
<i>z</i> ₀	0.2090(4)	0.2090(4)	0.2090(4)	0.2089(4)	0.2089(4)	
Ca: $U^{11}, U^{33} (Å^2)^a$	0.5, 0.9	0.5, 1.0	0.5, 1.0	0.5, 1.0	0.5, 1.0	
$U_{ m eq}({ m \AA}^2)$	0.6	0.7	0.7	0.7	0.7	
Mo: U^{11} , U^{33} (Å ²)	0.4, 0.6	0.5, 0.6	0.5, 0.7	0.5, 0.7	0.5, 0.7	
$U_{\rm eq}({ m \AA}^2)$	0.5	0.5	0.6	0.6	0.6	
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	0.9, 0.6, 1.8	0.9, 0.7, 1.8	1.0, 0.7, 1.8	1.0, 0.7, 1.9	1.0, 0.7, 1.9	
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	-0.3, 0.3 , -0.1	-0.2, 0.3 , -0.1	-0.2, 0.3 , -0.1	-0.2, 0.3 , 0.0	-0.2, 0.3 , 0.0	
$U_{\rm eq}({ m \AA}^2)$	1.1	1.1	1.2	1.2	1.2	
Ca-O (1) (Å)	2.463(4)	2.464(4)	2.464(4)	2.465(4)	2.465(4)	
Са-О (2) (Å)	2.493(4)	2.493(4)	2.494(5)	2.495(5)	2.496(5)	
V_{CaO_8} (Å ³)	27.04	27.05	27.08	27.10	27.12	
$\varDelta_{\rm AO_8}(\times 10^3)$	6.0	6.0	6.1	6.0	6.1	
Mo–O (Å)	1.743(3)	1.743(3)	1.743(4)	1.743(4)	1.742(4)	
V_{MoO_4} (Å ³)	2.71	2.71	2.71	2.71	2.71	
Ca-O-Mo (1) (°)	120.3(2)	120.3(2)	120.3(2)	120.3(2)	120.3(2)	
Ca-O-Mo (2) (°)	133.1(2)	133.1(2)	133.1(2)	133.1(2)	133.2(2)	

Table S1 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From

	273 K	285 K	297 K	309 K	322 K	
<i>a</i> (Å)	5.2259(5)	5.2265(5)	5.2270(5)	5.2278(5)	5.2284(5)	
<i>c</i> (Å)	11.431(2)	11.433(2)	11.435(2)	11.437(2)	11.440(2)	
$V(\text{\AA}^3)$	312.18(8)	312.31(8)	312.42(8)	312.56(8)	312.73(8)	
x _O	0.6462(8)	0.6461(8)	0.6461(8)	0.6460(8)	0.6459(8)	
Уо	0.5132(7)	0.5132(7)	0.5133(7)	0.5133(7)	0.5134(7)	
z_0	0.2089(4)	0.2089(4)	0.2089(4)	0.2089(4)	0.2089(4)	
Ca: $U^{11}, U^{33}(\text{\AA}^2)^a$	0.6, 1.1	0.6, 1.1	0.6, 1.1	0.6, 1.2	0.6, 1.2	
$U_{ m eq}({ m \AA}^2)$	0.8	0.8	0.8	0.8	0.8	
Mo: U^{11} , U^{33} (Å ²)	0.5, 0.7	0.5, 0.8	0.6, 0.8	0.6, 0.8	0.6, 0.8	
$U_{\rm eq}({ m \AA}^2)$	0.6	0.6	0.7	0.7	0.8	
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	1.0, 0.7, 1.9	1.1, 0.8, 2.0	1.1, 0.8, 2.0	1.2, 0.8, 2.0	1.2, 0.8, 2.1	
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	-0.2, 0.3 , 0.0	-0.2, 0.3, 0.0	-0.2, 0.3 , 0.0	-0.2, 0.3 , 0.0	-0.1, 0.3, 0.1	
$U_{\rm eq}({ m \AA}^2)$	1.2	1.3	1.3	1.3	1.4	
Ca-O (1) (Å)	2.466(4)	2.466(4)	2.466(4)	2.467(4)	2.468(4)	
Ca-O (2) (Å)	2.496(5)	2.497(5)	2.497(5)	2.498(5)	2.499(5)	
V_{CaO_8} (Å ³)	27.14	27.15	27.17	27.19	27.21	
$\varDelta_{\rm AO_8}(\times 10^3)$	6.1	6.1	6.2	6.2	6.3	
Мо-О (Å)	1.742(4)	1.742(4)	1.742(4)	1.742(4)	1.742(4)	
V_{MoO_4} (Å ³)	2.70	2.70	2.71	2.70	2.70	
Ca-O-Mo (1) (°)	120.3(2)	120.3(3)	120.3(3)	120.3(3)	120.3(3)	
Ca-O-Mo (2) (°)	133.2(2)	133.2(2)	133.2(2)	133.2(2)	133.3(2)	

