# **Supporting Information**

# Fluorescence Behavior of 2,6,10-Trisubstituted 4,8,12-Triazatriangulene Cations in Solution and in the Solid State

Hiromu Noguchi, Takashi Hirose, Soichi Yokoyama, and Kenji Matsuda $^{\ast}$ 

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

E-mail: kmatsuda@sbchem.kyoto-u.ac.jp

**S**1

### **Contents:**

### **Experimental Details**

A. Syntheses of Materials

## **Supporting Data**

|    | Figure S1.        | Fluorescence decay curves of compounds 1–6 in MeCN                                                              | S5         |
|----|-------------------|-----------------------------------------------------------------------------------------------------------------|------------|
|    | Table S1.         | Fluorescence lifetime of <b>1–6</b> in MeCN                                                                     | S5         |
|    | Figure S2.        | Fluorescence decay curves of compounds <b>1–6</b> in the solid state                                            | <b>S</b> 6 |
|    | Table S2.         | Fluorescence lifetime of <b>1–6</b> in the solid state                                                          | <b>S</b> 6 |
|    | Figure S3–S7.     | Streak image and fluorescence decay analysis of 1-6 in MeCN                                                     | <b>S</b> 7 |
|    | Figure S8–S10.    | Streak image and fluorescence decay analysis of 1, 3, and 6 in the solid state                                  | <b>S</b> 9 |
|    | Figure S11.       | Acidochroism of compound 4 in MeCN upon addition of aq. HCl                                                     | S10        |
|    | Figure S12.       | Comparison between experimental spectra calculated transition energies                                          | S11        |
|    | Figure S13.       | Fluorescence and excitation spectra of compounds <b>1–6</b> in the solid state                                  | S12        |
|    | Figure S14–S19.   | Orbital correlation diagram of <b>1–6</b><br>calculated with M062X/6-311g(2d,p)-SCRF(PCM)//B3LYP/6-31g(d) level | S13        |
|    | Excited States of | Compounds 1–6 Calculated by TD-DFT                                                                              | S19        |
|    | Figure S20–S22.   | <sup>1</sup> H and <sup>13</sup> C NMR spectra of compounds <b>2–6</b>                                          | S26        |
|    | Table S3–S8.      | Cartesian coordinates of optimized structures of 1-6                                                            | S31        |
| Re | eferences         |                                                                                                                 | S43        |

### **Experimental details**

#### A. Syntheses of Materials



Scheme S1. Synthesis of 4,8,12-trioctyl-4,8,12-triazatriangulene cation tetrafluoroborate salt (TATA<sup>+</sup>BF<sub>4</sub><sup>-</sup>) (1)

Synthesis of tris(2,6-dimethoxyphenyl)carbinol (8)<sup>S1</sup>



To a solution of 1,3-dimethoxybenzene (7) (22.5 g, 163 mmol) in N,N,N',N'-tetramethylethylenediamine (TMEDA) (1.0 mL) was added *n*-BuLi (1.6 M in hexanes, 100 mL, 160 mmol) dropwise with keeping the temperature below 10 °C. The mixture was stirred for 1 h under ice bath. Then, a solution of diethylcarbonate (3.0 mL, 24.8 mmol) in dry Et<sub>2</sub>O (100 mL) was added to the resulting mixture with keeping under 10 °C. The reaction mixture was stirred for 1 h at room temperature, and then refluxed for 2 days. The reaction mixture was quenched by water under ice bath. An excess amount of hexane was added to the solution and the mixture was cooled at 0 °C for 2 h. The resulting precipitate was collected by filtration. The collected solid was washed with water and hexane to give compound **8** (8.27 g, 18.8 mmol, 76 %) as a white solid.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, δ): 3.44 (s, 18H), 6.49 (d, *J* = 7.9 Hz, 6H), 6.84 (s, 1H), 7.04 (t, *J* = 8.2 Hz, 3H).

Synthesis of tris(2,6-dimethoxyphenyl)carbenium tetrafluoroborate  $(9)^{S2}$ 



To a solution of compound **8** (8.26 g, 18.7 mmol) in absolute EtOH (100 mL) was added aqueous HBF<sub>4</sub> solution (42%, 4.5 mL, 26 mmol). Then Et<sub>2</sub>O (150 mL) was added to the solution, followed by hexane (150 mL). The resulting black precipitate was collected by filtration and washed with Et<sub>2</sub>O to give compound **9** (8.74 g, 17.1 mmol, 91%) as a dark-green solid.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 3.60 (s, 18H), 6.54 (d, J = 8.5 Hz, 6H), 7.60 (t, J = 8.3 Hz, 3H).

Synthesis of 4,8,12-tri-n-octyl-4,8,12-triazatriangulenium tetrafluoroborate  $(1)^{S2}$ 



To a solution of compound **9** (3.10 g 6.07 mmol) in NMP (5 mL) was added *n*-octylamine (15 mL, 90 mmol). The reaction mixture was heated to 180 °C under argon atmosphere. After cooling to room temperature, the resulting solution was poured into  $Et_2O$  (300 mL). The generated precipitation was collected with filtration and washed with ether to give compound **1** (2.11 g, 2.99 mmol, 49%) as a red crystal.

<sup>1</sup>H NMR (500 MHz, (CH<sub>3</sub>)<sub>2</sub>SO,  $\delta$ ): 0.87 (t, *J* = 6.7 Hz, 9H), 1.24–1.45 (m, 24H), 1.55 (quint, *J* = 7.6 Hz, 6H), 1.71–1.82 (m, 6H), 4.35 (t, *J* = 7.6 Hz, 6H), 7.36 (d, *J* = 8.5 Hz, 6H), 8.05 (t, *J* = 8.5 Hz, 3H).

Synthesis of 2,6,10-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4,8,12-tri-n-octyl-4,8,12-triazatriangulenium tetrafluoroborate (**6**)



Compound **1** (0.17 g, 0.27 mmol),  $[Ir(cod)OMe]_2$  (37 mg, 0.056 mmol), 3,4,7,8-tetramethyl-1,10phenanthroline (21 mg, 0.089 mmol), and bis(pinacolato)diboron (0.40 g, 1.6 mmol) were placed in a Schlenk tube. The tube was evacuated and then refilled with N<sub>2</sub> three times. Under a positive flow of N<sub>2</sub>, dry THF (5 mL) was added to the tube. The tube was covered with aluminum foil to avoid light and the reaction mixture was stirred for 4 h at 60 °C. The resulting solution was cooled in an ice bath and hexane (20 mL) was then added. The purple precipitate was collected by filtration and was washed with hexane and water to give compound **6** (0.25 g, 0.23 mmol, 85 %) as a purple solid.

<sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO,  $\delta$ ): 7.22 (s, 6H), 3.93–4.17 (m, 6H), 1.57–1.70 (m, 6H), 1.38–1.56 (m, 42H), 1.25–1.38 (m, 24H), 0.85–0.94 (m, 9H); HRMS–MALDI–Orbitrap (*m*/*z*): [M] <sup>+</sup> calcd for C<sub>61</sub>H<sub>93</sub>B<sub>3</sub>N<sub>3</sub>O<sub>6</sub><sup>+</sup>, 996.7338; found, 996.7388.

#### General procedure for synthesis of compounds 2–5

Compound **6** (50 mg, 0.046 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (14 mg, 12 µmol) were placed in a flask. The flask was evacuated and then refilled with N<sub>2</sub> three times. To the reaction vessel, aryl halide (0.84 mmol), aq. K<sub>3</sub>PO<sub>4</sub> (2 M, 1 mL), and 1,4-dioxane (3 mL) were added under N<sub>2</sub> atmosphere. The reaction mixture was refluxed for 4 h. The reaction product was extracted with CH<sub>2</sub>Cl<sub>2</sub>, dried over MgSO<sub>4</sub>, filtered, and evaporated. The crude product was purified by silica gel column chromatography (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 98/2). Further purification was carried out by recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/toluene or CH<sub>3</sub>CN/toluene and GPC (eluent, chloroform).