Table S1 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From

	334 K	346 K	358 K	370 K	383 K
<i>a</i> (Å)	5.2290(5)	5.2297(5)	5.2303(5)	5.2309(5)	5.2314(5)
<i>c</i> (Å)	11.442(2)	11.445(2)	11.447(2)	11.450(2)	11.452(2)
$V(\text{\AA}^3)$	312.86(8)	313.00(8)	313.14(9)	313.29(9)	313.41(9)
x _O	0.6459(8)	0.6459(8)	0.6458(9)	0.6457(9)	0.6456(9)
уо	0.5135(7)	0.5136(7)	0.5138(7)	0.5139(8)	0.5142(8)
<i>z</i> ₀	0.2089(4)	0.2088(4)	0.2088(4)	0.2088(5)	0.2088(5)
Ca: $U^{11}, U^{33} (\text{\AA}^2)^a$	0.7, 1.2	0.7, 1.3	0.7, 1.3	0.7, 1.4	0.8, 1.4
$U_{\rm eq}({ m \AA}^2)$	0.9	0.9	0.9	0.9	1.0
Mo: U^{11} , $U^{33}(\text{\AA}^2)$	0.6, 0.9	0.7, 0.9	0.7, 0.9	0.7, 0.9	0.7, 1.0
$U_{\rm eq}({ m \AA}^2)$	0.7	0.8	0.8	0.8	0.8
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	1.3, 0.8, 2.1	1.3, 0.9, 2.2	1.4, 0.9, 2.2	1.4, 0.9, 2.2	1.4, 0.9, 2.3
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	-0.1, 0.3, 0.1	-0.1, 0.3, 0.1	-0.1, 0.3, 0.1	0.0, 0.3 , 0.2	0.0, 0.3 , 0.2
$U_{\rm eq}({ m \AA}^2)$	1.4	1.5	1.5	1.5	1.5
Ca-O (1) (Å)	2.468(4)	2.470(4)	2.470(5)	2.471(5)	2.472(5)
Ca–O (2) (Å)	2.500(5)	2.500(5)	2.501(5)	2.502(5)	2.504(5)
$V_{\rm AO_8}$ (Å ³)	27.24	27.27	27.30	27.33	27.36
$\Delta_{\mathrm{AO}_{8}}$ (×10 ³)	6.3	6.2	6.3	6.3	6.4
Mo-O (Å)	1.742(4)	1.741(4)	1.740(4)	1.740(4)	1.739(4)
V_{MoO_4} (Å ³)	2.70	2.70	2.70	2.69	2.69
Ca-O-Mo (1) (°)	120.3(3)	120.3(3)	120.3(3)	120.3(3)	120.3(3)
Ca-O-Mo (2) (°)	133.3(2)	133.3(3)	133.3(3)	133.3(3)	133.4(3)