2,6,10-triphenyl-4,8,12-tri-n-octyl-4,8,12-triazatriangulenium tetrafluoroborate (2)



Compound **2**: starting from **6** (23 mg, 0.021 mmol) and iodobenzene (90 mg, 0.44 mmol), a red solid (11 mg, 0.013 mmol, 57%); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ) 7.80 (d, *J* = 7.3 Hz, 6H), 7.62 (t, *J* = 7.3 Hz, 6H), 7.56 (t, *J* = 7.3 Hz, 3H), 7.31 (s, 6H), 4.48–4.56 (m, 6H), 2.00–2.06(m, 6H), 1.56–1.68 (m, 6H), 1.46–4.52 (m, 6H), 1.25–1.40 (m, 18H), 0.85–0.90 (m, 9H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>,  $\delta$ ): 14.1, 22.6, 25.1, 26.8, 29.16, 29.23, 31.7, 48.3, 104.4, 109.8, 128.0, 129.45, 129.52, 139.0, 140.2, 140.9, 150.8; HRMS–MALDI–Orbitrap (*m*/*z*) [M]<sup>+</sup> calcd for C<sub>61</sub>H<sub>72</sub>N<sub>3</sub><sup>+</sup>, 846.5721; found, 846.5716.

2,6,10-tri(2-thienyl)-4,8,12-tri-n-octyl-4,8,12-triazatriangulenium tetrafluoroborate (3)



Compound **3**: starting from **6** (50 mg, 0.046 mmol) and 2-bromothiophene (0.14 g, 0.86 mmol), a red solid (12 mg, 0.013 mmol, 28%); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.02–8.10 (m, 3H), 7.95 (d, *J* = 5.0 Hz, 3H), 7.38 (t, *J* = 5.0 Hz, 200 Hz, 2

3H), 7.17 (s, 6H), 3.96–4.22 (m, 6H), 1.56–1.74 (m, 6H), 1.38–1.54 (m, 6H), 1.20–1.36 (m, 24H), 0.84–0.92 (m, 9H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>,  $\delta$ ): 14.1, 22.6, 25.0, 26.3, 29.2, 29.3, 31.8, 47.1, 102.1, 108.5, 128.2, 128.3, 129.9, 136.6, 140.3, 141.8, 143.0; HRMS–MALDI–Orbitrap (*m*/*z*): [M]<sup>+</sup> calcd for C<sub>55</sub>H<sub>66</sub>N<sub>3</sub>S<sub>3</sub><sup>+</sup>, 864.4413; found, 864.4446.

2,6,10-tri(4-pyridyl)-4,8,12-tri-n-octyl-4,8,12-triazatriangulenium tetrafluoroborate (4)



Compound **4**: starting from **6** (0.10 g, 0.092 mmol) and 4-bromopyridine (0.29 g, 1.5 mmol), a red solid (8.8 mg, 0.0094 mmol, 10 %); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.87 (d, *J* = 5.5 Hz, 6H), 7.77 (d, *J* = 5.5 Hz, 6H), 7.40 (s, 6H), 4.66–4.72 (m, 6H), 1.96–2.08 (m, 6H), 1.64–1.72 (m, 6H), 1.47–1.53 (m, 6H), 1.46–1.54 (m, 18H), 0.86–0.90 (m, 9H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>,  $\delta$ ): 14.1, 22.6, 25.2, 26.8, 29.2, 29.4, 31.8, 48.5, 104.6, 110.7, 122.4, 139.2, 141.1, 147.2, 148.1, 150.9; HRMS–MALDI–Orbitrap (*m*/*z*): [M]<sup>+</sup> calcd for C<sub>58</sub>H<sub>69</sub>N<sub>6</sub><sup>+</sup>, 849.5578; found, 849.5540.

2,6,10-tri(4-nitrophenyl)-4,8,12-tri-n-octyl-4,8,12-triazatriangulenium tetrafluoroborate (5)



Compound **5**: starting from **6** (0.10 g, 0.092 mmol) and 4-iodonitrobenzene (0.36 g, 1.4 mmol), a red solid (39 mg, 0.036 mmol, 39 %); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.42 (d, *J* = 8.5 Hz, 6H), 8.05 (d, *J* = 8.5 Hz, 6H), 7.38 (s, 6H), 4.71 (t, *J* = 7.5 Hz, 6H), 1.98–2.07 (m, 6H), 1.63–1.71 (m, 6H), 1.44–1.51 (m, 6H), 1.25–1.39 (m, 18H), 0.86 (t, *J* = 7.0 Hz, 9H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>,  $\delta$ ): 13.9, 22.1, 24.8, 26.1, 28.7, 28.8, 31.3, 46.1, 104.4, 109.4, 123.4, 129.5, 140.0, 145.0, 146.7, 147.4; HRMS–MALDI–Orbitrap (*m*/*z*) [M]<sup>+</sup> calcd for C<sub>61</sub>H<sub>69</sub>N<sub>6</sub>O<sub>6</sub><sup>+</sup>, 981.5273; found, 981.5305.





Figure S1. Fluorescence decay curves of (a) 1 (black), (b) 2 (sky blue), (c) 3 (blue), (d) 4 (green), (e) 5 (orange), and (f) 6 (red) in MeCN at room temperature. Red dashed line for 1 and black dashed line for compounds 2–6 denote the best fitting curves.

| <b>Table S1.</b> Fluorescence metime of compounds <b>1–0</b> in MeCN at foom temperatu | Table S1. | . Fluorescence | lifetime of | f compoun | ds <b>1–6</b> in | MeCN at r | oom temp | berature |
|----------------------------------------------------------------------------------------|-----------|----------------|-------------|-----------|------------------|-----------|----------|----------|
|----------------------------------------------------------------------------------------|-----------|----------------|-------------|-----------|------------------|-----------|----------|----------|

| compound              | $	au_1 (\mathrm{ns})^a$ | $	au_2(\mathrm{ns})^a$ | $\tau_3 (\mathrm{ns})^a$ | $< \tau_{\rm f} > ({\rm ns})^b$ | $\chi^2$ |
|-----------------------|-------------------------|------------------------|--------------------------|---------------------------------|----------|
| <b>1</b> <sup>c</sup> | 8.3 (100%)              | _                      | _                        | 8.3                             | 1.52     |
| 2                     | 8.4 (98%)               | 24 (2%)                | _                        | 8.7                             | 1.38     |
| 3                     | 6.4 (89%)               | 14 (11%)               | _                        | 7.2                             | 1.23     |
| 4                     | 8.1 (88%)               | 69 (12%)               | _                        | 15                              | 1.42     |
| 5                     | 0.29 (15%)              | 5.6 (85%)              | _                        | 4.8                             | 1.36     |
| 6                     | 0.55 (23%)              | 3.4 (54%)              | 17 (23%)                 | 5.9                             | 1.22     |

<sup>*a*</sup> The area-weighted ratio  $(A_n \tau_n)$  are shown in parentheses. <sup>*b*</sup> The area-weighted mean fluorescence lifetime  $\langle \tau_i \rangle$  was calculated as follows:  $\langle \tau_i \rangle = \Sigma(A_n \tau_n^2)/\Sigma(A_n \tau_n)$  where  $A_n$  is the coefficient of exponential function of the *n*-th component. <sup>*c*</sup> Fluorescence decay was measured by time-correlated single photon counting (TCSPC) method, excited at  $\lambda_{ex} = 495$  nm and monitored at  $\lambda_{em} = 570$  nm.



Figure S2. Fluorescence decay curves of (a) 1 (black), (b) 3 (blue), and (c) 6 (red) in the solid state at room temperature. Red dashed line for 1 and black dashed line for compounds 3 and 6 denote the best fitting curves.

| Table S2. Fluo | rescence lifetime | of compounds | <b>1</b> , <b>3</b> , and <b>6</b> in | the solid state | at room temperature. |
|----------------|-------------------|--------------|---------------------------------------|-----------------|----------------------|
|----------------|-------------------|--------------|---------------------------------------|-----------------|----------------------|

| compound | $\tau_1 (\mathrm{ns})^a$ | $	au_2 (\mathrm{ns})^a$ | $< \tau_{\rm f} > ({\rm ns})^b$ | $\chi^2$ |
|----------|--------------------------|-------------------------|---------------------------------|----------|
| 1        | 5.5 (53%)                | 20.2 (47%)              | 12                              | 1.14     |
| 3        | 3.7 (55%)                | 23.6 (45%)              | 13                              | 1.45     |
| 6        | 3.9 (100%)               | -                       | 3.9                             | 1.20     |

<sup>*a*</sup> The area-weighted ratio  $(A_n \tau_n)$  are shown in parentheses. <sup>*b*</sup> The area-weighted mean fluorescence lifetime  $\langle \tau_i \rangle$  was calculated as follows:  $\langle \tau_i \rangle = \Sigma(A_n \tau_n^2) / \Sigma(A_n \tau_n)$  where  $A_n$  is the coefficient of exponential function of the *n*-th component.



Figure S3. Streak image (left) and fluorescence decay analysis (right) of 2 in MeCN at room temperature.



Figure S4. Streak image (left) and fluorescence decay analysis (right) of 3 in MeCN at room temperature.



Figure S5. Streak image (left) and fluorescence decay analysis (right) of 4 in MeCN at room temperature.



Figure S6. Streak image (left) and fluorescence decay analysis (right) of 5 in MeCN at room temperature.



Figure S7. Streak image (left) and fluorescence decay analysis (right) of 6 in MeCN at room temperature.



Figure S8. Streak image (left) and fluorescence decay analysis (right) of 1 in the solid state at room temperature.



Figure S9. Streak image (left) and fluorescence decay analysis (right) of 3 in the solid state at room temperature.



Figure S10. Streak image (left) and fluorescence decay analysis (right) of 6 in the solid state at room temperature.



Figure S11. (a) Absorption and (b) fluorescence spectral change of compound 4 in MeCN upon addition of aq. HCl.



**Figure S12.** Comparison between experimentally observed absorption spectra in MeCN (solid line) and calculated ones (bars) for compounds (a) **1**, (b) **2**, (c) **3**, (d) **4**, (e) **5**, and (f) **6**.



Figure S13. Fluorescence and excitation spectra of compounds (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6 in the solid state.



**Figure S14.** Orbital correlation diagram of **1** in the ground state calculated with M062X/6-311g(2d,p)-SCRF(PCM)//B3LYP/6-31g(d) level of theory. Acetonitrile ( $\epsilon = 35.688$ ) was specified as a solvent in the calculations with PCM method.



Figure S15. Orbital correlation diagram of 2 in the ground state calculated with M062X/6-311g(2d,p)-SCRF(PCM)//B3LYP/6-31g(d) level of theory. Acetonitrile ( $\epsilon = 35.688$ ) was specified as a solvent in the calculations with PCM method.



**Figure S16**. Orbital correlation diagram of **3** in the ground state calculated with M062X/6-311g(2d,p)-SCRF(PCM)//B3LYP/6-31g(d) level of theory. Acetonitrile ( $\epsilon = 35.688$ ) was specified as a solvent in the calculations with PCM method.



**Figure S17.** Orbital correlation diagram of **4** in the ground state calculated with M062X/6-311g(2d,p)-SCRF(PCM)//B3LYP/6-31g(d) level of theory. Acetonitrile ( $\epsilon = 35.688$ ) was specified as a solvent in the calculations with PCM method.



**Figure S18**. Orbital correlation diagram of **5** in the ground state calculated with M062X/6-311g(2d,p)-SCRF(PCM)//B3LYP/6-31g(d) level of theory. Acetonitrile ( $\epsilon = 35.688$ ) was specified as a solvent in the calculations with PCM method.



**Figure S19**. Orbital correlation diagram of **6** in the ground state calculated with M062X/6-311g(2d,p)-SCRF(PCM)//B3LYP/6-31g(d) level of theory. Acetonitrile ( $\epsilon = 35.688$ ) was specified as a solvent in the calculations with PCM method.

# Excited States Calculated by TD-DFT

# Compound 1 calculated at M062X/6-311g(2d,p)-SCRF(PCM, solvent=acetonitrile)

| Excited                             | State                                     | 1:             | Singlet-A<br>0 70146                                   | 2.9540 eV                 | 419.72 nm  | f=0.1975 | <s**2>=0.000</s**2> |
|-------------------------------------|-------------------------------------------|----------------|--------------------------------------------------------|---------------------------|------------|----------|---------------------|
| This sta<br>Total E                 | ate for<br>nergy,                         | opti<br>E(TD-I | mization and/or s<br>HF/TD-KS) = -124                  | econd-order<br>8.94210281 | correction |          |                     |
| Excited<br>108                      | State<br>->110                            | 2:             | Singlet-A<br>0.70145                                   | 2.9579 eV                 | 419.17 nm  | f=0.1967 | <s**2>=0.000</s**2> |
| Excited<br>108<br>109               | State<br>->111<br>->112                   | 3:             | Singlet-A<br>0.48548<br>0.48801                        | 3.9135 eV                 | 316.81 nm  | f=0.0000 | <s**2>=0.000</s**2> |
| Excited<br>106<br>108<br>109        | State<br>->110<br>->111<br>->112          | 4:             | Singlet-A<br>0.26240<br>0.44721<br>-0.44400            | 4.1482 eV                 | 298.89 nm  | f=0.0653 | <s**2>=0.000</s**2> |
| Excited<br>107<br>108<br>109        | State<br>->110<br>->112<br>->111          | 5:             | Singlet-A<br>0.26332<br>0.44383<br>0.44684             | 4.1483 eV                 | 298.88 nm  | f=0.0656 | <s**2>=0.000</s**2> |
| Excited<br>108<br>109               | State<br>->112<br>->111                   | 6:             | Singlet-A<br>-0.48710<br>0.50196                       | 4.7796 eV                 | 259.41 nm  | f=0.0000 | <s**2>=0.000</s**2> |
| Excited<br>107<br>108<br>109<br>109 | State<br>->110<br>->112<br>->111<br>->113 | 7:             | Singlet-A<br>-0.43483<br>0.19734<br>0.14636<br>0.47830 | 4.8018 eV                 | 258.20 nm  | f=0.0000 | <s**2>=0.000</s**2> |
| Excited<br>106<br>108<br>108<br>109 | State<br>->110<br>->111<br>->113<br>->112 | 8:             | Singlet-A<br>0.43624<br>-0.17101<br>0.47864<br>0.17198 | 4.8038 eV                 | 258.10 nm  | f=0.0000 | <s**2>=0.000</s**2> |
| Excited<br>105                      | State<br>->110                            | 9:             | Singlet-A<br>0.67103                                   | 5.0416 eV                 | 245.92 nm  | f=0.0008 | <s**2>=0.000</s**2> |
| Excited<br>107<br>109               | State<br>->110<br>->113                   | 10:            | Singlet-A<br>0.47408<br>0.48250                        | 5.0850 eV                 | 243.83 nm  | f=1.1069 | <s**2>=0.000</s**2> |

Compound 2 calculated at M062X/6-311g(2d,p)-SCRF(PCM, solvent=acetonitrile)