Table S1 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From

	395 K	407 K	419 K	431 K	444 K
<i>a</i> (Å)	5.2320(5)	5.2326(6)	5.2331(6)	5.2335(6)	5.2339(6)
<i>c</i> (Å)	11.454(2)	11.457(2)	11.459(2)	11.461(2)	11.463(2)
$V(\text{\AA}^3)$	313.54(9)	313.68(9)	313.80(9)	313.92(9)	314.03(9)
x _O	0.6456(9)	0.6455(9)	0.6455(9)	0.6454(9)	0.6452(9)
Уо	0.5143(8)	0.5146(8)	0.5148(8)	0.5151(8)	0.5152(8)
z ₀	0.2088(5)	0.2088(5)	0.2088(5)	0.2088(5)	0.2089(5)
Ca: $U^{11}, U^{33}(\text{\AA}^2)^a$	0.8, 1.4	0.8, 1.5	0.9, 1.5	0.9, 1.5	0.9, 1.6
$U_{ m eq}({ m \AA}^2)$	1.0	1.0	1.1	1.1	1.1
Mo: U^{11} , U^{33} (Å ²)	0.7, 1.0	0.8, 1.0	0.8, 1.0	0.8, 1.0	0.8, 1.1
$U_{\rm eq}({ m \AA}^2)$	0.8	0.9	0.9	0.9	0.9
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	1.5, 0.9, 2.4	1.6, 1.0, 2.4	1.6, 1.0, 2.5	1.7, 1.0, 2.5	1.7, 1.0, 2.5
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	0.0, 0.3 , 0.2	0.0, 0.3 , 0.3	0.0, 0.3 , 0.3	0.0, 0.3 , 0.3	0.0, 0.3 , 0.3
$U_{\rm eq}({ m \AA}^2)$	1.6	1.7	1.7	1.7	1.7
Ca-O (1) (Å)	2.473(5)	2.474(5)	2.475(5)	2.476(5)	2.476(5)
Ca–O (2) (Å)	2.505(5)	2.506(5)	2.507(5)	2.508(5)	2.510(5)
$V_{\rm AO_8}$ (Å ³)	27.39	27.43	27.46	27.50	27.53
Δ_{AO_8} (×10 ³)	6.4	6.5	6.4	6.5	6.7
Мо-О (Å)	1.738(4)	1.738(4)	1.737(4)	1.736(4)	1.736(4)
V_{MoO_4} (Å ³)	2.69	2.69	2.68	2.68	2.68
Ca-O-Mo (1) (°)	120.3(3)	120.3(3)	120.3(3)	120.3(3)	120.2(3)
Ca-O-Mo (2) (°)	133.4(3)	133.4(3)	133.4(3)	133.4(3)	133.5(3)

Table S1 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From

	456 K	468 K	480 K				
<i>a</i> (Å)	5.2343(6)	5.2347(6)	5.2350(6)				
<i>c</i> (Å)	11.466(2)	11.468(2)	11.469(2)				
$V(\text{\AA}^3)$	314.1(1)	314.2(1)	314.3(1)				
<i>x</i> ₀	0.6451(9)	0.6451(9)	0.645(1)				
Уо	0.5154(8)	0.5156(8)	0.5156(8)				
Z _O	0.2089(5)	0.2089(5)	0.2089(5)				
Ca: $U^{11}, U^{33} (\text{\AA}^2)^a$	0.9, 1.6	0.9, 1.6	0.9, 1.7				
$U_{ m eq}({ m \AA}^2)$	1.1	1.1	1.2				
Mo: U^{11} , $U^{33}(\text{\AA}^2)$	0.8, 1.1	0.9, 1.1	0.9, 1.1				
$U_{\rm eq}({ m \AA}^2)$	0.9	1.0	1.0				
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	1.8, 1.0, 2.6	1.8, 1.0, 2.6	1.9, 1.0, 2.6				
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	0.0, 0.2 , 0.3	0.0, 0.2 , 0.3	0.0, 0.2 , 0.4				
$U_{ m eq}({ m \AA}^2)$	1.8	1.8	1.8				
Ca–O (1) (Å)	2.477(5)	2.477(5)	2.478(5)				
Ca-O (2) (Å)	2.511(5)	2.512(5)	2.513(5)				
V_{AO_8} (Å ³)	27.56	27.58	27.60				
$\Delta_{\rm AO_8}(\times 10^3)$	6.9	6.9	7.1				
Mo-O (Å)	1.735(4)	1.734(4)	1.734(4)				
V_{MoO_4} (Å ³)	2.67	2.67	2.67				
Ca-O-Mo (1) (°)	120.2(3)	120.2(3)	120.2(3)				
Ca–O–Mo (2) (°)	133.6(3)	133.6(3)	133.6(3)				