| Excited State  | 1:    | Singlet-A         | 2.9035 eV   | 427.01 nm  | f=0.2974 | <s**2>=0.000</s**2> |
|----------------|-------|-------------------|-------------|------------|----------|---------------------|
| This state for | onti  | mization and/or s | econd-order | correction |          |                     |
| Total Energy,  | E(TD- | HF/TD-KS) = -194  | 2.01912823  |            | •        |                     |
|                | 2.    |                   | 2 0070 -14  | 426 50     | 6 0 2051 |                     |
| EXCITED STATE  | 2:    | Singlet-A         | 2.9070 eV   | 426.50 nm  | T=0.2951 | <5**2>=0.000        |
| 108 -> 1/0     |       | 0.09490           |             |            |          |                     |
| Excited State  | 3:    | Singlet-A         | 3.7914 eV   | 327.02 nm  | f=0.0000 | <s**2>=0.000</s**2> |
| 168 -> 171     |       | -0.21956          |             |            |          |                     |
| 168 -> 172     |       | 0.41621           |             |            |          |                     |
| 169 -> 171     |       | 0.42698           |             |            |          |                     |
| 169 -> 1/2     |       | 0.22074           |             |            |          |                     |
| Excited State  | 4:    | Singlet-A         | 3.9106 eV   | 317.05 nm  | f=0.0951 | <s**2>=0.000</s**2> |
| 159 -> 170     |       | 0.14321           |             |            |          |                     |
| 166 -> 170     |       | -0.20390          |             |            |          |                     |
| 167 -> 170     |       | 0.40525           |             |            |          |                     |
| 168 -> 171     |       | -0.19496          |             |            |          |                     |
| 168 -> 172     |       | -0.28235          |             |            |          |                     |
| 169 -> 171     |       | 0.27469           |             |            |          |                     |
| 169 -> 1/2     |       | -0.20014          |             |            |          |                     |
| Excited State  | 5:    | Singlet-A         | 3.9130 eV   | 316.85 nm  | f=0.0941 | <s**2>=0.000</s**2> |
| 160 -> 170     |       | -0.14388          |             |            |          |                     |
| 166 -> 170     |       | 0.40282           |             |            |          |                     |
| 167 -> 170     |       | 0.20448           |             |            |          |                     |
| 168 -> 171     |       | -0.28114          |             |            |          |                     |
| 168 -> 172     |       | 0.20306           |             |            |          |                     |
| 169 -> 171     |       | -0.19491          |             |            |          |                     |
| 169 -> 1/2     |       | -0.2/596          |             |            |          |                     |
| Excited State  | 6:    | Singlet-A         | 4.2781 eV   | 289.81 nm  | f=0.8924 | <s**2>=0.000</s**2> |
| 166 -> 170     |       | -0.19651          |             |            |          |                     |
| 167 -> 170     |       | 0.44562           |             |            |          |                     |
| 168 -> 171     |       | 0.20082           |             |            |          |                     |
| 168 -> 172     |       | 0.25298           |             |            |          |                     |
| 169 -> 171     |       | -0.25103          |             |            |          |                     |
| 169 -> 1/2     |       | 0.2008/           |             |            |          |                     |
| Excited State  | 7:    | Singlet-A         | 4.2817 eV   | 289.57 nm  | f=0.9039 | <s**2>=0.000</s**2> |
| 166 -> 170     |       | 0.44780           |             |            |          |                     |
| 167 -> 170     |       | 0.19613           |             |            |          |                     |
| 168 -> 171     |       | 0.25218           |             |            |          |                     |
| 168 -> 172     |       | -0.19918          |             |            |          |                     |
| 169 -> 171     |       | 0.19916           |             |            |          |                     |
| 169 -> 172     |       | 0.25030           |             |            |          |                     |
| Excited State  | 8:    | Singlet-A         | 4.5945 eV   | 269.85 nm  | f=0.0001 | <s**2>=0.000</s**2> |
| 165 -> 170     |       | -0.22941          |             |            |          |                     |
| 168 -> 171     |       | -0.40612          |             |            |          |                     |
| 168 -> 172     |       | -0.21211          |             |            |          |                     |
| 169 -> 171     |       | -0.21264          |             |            |          |                     |
| 169 -> 172     |       | 0.40855           |             |            |          |                     |
| Excited State  | 9:    | Singlet-A         | 4.7271 eV   | 262.29 nm  | f=0.0004 | <s**2>=0.000</s**2> |
| 165 -> 170     |       | 0.59168           |             |            |          |                     |
| 166 -> 171     |       | 0.17305           |             |            |          |                     |
| 167 -> 172     |       | -0.17183          |             |            |          |                     |
| 168 -> 171     |       | -0.15356          |             |            |          |                     |
| 169 -> 172     |       | 0.15074           |             |            |          |                     |
| Excited State  | 10:   | Singlet-A         | 4.8155 eV   | 257.47 nm  | f=1.1159 | <s**2>=0.000</s**2> |
| 168 -> 173     |       | 0.58182           |             |            |          |                     |
| 169 -> 173     |       | 0.29961           |             |            |          |                     |

Compound **3** calculated at M062X/6-311g(2d,p)-SCRF(PCM, solvent=acetonitrile)

| Excited State                                                                                                                               | 1:            | Singlet-A<br>0.69417                                                                                              | 2.8834 eV                      | 429.99 nm  | f=0.3829 | <s**2>=0.000</s**2> |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|----------|---------------------|
| This state for<br>Total Energy,                                                                                                             | opti<br>E(TD- | <pre>mization and/or<br/>HF/TD-KS) = -2</pre>                                                                     | • second-order<br>904.33320903 | correction |          |                     |
| Excited State<br>171 -> 173                                                                                                                 | 2:            | Singlet-A<br>0.69428                                                                                              | 2.8874 eV                      | 429.40 nm  | f=0.3839 | <s**2>=0.000</s**2> |
| Excited State<br>162 -> 173<br>169 -> 173<br>170 -> 173<br>171 -> 174<br>172 -> 175                                                         | 3:            | Singlet-A<br>-0.11014<br>-0.10607<br>0.59678<br>-0.20416<br>0.20411                                               | 3.6104 eV                      | 343.41 nm  | f=0.4705 | <s**2>=0.000</s**2> |
| Excited State<br>163 -> 173<br>169 -> 173<br>170 -> 173<br>171 -> 175<br>172 -> 174                                                         | 4:            | Singlet-A<br>0.11118<br>0.59433<br>0.10574<br>-0.19756<br>-0.21629                                                | 3.6168 eV                      | 342.80 nm  | f=0.4658 | <s**2>=0.000</s**2> |
| Excited State<br>169 -> 174<br>170 -> 175<br>171 -> 175<br>172 -> 174                                                                       | 5:            | Singlet-A<br>0.12043<br>0.11638<br>0.45609<br>-0.45518                                                            | 3.7179 eV                      | 333.48 nm  | f=0.0003 | <s**2>=0.000</s**2> |
| Excited State<br>168 -> 174<br>169 -> 173<br>169 -> 175<br>170 -> 173<br>170 -> 174<br>171 -> 174<br>171 -> 175<br>172 -> 174<br>172 -> 175 | 6:            | Singlet-A<br>-0.11282<br>0.12137<br>-0.11040<br>-0.23765<br>-0.12229<br>-0.37996<br>0.15484<br>0.15115<br>0.38059 | 4.0646 eV                      | 305.04 nm  | f=0.4784 | <s**2>=0.000</s**2> |
| Excited State<br>168 -> 175<br>169 -> 173<br>169 -> 174<br>170 -> 173<br>170 -> 175<br>171 -> 174<br>171 -> 175<br>172 -> 174<br>172 -> 175 | 7:            | Singlet-A<br>-0.11613<br>0.24199<br>-0.11538<br>0.12112<br>0.11458<br>0.15443<br>0.38217<br>0.37553<br>-0.15219   | 4.0674 eV                      | 304.82 nm  | f=0.4843 | <s**2>=0.000</s**2> |
| Excited State<br>168 -> 173<br>169 -> 174<br>169 -> 175<br>170 -> 174<br>170 -> 175                                                         | 8:            | Singlet-A<br>0.61365<br>-0.10453<br>-0.19904<br>0.19228<br>-0.10557                                               | 4.1804 eV                      | 296.59 nm  | f=0.0007 | <s**2>=0.000</s**2> |
| Excited State<br>171 -> 174<br>172 -> 175                                                                                                   | 9:            | Singlet-A<br>0.47705<br>0.47793                                                                                   | 4.4698 eV                      | 277.38 nm  | f=0.0001 | <s**2>=0.000</s**2> |
| Excited State<br>162 -> 173<br>168 -> 174<br>169 -> 175<br>170 -> 173<br>170 -> 174<br>170 -> 177<br>172 -> 176                             | 10:           | Singlet-A<br>-0.13558<br>-0.23150<br>-0.23944<br>0.12544<br>-0.25477<br>0.14344<br>0.42234                        | 4.6617 eV                      | 265.97 nm  | f=0.8301 | <s**2>=0.000</s**2> |

Compound 4 calculated at M062X/6-311g(2d,p)-SCRF(PCM, solvent=acetonitrile)

| Excited                                                                              | State                                                                                                               | 1:    | Singlet-A<br>0 69058                                                                                                                      | 2.8549 eV    | 434.29 nm   | f=0.2673 | <s**2>=0.000</s**2> |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------|---------------------|
| This sta                                                                             | ate for                                                                                                             | opti  | mization and/or                                                                                                                           | second-order | correction. |          |                     |
| IOLAI EI                                                                             | iergy,                                                                                                              | E(1D- | HF/ID-KS) = -15                                                                                                                           | 190.13000370 |             |          |                     |
| Excited<br>168                                                                       | State<br>-> 170                                                                                                     | 2:    | Singlet-A<br>0.69068                                                                                                                      | 2.8580 eV    | 433.81 nm   | f=0.2656 | <s**2>=0.000</s**2> |
| Excited<br>168<br>168<br>169<br>169                                                  | State<br>-> 171<br>-> 172<br>-> 171<br>-> 171                                                                       | 3:    | Singlet-A<br>-0.22870<br>0.41234<br>0.41989<br>0.22847                                                                                    | 3.7086 eV    | 334.32 nm   | f=0.0000 | <s**2>=0.000</s**2> |
| Excited<br>166<br>167<br>168<br>169                                                  | State<br>-> 170<br>-> 170<br>-> 172<br>-> 171                                                                       | 4:    | Singlet-A<br>0.10096<br>-0.28257<br>0.41208<br>-0.40559                                                                                   | 3.9177 eV    | 316.48 nm   | f=0.0000 | <s**2>=0.000</s**2> |
| Excited<br>166<br>167<br>168<br>169                                                  | State<br>-> 170<br>-> 170<br>-> 171<br>-> 172                                                                       | 5:    | Singlet-A<br>-0.28216<br>-0.10130<br>0.40946<br>0.40741                                                                                   | 3.9201 eV    | 316.28 nm   | f=0.0000 | <s**2>=0.000</s**2> |
| Excited<br>167<br>168<br>169<br>169                                                  | State<br>-> 170<br>-> 172<br>-> 171<br>-> 173                                                                       | 6:    | Singlet-A<br>0.58875<br>0.19445<br>-0.19395<br>-0.11208                                                                                   | 4.4309 eV    | 279.81 nm   | f=0.7467 | <s**2>=0.000</s**2> |
| Excited<br>166<br>168<br>168<br>169                                                  | State<br>-> 170<br>-> 171<br>-> 173<br>-> 172                                                                       | 7:    | Singlet-A<br>0.58906<br>0.19678<br>-0.11075<br>0.19126                                                                                    | 4.4343 eV    | 279.60 nm   | f=0.7520 | <s**2>=0.000</s**2> |
| Excited<br>168<br>168<br>169<br>169                                                  | State<br>-> 171<br>-> 172<br>-> 171<br>-> 171                                                                       | 8:    | Singlet-A<br>-0.42549<br>-0.23583<br>-0.23329<br>0.42848                                                                                  | 4.5161 eV    | 274.54 nm   | f=0.0001 | <s**2>=0.000</s**2> |
| Excited<br>160<br>160<br>160<br>160<br>161<br>161<br>161<br>162<br>162<br>162        | State<br>-> 171<br>-> 172<br>-> 176<br>-> 178<br>-> 179<br>-> 170<br>-> 171<br>-> 170<br>-> 172<br>-> 174           | 9:    | Singlet-A<br>-0.16695<br>0.27182<br>-0.15867<br>-0.11565<br>-0.11182<br>0.11171<br>0.19432<br>0.33112<br>0.13205<br>-0.24629              | 4.7086 eV    | 263.31 nm   | f=0.0001 | <s**2>=0.000</s**2> |
| Excited<br>160<br>160<br>161<br>161<br>161<br>161<br>162<br>162<br>162<br>162<br>162 | State<br>-> 170<br>-> 172<br>-> 174<br>-> 170<br>-> 171<br>-> 174<br>-> 178<br>-> 171<br>-> 172<br>-> 176<br>-> 178 | 10:   | Singlet-A<br>0.28836<br>0.16491<br>-0.23027<br>-0.19537<br>-0.19081<br>0.15424<br>-0.10176<br>-0.22330<br>0.18818<br>-0.12714<br>-0.13310 | 4.7121 eV    | 263.12 nm   | f=0.0017 | <s**2>=0.000</s**2> |

Compound **5** calculated at M062X/6-311g(2d,p)-SCRF(PCM, solvent=acetonitrile)

| Excited State<br>201 -> 203<br>202 -> 203<br>202 -> 206                                                                                                                               | 1:             | Singlet-A<br>-0.10735<br>0.66943<br>0.17337                                                                                                          | 2.8243 eV                   | 438.99 nm  | f=0.2963 | <s**2>=0.000</s**2> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|----------|---------------------|
| This state for<br>Total Energy, E                                                                                                                                                     | optin<br>(TD-H | nization and/or<br>HF/TD-KS) = -25!                                                                                                                  | second-order<br>55.49937402 | correction |          |                     |
| Excited State<br>201 -> 203<br>201 -> 206<br>202 -> 203                                                                                                                               | 2:             | Singlet-A<br>0.66924<br>0.17373<br>0.10687                                                                                                           | 2.8282 eV                   | 438.38 nm  | f=0.2986 | <s**2>=0.000</s**2> |
| Excited State<br>201 -> 204<br>201 -> 205<br>201 -> 207<br>201 -> 208<br>202 -> 204<br>202 -> 205<br>202 -> 207<br>202 -> 208                                                         | 3:             | Singlet-A<br>0.34253<br>0.21340<br>0.24645<br>-0.11962<br>-0.21788<br>0.34011<br>0.11886<br>0.24745                                                  | 3.5888 eV                   | 345.47 nm  | f=0.0001 | <s**2>=0.000</s**2> |
| Excited State<br>200 -> 203<br>201 -> 204<br>201 -> 205<br>201 -> 208<br>202 -> 204<br>202 -> 205<br>202 -> 207                                                                       | 4:             | Singlet-A<br>0.25665<br>-0.30562<br>0.21328<br>0.23078<br>0.21387<br>0.30956<br>0.23472                                                              | 3.7843 eV                   | 327.63 nm  | f=0.0159 | <s**2>=0.000</s**2> |
| Excited State<br>199 -> 203<br>201 -> 204<br>201 -> 205<br>201 -> 207<br>202 -> 204<br>202 -> 205<br>202 -> 208                                                                       | 5:             | Singlet-A<br>0.25813<br>0.21585<br>0.30700<br>0.23429<br>0.30844<br>-0.21190<br>-0.23197                                                             | 3.7871 eV                   | 327.38 nm  | f=0.0176 | <s**2>=0.000</s**2> |
| Excited State<br>185 -> 203<br>185 -> 204<br>185 -> 206<br>185 -> 208<br>185 -> 213<br>187 -> 204<br>187 -> 206                                                                       | 6:             | Singlet-A<br>0.17792<br>-0.41832<br>-0.28665<br>-0.18828<br>0.14013<br>-0.21787<br>-0.14506                                                          | 3.9698 eV                   | 312.32 nm  | f=0.0028 | <s**2>=0.000</s**2> |
| Excited State<br>185 -> 205<br>185 -> 206<br>186 -> 203<br>186 -> 204<br>186 -> 205<br>186 -> 206<br>186 -> 208<br>187 -> 203<br>187 -> 204<br>187 -> 205<br>187 -> 206<br>187 -> 208 | 7:             | Singlet-A<br>-0.18189<br>-0.13295<br>0.14135<br>0.14319<br>-0.31768<br>-0.23262<br>0.14277<br>-0.11192<br>-0.11187<br>0.24034<br>0.18427<br>-0.10935 | 3.9708 eV                   | 312.24 nm  | f=0.0026 | <s**2>=0.000</s**2> |
| Excited State<br>186 -> 203<br>186 -> 204<br>186 -> 205<br>186 -> 206<br>186 -> 207                                                                                                   | 8:             | Singlet-A<br>0.13068<br>0.19350<br>0.26478<br>-0.22223<br>-0.16155                                                                                   | 3.9717 eV                   | 312.17 nm  | f=0.0026 | <s**2>=0.000</s**2> |

| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                        |     | -0.11467<br>0.13175<br>0.19513<br>0.27575<br>-0.22411<br>-0.16640<br>-0.11589                                     |        |    |           |          |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------|--------|----|-----------|----------|---------------------|
| Excited State<br>198 -> 205<br>199 -> 203<br>199 -> 205<br>200 -> 203<br>200 -> 204<br>201 -> 205<br>201 -> 206<br>202 -> 204<br>202 -> 205 | 9:  | Singlet-A<br>-0.15673<br>0.10521<br>-0.13541<br>0.55605<br>0.13802<br>-0.12214<br>0.13886<br>-0.15285<br>-0.11082 | 4.2074 | eV | 294.68 nm | f=1.2026 | <s**2>=0.000</s**2> |
| Excited State<br>198 -> 204<br>199 -> 203<br>199 -> 204<br>200 -> 203<br>200 -> 205<br>201 -> 204<br>201 -> 205<br>202 -> 205<br>202 -> 206 | 10: | Singlet-A<br>0.15906<br>0.55635<br>-0.13223<br>-0.10376<br>-0.13414<br>-0.13000<br>-0.11249<br>0.14418<br>0.14054 | 4.2102 | eV | 294.49 nm | f=1.2064 | <s**2>=0.000</s**2> |