Table S1 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From

Rietveld Analysis

	90 K	102 K	114 K	127 K	139 K	
<i>a</i> (Å)	5.213	5.213	5.213	5.213	5.214	
<i>c</i> (Å)	11.373	11.374	11.376	11.377	11.379	
$V(\text{\AA}^3)$	309.0	309.1	309.1	309.2	309.3	
<i>x</i> ₀	0.650	0.649	0.649	0.648	0.648	
уо	0.506	0.506	0.506	0.506	0.506	
<i>z</i> ₀	0.211	0.211	0.211	0.211	0.211	
Ca: $U^{11}, U^{33} (\text{\AA}^2)^a$	0.6, 0.9	0.6, 0.9	0.6, 1.0	0.6, 1.0	0.6, 1.0	
$U_{ m eq}({ m \AA}^2)$	0.7	0.7	0.7	0.7	0.7	
Mo: U^{11} , U^{33} (Å ²)	0.4, 0.5	0.4, 0.5	0.4, 0.5	0.4, 0.5	0.4, 0.6	
$U_{ m eq}({ m \AA}^2)$	0.4	0.4	0.5	0.5	0.5	
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	1.0, 3.0, 1.5	1.1, 3.1, 1.6	1.3, 3.2, 1.6	1.4, 3.2, 1.6	1.5, 3.3, 1.6	
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	-0.2, 0.1, 1.3	-0.2, 0.0, 1.4	-0.2, 0.0, 1.4	-0.2, -0.1, 1.5	-0.2, -0.1, 1.5	
$U_{ m eq}({ m \AA}^2)$	1.9	1.9	2.0	2.1	2.1	
Ca-O (1) (Å)	2.426	2.425	2.424	2.422	2.421	
Ca-O (2) (Å)	2.460	2.463	2.466	2.470	2.472	
$V_{\mathrm{AO}_{8}}(\mathrm{\AA}^{3})$	25.91	25.94	25.97	26.01	26.03	
$\Delta_{\rm AO_8}~(\times 10^3)$	7.0	7.7	8.7	9.8	10.5	
Мо-О (Å)	1.783	1.782	1.781	1.781	1.780	
$V_{\text{MoO}_4}(\text{\AA}^3)$	2.89	2.89	2.89	2.89	2.89	
Ca-O-Mo (1) (°)	119.8	119.7	119.5	119.4	119.3	
Ca-O-Mo (2) (°)	132.2	132.3	132.5	132.7	132.8	

Table S2 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From PDF

	151 K	163 K	175 K	188 K	200 K		
<i>a</i> (Å)	5.214	5.214	5.214	5.215	5.216		
<i>c</i> (Å)	11.381	11.384	11.386	11.388	11.390		
$V(Å^3)$	309.4	309.5	309.6	309.7	309.8		
x _O	0.647	0.644	0.644	0.643	0.643		
уо	0.507	0.508	0.508	0.508	0.508		
z _O	0.211	0.213	0.213	0.213	0.213		
Ca: $U^{11}, U^{33} (\text{\AA}^2)^a$	0.6, 1.0	0.6, 1.1	0.7, 1.1	0.7, 1.1	0.7, 1.2		
$U_{ m eq}({ m \AA}^2)$	0.8	0.8	0.8	0.8	0.8		
Mo: U^{11} , U^{33} (Å ²)	0.4, 0.6	0.5, 0.6	0.5, 0.6	0.5, 0.7	0.5, 0.7		
$U_{ m eq}({ m \AA}^2)$	0.5	0.5	0.5	0.5	0.6		
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	1.7, 3.3, 1.7	2.4, 3.2, 1.7	2.5, 3.3, 1.7	2.7, 3.4, 1.7	2.8, 3.4, 1.7		
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	-0.2, -0.2, 1.5	-0.1, -0.4, 1.6	-0.1, -0.4, 1.6	-0.1, -0.5, 1.7	0.0, -0.5, 1.7		
$U_{ m eq}({ m \AA}^2)$	2.2	2.4	2.5	2.6	2.6		
Ca-O (1) (Å)	2.419	2.407	2.405	2.404	2.403		
Ca-O (2) (Å)	2.477	2.496	2.499	2.503	2.505		
$V_{\mathrm{AO}_{8}}(\mathrm{\AA}^{3})$	26.08	26.20	26.23	26.27	26.30		
$\varDelta_{\mathrm{AO}_{8}}(\times 10^{3})$	11.9	18.3	19.2	20.3	20.8		
Мо-О (Å)	1.779	1.777	1.777	1.776	1.776		
V_{MoO_4} (Å ³)	2.88	2.88	2.88	2.87	2.87		
Ca-O-Mo (1) (°)	119.1	118.3	118.2	118.0	118.0		
Ca-O-Mo (2) (°)	133.0	134.0	134.2	134.4	134.5		

Table S2 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From PDF

	212 K	224 K	236 K	248 K	261 K	
<i>a</i> (Å)	5.216	5.217	5.217	5.218	5.219	
<i>c</i> (Å)	11.390	11.393	11.395	11.397	11.399	
$V(Å^3)$	309.8	310.1	310.2	310.3	310.4	
x _O	0.642	0.642	0.642	0.642	0.641	
Уо	0.508	0.508	0.508	0.508	0.508	
Z _O	0.213	0.213	0.213	0.213	0.213	
Ca: $U^{11}, U^{33} (\text{\AA}^2)^a$	0.7, 1.2	0.7, 1.2	0.8, 1.3	0.8, 1.3	0.8, 1.3	
$U_{ m eq}({ m \AA}^2)$	0.9	0.9	0.9	0.9	1.0	
Mo: U^{11} , U^{33} (Å ²)	0.5, 0.7	0.5, 0.7	0.5, 0.8	0.6, 0.8	0.6, 0.8	
$U_{ m eq}({ m \AA}^2)$	0.6	0.6	0.6	0.6	0.6	
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	2.9, 3.5, 1.8	3.0, 3.6, 1.8	3.1, 3.6, 1.8	3.2, 3.7, 1.9	3.2, 3.7, 1.9	
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	0.0, -0.5, 1.7	0.0, -0.5, 1.8	0.0, -0.5, 1.8	0.0, -0.5, 1.8	0.0, -0.6, 1.8	
$U_{ m eq}({ m \AA}^2)$	2.7	2.8	2.8	2.9	3.0	
Ca-O (1) (Å)	2.402	2.401	2.401	2.401	2.401	
Ca-O (2) (Å)	2.509	2.511	2.513	2.514	2.516	
V_{AO_8} (Å ³)	26.34	26.37	26.39	26.42	26.44	
Δ_{AO_8} (×10 ³)	21.8	22.3	22.8	23.2	23.4	
Мо-О (Å)	1.775	1.775	1.774	1.774	1.774	
V_{MoO_4} (Å ³)	2.87	2.87	2.87	2.86	2.86	
Ca-O-Mo (1) (°)	117.8	117.8	117.7	117.7	117.7	
Ca-O-Mo (2) (°)	134.7	134.8	134.8	134.9	135.0	

Table S2 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From PDF

	, , , , , , , , , , , , , , , , , , , ,					
	273 K	285 K	297 K	309 K	322 K	
<i>a</i> (Å)	5.219	5.220	5.221	5.221	5.222	
<i>c</i> (Å)	11.401	11.403	11.404	11.406	11.409	
$V(\text{\AA}^3)$	310.6	310.7	310.8	311.0	311.1	
x _O	0.641	0.641	0.641	0.641	0.641	
Уо	0.508	0.508	0.508	0.508	0.508	
ZO	0.213	0.213	0.213	0.213	0.213	
Ca: $U^{11}, U^{33} (Å^2)^a$	0.8, 1.3	0.8, 1.4	0.9, 1.4	0.9, 1.4	0.9, 1.5	
$U_{ m eq}({ m \AA}^2)$	1.0	1.0	1.0	1.1	1.1	
Mo: U^{11} , $U^{33}(\text{Å}^2)$	0.6, 0.8	0.6, 0.8	0.6, 0.9	0.6, 0.9	0.6, 0.9	
$U_{ m eq}({ m \AA}^2)$	0.7	0.7	0.7	0.7	0.7	
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	3.3, 3.7, 2.0	3.4, 3.8, 2.0	3.4, 3.8, 2.0	3.5, 3.8, 2.1	3.6, 3.9, 2.2	
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	0.0, -0.6, 1.8	0.0, -0.6, 1.9	0.0, -0.6, 1.9	0.1, -0.6, 1.9	0.1, -0.7, 1.9	
$U_{ m eq}({ m \AA}^2)$	3.0	3.0	3.1	3.1	3.2	
Ca-O (1) (Å)	2.401	2.401	2.401	2.401	2.402	
Ca–O (2) (Å)	2.516	2.517	2.518	2.519	2.520	
V_{AO_8} (Å ³)	26.46	26.48	26.50	26.52	26.55	
$\varDelta_{\rm AO_8}(\times 10^3)$	23.4	23.7	23.8	24.0	23.9	
Mo–O (Å)	1.774	1.773	1.773	1.773	1.773	
V_{MoO_4} (Å ³)	2.86	2.86	2.86	2.86	2.86	
Ca-O-Mo (1) (°)	117.7	117.6	117.6	117.6	117.6	
Ca-O-Mo (2) (°)	135.0	135.1	135.1	135.1	135.2	