Compound 6 calculated at M062X/6-311g(2d,p)-SCRF(PCM, solvent=acetonitrile)

| Excited<br>211 | State<br>-> 212 | 1:     | Singlet-A<br>0.70112 | 2.7344 eV    | 453.43 nm  | f=0.2206 | <s**2>=0.000</s**2> |
|----------------|-----------------|--------|----------------------|--------------|------------|----------|---------------------|
| This sta       | ate for         | opti   | mization and/or      | second-order | correction |          |                     |
| Total Er       | nergy, I        | E(TD-I | HF/TD-KS) = -24      | 80.89814252  |            | -        |                     |
| Excited        | State           | 2:     | Singlet-A            | 2.7376 eV    | 452.89 nm  | f=0.2202 | <s**2>=0.000</s**2> |
| 210            | -> 212          |        | 0.70113              |              |            |          |                     |
| Excited        | State           | 3:     | Singlet-A            | 3.6409 eV    | 340.53 nm  | f=0.0000 | <s**2>=0.000</s**2> |
| 210            | -> 213          |        | 0.46259              |              |            |          |                     |
| 210            | -> 214          |        | 0.15051              |              |            |          |                     |
| 211            | -> 213          |        | -0.15218             |              |            |          |                     |
| 211            | -> 214          |        | 0.46449              |              |            |          |                     |
| Excited        | State           | 4:     | Singlet-A            | 3.9065 eV    | 317.38 nm  | f=0.0342 | <s**2>=0.000</s**2> |
| 209            | -> 212          |        | 0.22335              |              |            |          |                     |
| 210            | -> 213          |        | -0.11152             |              |            |          |                     |
| 210            | -> 214          |        | 0.44006              |              |            |          |                     |
| 211            | -> 213          |        | 0.44224              |              |            |          |                     |
| 211            | -> 214          |        | 0.11346              |              |            |          |                     |
| Excited        | State           | 5:     | Singlet-A            | 3.9068 eV    | 317.35 nm  | f=0.0337 | <s**2>=0.000</s**2> |
| 208            | -> 212          |        | 0.22292              |              |            |          |                     |
| 210            | -> 213          |        | 0.44251              |              |            |          |                     |
| 210            | -> 214          |        | 0.11265              |              |            |          |                     |
| 211            | -> 213          |        | 0.11229              |              |            |          |                     |
| 211            | -> 214          |        | -0.43982             |              |            |          |                     |
| Excited        | State           | 6:     | Singlet-A            | 4.4843 eV    | 276.49 nm  | f=0.0000 | <s**2>=0.000</s**2> |
| 210            | -> 213          |        | -0.15376             |              |            |          |                     |
| 210            | -> 214          |        | 0.47184              |              |            |          |                     |
| 211            | -> 213          |        | -0.47013             |              |            |          |                     |
| 211            | -> 214          |        | -0.15378             |              |            |          |                     |
| Excited        | State           | 7:     | Singlet-A            | 4.6348 eV    | 267.51 nm  | f=0.2405 | <s**2>=0.000</s**2> |
| 209            | -> 212          |        | 0.58222              |              |            |          |                     |
| 210            | -> 214          |        | -0.16555             |              |            |          |                     |
| 211            | -> 213          |        | -0.16331             |              |            |          |                     |
| 211            | -> 215          |        | 0.28934              |              |            |          |                     |
| Excited        | State           | 8:     | Singlet-A            | 4.6362 eV    | 267.42 nm  | f=0.2397 | <s**2>=0.000</s**2> |
| 208            | -> 212          |        | 0.58245              |              |            |          |                     |
| 210            | -> 213          |        | -0.16415             |              |            |          |                     |
| 210            | -> 215          |        | -0.28902             |              |            |          |                     |
| 211            | -> 214          |        | 0.16454              |              |            |          |                     |
| Excited        | State           | 9:     | Singlet-A            | 4.8338 eV    | 256.50 nm  | f=0.0000 | <s**2>=0.000</s**2> |
| 204            | -> 212          |        | 0.15369              |              |            |          |                     |
| 207            | -> 212          |        | 0.65731              |              |            |          |                     |
| Excited        | State           | 10:    | Singlet-A            | 4.9681 eV    | 249.56 nm  | f=1.4440 | <s**2>=0.000</s**2> |
| 208            | -> 212          |        | 0.12465              |              |            |          |                     |
| 209            | -> 212          |        | -0.26402             |              |            |          |                     |
| 210            | -> 215          |        | 0.14333              |              |            |          |                     |
| 211            | -> 215          |        | 0.59833              |              |            |          |                     |



Figure S20. <sup>1</sup>H NMR spectrum of compound 2 at room temperature (500 MHz, CDCl<sub>3</sub>).





Figure S21. <sup>13</sup>C NMR spectrum of compound 2 at room temperature (151 MHz, CDCl<sub>3</sub>).



Figure S22. <sup>1</sup>H NMR spectrum of compound 3 at room temperature (500 MHz, (CD<sub>3</sub>)<sub>2</sub>SO).



Figure S23. <sup>13</sup>C NMR spectrum of compound 3 at room temperature (151 MHz, CDCl<sub>3</sub>).



Figure S24. <sup>1</sup>H NMR spectrum of compound 4 at room temperature (500 MHz, CDCl<sub>3</sub>).



Figure S25. <sup>13</sup>C NMR spectrum of compound 4 at room temperature (151 MHz, CDCl<sub>3</sub>).



Figure S26. <sup>1</sup>H NMR spectrum of compound 5 at room temperature (500 MHz, CDCl<sub>3</sub>).



Figure S27. <sup>13</sup>C NMR spectrum of compound 5 at room temperature (151 MHz, (CD<sub>3</sub>)<sub>2</sub>SO).



Figure S28. <sup>1</sup>H NMR spectrum of compound 6 at room temperature (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO).

| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coor<br>X              | rdinates (An<br>Y      | gstroms)<br>Z        |
|------------------|------------------|----------------|------------------------|------------------------|----------------------|
| 1                | <br>6            | <br>0          | 0.706649               | <br>3.662196           | 0.043382             |
| 2                | 6                | 0              | -0.008602              | 2.458982               | 0.119825             |
| 3                | 6                | 0              | 0.706340               | 1.224618               | 0.021638             |
| 4                | 6                | 0              | 2.126195               | 1.217273               | -0.145116            |
| 5                | 6                | 0              | 2.809925               | 2.440706               | -0.173403            |
| 6                | 6                | 0              | 2.090657               | 3.627774               | -0.087567            |
| 7                | 7                | 0              | -1.388735              | 2.429506               | 0.291090             |
| 8                | 6                | 0              | -2.112136              | 1.241549               | 0.262621             |
| 9                | 6                | 0              | -1.405991              | 0.000142               | 0.207207             |
| 10               | 6                | 0              | 0.002905               | 0.000000               | 0.089360             |
| 11               | 6                | 0              | 0.706093               | -1.224/60              | 0.021634             |
| 12               | 6                | 0              | 2.125949               | -1.21//02              | -0.145124            |
| 13               | í<br>c           | 0              | 2.784383               | -0.000281              | -0.285006            |
| 14               | 0<br>7           | 0              | -2.112380              | -1.241122              | 0.262621             |
| 15               | 6                | 0              | -1.309223              | -2.429225              | 0.291090             |
| 17               | 6                | 0              | -3 513/19              | 1 221376               | 0.119818             |
| 18               | 6                | 0              | -4 179270              | 0 000421               | 0.200007             |
| 19               | 6                | 0              | -3.513664              | -1.220669              | 0.296658             |
| 20               | 6                | õ              | 0.705908               | -3.662339              | 0.043366             |
| 21               | 6                | Ø              | 2.089923               | -3.628196              | -0.087592            |
| 22               | 6                | 0              | 2.809431               | -2.441273              | -0.173423            |
| 23               | 6                | 0              | -2.110238              | 3.700392               | 0.520283             |
| 24               | 6                | 0              | 4.227684               | -0.000427              | -0.609471            |
| 25               | 6                | 0              | 5.144083               | -0.000521              | 0.621266             |
| 26               | 6                | 0              | 6.623606               | -0.000673              | 0.222326             |
| 27               | 6                | 0              | -2.579729              | 4.392972               | -0.766045            |
| 28               | 6                | 0              | -3.317940              | 5.701452               | -0.464316            |
| 29               | 6                | 0              | -2.110985              | -3.699964              | 0.520290             |
| 30               | 6                | 0              | -2.580627              | -4.392450              | -0.766033            |
| 31               | 6                | 0              | -3.319103              | -5.700779              | -0.464297            |
| 32               | 1                | 0              | 0.210351               | 4.621157               | 0.070937             |
| 33               | 1                | 0              | 3.886396               | 2.488504               | -0.248827            |
| 34               | 1                | 0              | 2.632580               | 4.56/953               | -0.12/020            |
| 35               | 1                | 0              | -4.094/40              | 2.131/85               | 0.280/0/             |
| 0C<br>7C         | 1                | 0              | -5.205155              | 2 120062               | 0.309937             |
| 32               | 1                | 0              | -4.095107<br>0 209417  | -2.130902              | 0.200770             |
| 39               | 1                | 0<br>0         | 2 631656               | -4 568484              | -0 127054            |
| 40               | 1                | õ              | 3,885891               | -2.489288              | -0.248855            |
| 41               | 1                | õ              | -1.452117              | 4.352620               | 1.097385             |
| 42               | 1                | 0              | -2.953959              | 3.484786               | 1.178311             |
| 43               | 1                | 0              | 4.422402               | -0.868628              | -1.241683            |
| 44               | 1                | 0              | 4.422579               | 0.867737               | -1.241681            |
| 45               | 1                | 0              | 4.920269               | 0.876510               | 1.240635             |
| 46               | 1                | 0              | 4.920088               | -0.877505              | 1.240636             |
| 47               | 1                | 0              | 7.262883               | -0.000737              | 1.110125             |
| 48               | 1                | 0              | 6.879812               | -0.885923              | -0.371601            |
| 49               | 1                | 0              | 6.879992               | 0.884523               | -0.371603            |
| 50               | 1                | 0              | -3.231582              | 3.712685               | -1.327490            |
| 51               | 1                | 0              | -1./13848              | 4.588035               | -1.410235            |
| 52               | 1                | 0              | -3.6461/8              | 6.1820/4               | -1.390669            |
| 53               | 1                | 0              | -2.0/5290              | 0.411901<br>E E20266   | 0.000090             |
| 54               | 11               | 0              | -4.20/125              | J.JZ8266               | 1 170201<br>1 170202 |
| 55<br>56         | 1<br>1           | 0              | -2.904000<br>_1 /50000 | -2.404104<br>_/ 352225 | 1 007200             |
| 50               | 1<br>1           | 0              | -1 71/701              | -4.532325              | -1 /10730            |
| 57               | ±<br>1           | a              | -3, 232346             | -3,712031              | -1.327474            |
| 59               | ±<br>1           | â              | -3,647449              | -6.181333              | -1.390647            |
| 60               | 1                | õ              | -4.208246              | -5.527410              | 0.153288             |
| 61               | 1                | õ              | -2.676599              | -6.411360              | 0.068908             |
|                  | -                |                |                        |                        |                      |

Table S3. Cartesian Coordinates (Å) of optimized structure of compound 1 at the ground state  $(S_0)$ 

 $C_3H_7$  N  $C_3H_7$ 

1

N C₃H7

B3LYP/6-31g(d) Int = Ultrafine E = -1249.20165325 hartree
# of imaginary frequencies = 0
Zero-point correction= 0.527096 (Hartree/Particle)
Thermal correction to Energy= 0.553403
Thermal correction to Gibbs Free Energy= 0.471121
Sum of electronic and zero-point Energies= -1248.674557
Sum of electronic and thermal Energies= -1248.648250
Sum of electronic and thermal Enthalpies= -1248.647306
Sum of electronic and thermal Free Energies= -1248.730533

| Center   | Atomic | Atomic | Coor      | dinates (An | gstroms)   |
|----------|--------|--------|-----------|-------------|------------|
| Number   | Number | Туре   | Х         | Y           | Z          |
|          |        |        |           |             |            |
| 1        | 6      | 0      | -3.497928 | -1.281066   | 0.104315   |
| 2        | 6      | 0      | -2.099951 | -1.275823   | 0.145337   |
| 3        | 6      | 0      | -1.410793 | -0.028242   | 0.062337   |
| 4        | 6      | 0      | -2.142890 | 1.191593    | -0.053994  |
| 5        | 6      | 0      | -3.540672 | 1.146367    | -0.046484  |
| 6        | 6      | 0      | -4.216024 | -0.079918   | 0.023220   |
| 7        | 7      | 0      | -1.357723 | -2.450166   | 0.255654   |
| 8        | 6      | 0      | 0.034655  | -2.455742   | 0.185843   |
| 9        | 6      | 0      | 0.727755  | -1.208228   | 0.160590   |
| 10       | 6      | 0      | -0.000040 | -0.000528   | 0.097450   |
| 11       | 6      | 0      | 0.683681  | 1.233443    | 0.051159   |
| 12       | 6      | 0      | -0.053150 | 2.450293    | -0.066720  |
| 13       | 7      | 0      | -1.441461 | 2.390023    | -0.172297  |
| 14       | 6      | 0      | 2.154103  | -1.178034   | 0.187535   |
| 15       | 7      | 0      | 2.800838  | 0.055530    | 0.237104   |
| 16       | 6      | 0      | 2.109329  | 1.259898    | 0.121758   |
| 17       | 6      | 0      | 0.774481  | -3.642004   | 0.162827   |
| 18       | 6      | 0      | 2.175861  | -3.610662   | 0.142737   |
| 19       | 6      | 0      | 2.858064  | -2.386388   | 0.164489   |
| 20       | 6      | 0      | 2.767555  | 2,492578    | 0.065887   |
| 21       | 6      | 0      | 2.041002  | 3.688552    | -0.016587  |
| 22       | 6      | õ      | 0.640615  | 3.664631    | -0.073063  |
| 23       | 6      | õ      | 2.942281  | -4.880473   | 0.092039   |
| 24       | 6      | â      | -5 699377 | -0 107284   | 0 007942   |
| 25       | 6      | 0<br>0 | 2 758736  | 4 986724    | -0 046926  |
| 25       | 6      | 0<br>0 | 2 312625  | 6 035877    | -0 869015  |
| 20       | 6      | 0      | 2.912029  | 7 253520    | -0 800330  |
| 27       | 6      | 0      | 1 120068  | 7 118002    | -0.0000000 |
| 20       | 6      | 0      | 4.120008  | 6 /15392    | 0.105525   |
| 29       | 6      | 0      | 2 000222  | E 104990    | 0.720477   |
| 21       | 6      | 0      | 6 400190  | 1 012001    | 0.740100   |
| 21       | 6      | 0      | 7 903259  | -1.015901   | 0.013903   |
| 5∠<br>22 | 6      | 0      | -/.002330 | -1.0508//   | 0.002590   |
| 22       | 6      | 0      | -0.511957 | -0.159400   | -0.019/51  |
| 24       | o<br>c | 0      | -7.619552 | 0.745914    | -0.020300  |
| 35       | 6      | 0      | -0.420312 | 0.772075    | -0.012295  |
| 30       | 6      | 0      | 4.128169  | -5.032987   | 0.830/11   |
| 37       | 6      | 0      | 4.845992  | -6.226520   | 0.786091   |
| 38       | 6      | 0      | 4.396410  | -/.280/50   | -0.003338  |
| 39       | 6      | 0      | 3.221825  | -/.14/1//   | -0.745274  |
| 40       | 6      | 0      | 2.499050  | -5.956886   | -0.695435  |
| 41       | 6      | 0      | -3.182091 | -5./68088   | -0.552419  |
| 42       | 6      | 0      | -2.452341 | -4.450429   | -0.833413  |
| 43       | 6      | 0      | -2.068014 | -3./28302   | 0.465047   |
| 44       | 6      | 0      | -3.406683 | 5.661972    | 0.4/8380   |
| 45       | 6      | 0      | -2.635938 | 4.383080    | 0.822059   |
| 46       | 6      | 0      | -2.192081 | 3.633444    | -0.441504  |
| 47       | 6      | 0      | 6.579811  | 0.115525    | -0.603758  |
| 48       | 6      | 0      | 5.071672  | 0.082245    | -0.872332  |
| 49       | 6      | 0      | 4.264508  | 0.086495    | 0.433103   |
| 50       | 1      | 0      | -4.054235 | -2.206338   | 0.086186   |
| 51       | 1      | 0      | -4.130012 | 2.051178    | -0.047910  |
| 52       | 1      | 0      | 0.288076  | -4.606057   | 0.165516   |
| 53       | 1      | 0      | 3.935722  | -2.404301   | 0.097333   |
| 54       | 1      | 0      | 3.845395  | 2.551077    | 0.038006   |
| 55       | 1      | 0      | 0.116410  | 4.608683    | -0.075277  |
| 56       | 1      | 0      | 1.451516  | 5.884742    | -1.513960  |
| 57       | 1      | 0      | 2.638295  | 8.048382    | -1.551084  |
| 58       | 1      | 0      | 4.645605  | 8.398209    | -0.125362  |
| 59       | 1      | 0      | 5.444494  | 6.563006    | 1.350536   |
| 60       | 1      | 0      | 4.242714  | 4.408056    | 1.412513   |
| 61       | 1      | 0      | -5.867071 | -1.680514   | 1.478924   |
| 62       | 1      | 0      | -8.334456 | -1.734895   | 1.442502   |
| 63       | 1      | 0      | -9.597795 | -0.179546   | -0.030365  |
| 64       | 1      | 0      | -8.364278 | 1.422010    | -1.478740  |
| 65       | 1      | 0      | -5.896465 | 1.459141    | -1.466775  |
|          |        |        |           |             |            |