Table S2 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From PDF

	334 K	346 K	358 K	370 K	383 K
<i>a</i> (Å)	5.223	5.224	5.224	5.225	5.226
<i>c</i> (Å)	11.411	11.413	11.415	11.418	11.420
$V(\text{\AA}^3)$	311.3	311.4	311.6	311.7	311.8
x _O	0.640	0.640	0.640	0.640	0.640
Уо	0.508	0.508	0.508	0.508	0.508
ZO	0.213	0.213	0.213	0.213	0.213
Ca: $U^{11}, U^{33}(\text{\AA}^2)^a$	1.0, 1.5	1.0, 1.5	1.0, 1.5	1.0, 1.6	1.1, 1.6
$U_{ m eq}({ m \AA}^2)$	1.1	1.2	1.2	1.2	1.3
Mo: U^{11} , U^{33} (Å ²)	0.7, 0.9	0.7, 1.0	0.7, 1.0	0.7, 1.0	0.7, 1.0
$U_{ m eq}({ m \AA}^2)$	0.8	0.8	0.8	0.8	0.8
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	3.6, 3.9, 2.2	3.7, 4.0, 2.3	3.7, 4.0, 2.4	3.8, 4.0, 2.4	3.9, 4.1, 2.5
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	0.1, -0.7, 1.9	0.1, -0.7, 2.0	0.1, -0.8, 1.9	0.1, -0.8, 2.0	0.1, -0.8, 2.0
$U_{ m eq}({ m \AA}^2)$	3.3	3.3	3.4	3.4	3.5
Ca-O (1) (Å)	2.403	2.403	2.405	2.405	2.405
Ca-O (2) (Å)	2.521	2.521	2.521	2.522	2.523
V_{AO_8} (Å ³)	26.57	26.59	26.61	26.63	26.65
$\Delta_{\rm AO_8}~(\times 10^3)$	23.9	24.0	23.7	23.7	23.8
Мо-О (Å)	1.772	1.772	1.772	1.772	1.772
V_{MoO_4} (Å ³)	2.86	2.86	2.85	2.85	2.85
Ca-O-Mo (1) (°)	117.6	117.6	117.7	117.7	117.7
Ca-O-Mo (2) (°)	135.2	135.2	135.2	135.2	135.3

Table S2 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From PDF

	395 K	407 K	419 K	431 K	444 K
<i>a</i> (Å)	5.226	5.227	5.228	5.228	5.229
<i>c</i> (Å)	11.422	11.424	11.426	11.429	11.431
$V(\text{\AA}^3)$	312.0	312.1	312.3	312.4	312.5
x _O	0.640	0.640	0.640	0.640	0.640
Уо	0.508	0.508	0.508	0.508	0.508
z_0	0.213	0.213	0.213	0.213	0.213
Ca: $U^{11}, U^{33} (\text{\AA}^2)^a$	1.1, 1.6	1.1, 1.6	1.2, 1.7	1.2, 1.7	1.2, 1.7
$U_{ m eq}({ m \AA}^2)$	1.3	1.3	1.3	1.4	1.4
Mo: U^{11} , U^{33} (Å ²)	0.7, 1.1	0.8, 1.1	0.8, 1.1	0.8, 1.1	0.8, 1.2
$U_{ m eq}({ m \AA}^2)$	0.9	0.9	0.9	0.9	0.9
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	3.9, 4.1, 2.6	4.0, 4.0, 2.6	4.0, 4.1, 2.7	4.1, 4.1, 2.7	4.1, 4.1, 2.8
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	0.1, -0.8, 2.0	0.2, -0.9, 2.0	0.2, -0.9, 2.0	0.2, -0.9, 2.0	0.2, -0.9, 2.0
$U_{ m eq}({ m \AA}^2)$	3.5	3.5	3.6	3.6	3.7
Ca-O (1) (Å)	2.406	2.407	2.408	2.408	2.408
Ca-O (2) (Å)	2.523	2.523	2.524	2.524	2.525
V_{AO_8} (Å ³)	26.67	26.68	26.70	26.72	26.74
$\Delta_{\mathrm{AO}_{8}}$ (×10 ³)	23.6	23.7	23.5	23.5	23.7
Mo-O (Å)	1.771	1.771	1.771	1.771	1.771
V_{MoO_4} (Å ³)	2.85	2.85	2.85	2.85	2.85
Ca-O-Mo (1) (°)	117.7	117.7	117.7	117.7	117.7
Ca-O-Mo (2) (°)	135.2	135.3	135.3	135.3	135.3

Table S2 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From PDF

Analysis					
	456 K	468 K	480 K		
<i>a</i> (Å)	5.229	5.230	5.230		
<i>c</i> (Å)	11.433	11.435	11.436		
$V(\text{\AA}^3)$	312.6	312.8	312.9		
x _O	0.640	0.640	0.640		
Уо	0.508	0.508	0.508		
<i>z</i> ₀	0.213	0.213	0.213		
Ca: $U^{11}, U^{33} (Å^2)^a$	1.3, 1.7	1.3, 1.8	1.3, 1.8		
$U_{ m eq}({ m \AA}^2)$	1.4	1.5	1.5		
Mo: U^{11} , U^{33} (Å ²)	0.8, 1.2	0.8, 1.2	0.8, 1.2		
$U_{ m eq}({ m \AA}^2)$	0.9	1.0	1.0		
O: $U^{11}, U^{22}, U^{33}(\text{\AA}^2)$	4.2, 4.1, 2.8	4.2, 4.1, 2.9	4.2, 4.1, 2.9		
$U^{12}, U^{13}, U^{23}(\text{\AA}^2)$	0.2, -1.0, 2.0	0.2, -1.0, 2.0	0.3, -1.0, 2.0		
$U_{ m eq}({ m \AA}^2)$	3.7	3.7	3.8		
Ca-O (1) (Å)	2.409	2.409	2.409		
Ca–O (2) (Å)	2.525	2.527	2.527		
$V_{\mathrm{AO}_{8}}(\mathrm{\AA}^{3})$	26.76	26.78	26.79		
$\varDelta_{\rm AO_8}(\times 10^3)$	23.5	23.9	23.8		
Mo-O (Å)	1.771	1.771	1.770		
$V_{\text{MoO}_4}(\text{\AA}^3)$	2.85	2.85	2.85		
Ca-O-Mo (1) (°)	117.7	117.7	117.7		
Ca-O-Mo (2) (°)	135.3	135.4	135.4		

Table S2 Structural Parameters of CaMoO4 Nanocrystals From 90–480 K Extracted From PDF

References

- 1. F. A. Rabuffetti and R. L. Brutchey, Chem. Mater., 2011, 23, 4063.
- S. P. Culver, F. A. Rabuffetti, S. Zhou, M. Mecklenburg, Y. Song, B. C. Melot and R. L. Brutchey, *Chem. Mater.*, 2013, 25, 4129.
- 3. A. C. Larson and R. B. Von Dreele, *General Structure Analysis System (GSAS)*, Los Alamos National Laboratory: Los Alamos, NM, 2000.
- 4. B. H. Toby, J. Appl. Crystallogr., 2011, 34, 210.
- 5. P. Thompson, D. E. Cox and J. M. Hastings, J. Appl. Crystallogr., 1987, 20, 79.
- 6. R. A. Young, *The Rietveld Method*, Oxford University Press: New York, 1993.
- 7. V. J. Petkov, J. Appl. Crystallogr., 1989, 22, 387.
- 8. C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Bozin, J. Bloch, T. Proffen and S. J. L. Billinge, *J. Phys: Condens. Matter*, 2007, **19**, 335219.
- 9. V. Petkov, M. Gateshki, M. Niederberger and Y. Ren, Chem. Mater., 2006, 18, 814.