| Table S4. Cartesian Coordinates | $(\text{\AA})$ of optimized structure of compound <b>2</b> at the ground state (S <sub>0</sub> ) |
|---------------------------------|--------------------------------------------------------------------------------------------------|



| 66 | 1 | 0 | 4.470966  | -4.224602 | 1.470519  |
|----|---|---|-----------|-----------|-----------|
| 67 | 1 | 0 | 5.752946  | -6.331391 | 1.374545  |
| 68 | 1 | 0 | 4.957679  | -8.215828 | -0.040063 |
| 69 | 1 | 0 | 2.871653  | -7.963635 | -1.370273 |
| 70 | 1 | 0 | 1.602404  | -5.848624 | -1.299354 |
| 71 | 1 | 0 | -3.448517 | -6.270294 | -1.487286 |
| 72 | 1 | 0 | -2.558346 | -6.456999 | 0.029483  |
| 73 | 1 | 0 | -4.108336 | -5.601757 | 0.010242  |
| 74 | 1 | 0 | -3.083628 | -3.791824 | -1.441991 |
| 75 | 1 | 0 | -1.547494 | -4.638377 | -1.424167 |
| 76 | 1 | 0 | -1.433037 | -4.360337 | 1.088896  |
| 77 | 1 | 0 | -2.952610 | -3.517934 | 1.069410  |
| 78 | 1 | 0 | -3.715765 | 6.183911  | 1.388929  |
| 79 | 1 | 0 | -2.793390 | 6.355080  | -0.109638 |
| 80 | 1 | 0 | -4.310930 | 5.442640  | -0.101730 |
| 81 | 1 | 0 | -3.258246 | 3.721450  | 1.436652  |
| 82 | 1 | 0 | -1.754770 | 4.625237  | 1.428377  |
| 83 | 1 | 0 | -1.563327 | 4.267885  | -1.069393 |
| 84 | 1 | 0 | -3.052373 | 3.370903  | -1.060425 |
| 85 | 1 | 0 | 7.140306  | 0.111691  | -1.543378 |
| 86 | 1 | 0 | 6.869294  | 1.015433  | -0.048199 |
| 87 | 1 | 0 | 6.903508  | -0.754748 | -0.020542 |
| 88 | 1 | 0 | 4.812137  | -0.809105 | -1.456186 |
| 89 | 1 | 0 | 4.778280  | 0.944567  | -1.483012 |
| 90 | 1 | 0 | 4.497843  | 0.969274  | 1.031875  |
| 91 | 1 | 0 | 4.530546  | -0.768584 | 1.057682  |
|    |   |   |           |           |           |

B3LYP/6-31g(d) Int = Ultrafine E = -1942.37953215 hartree # of imaginary frequencies = 0

Zero-point correction=0.769461 (Hartree/Particle)Thermal correction to Energy=0.810410Thermal correction to Enthalpy=0.811354Thermal correction to Gibbs Free Energy=0.693640Sum of electronic and zero-point Energies=-1941.610071Sum of electronic and thermal Energies=-1941.569122Sum of electronic and thermal Enthalpies=-1941.568178Sum of electronic and thermal Free Energies=-1941.685892

| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coor<br>X            | dinates (Ang<br>Y      | gstroms)<br>Z          |
|------------------|------------------|----------------|----------------------|------------------------|------------------------|
|                  |                  |                |                      |                        |                        |
| 1                | 6                | 0              | -1.803470            | 3.256794               | 0.095334               |
| 2                | 6                | 0              | -0.242363            | 1.388365               | 0.154552               |
| 4                | 6                | õ              | 0.850796             | 2.299970               | -0.046254              |
| 5                | 6                | 0              | 0.593900             | 3.673069               | -0.021014              |
| 6                | 6                | 0              | -0.723866            | 4.153744               | 0.038855               |
| 7                | 7                | 0              | -2.627849            | 0.962996               | 0.236409               |
| 8                | 6                | 0              | -2.418215            | -0.413066              | 0.162941               |
| 9<br>10          | 6                | 0              | -1.080111            | -0.906249              | 0.12/210               |
| 10               | 6                | ø              | 1.325293             | -0.486905              | 0.029155               |
| 12               | 6                | 0              | 2.415994             | 0.428545               | -0.073447              |
| 13               | 7                | 0              | 2.143281             | 1.792629               | -0.166887              |
| 14               | 6                | 0              | -0.832948            | -2.312330              | 0.135991               |
| 15               | 7                | 0              | 0.486212             | -2.761725              | 0.194938               |
| 16               | 6                | 0              | 1.569/88             | -1.8918/8              | 0.086530               |
| 17               | 6                | 0              | -3 234297            | -1.322377              | 0.123020               |
| 19               | 6                | õ              | -1.916898            | -3.192473              | 0.113621               |
| 20               | 6                | 0              | 2.886786             | -2.353984              | 0.022501               |
| 21               | 6                | 0              | 3.960356             | -1.451424              | -0.041779              |
| 22               | 6                | 0              | 3.721782             | -0.067565              | -0.073580              |
| 23               | 6                | 0              | -4.347747            | -3.652260              | 0.026760               |
| 24               | 6                | 0              | -0.988869            | 5.592534               | 0.042214               |
| 25               | 6                | 0              | 5.3385/4             | -1.940684              | -0.081379              |
| 20               | 6                | 0              | -2.074010            | 7 670273               | 0.570558               |
| 28               | 6                | õ              | -0.878829            | 8.075131               | -0.247924              |
| 29               | 16               | 0              | 0.128765             | 6.737081               | -0.677926              |
| 30               | 6                | 0              | -4.352756            | -4.932790              | -0.486820              |
| 31               | 6                | 0              | -5.616085            | -5.577643              | -0.398312              |
| 32               | 6                | 0              | -6.571091            | -4.789112              | 0.186516               |
| 33               | 16               | 0              | -5.940226            | -3.243995              | 0.639324               |
| 34               | 6                | 0              | 6.448955<br>7 641556 | -1.325260              | -0.621/50              |
| 36               | 6                | 0              | 7 438802             | -3 281123              | 0.146117               |
| 37               | 16               | 0<br>0         | 5.785034             | -3.491984              | 0.605490               |
| 38               | 6                | 0              | -6.187315            | 2.264019               | -0.558990              |
| 39               | 6                | 0              | -4.773680            | 1.747585               | -0.846783              |
| 40               | 6                | 0              | -4.000447            | 1.465529               | 0.448842               |
| 41               | 6                | 0              | 5.072579             | 4.235189               | 0.501694               |
| 42               | 6                | 0              | 3.929284             | 3.2/2441               | 0.839068               |
| 45<br>44         | 6                | 0              | 1 118545             | -6 491075              | -0.420432              |
| 45               | 6                | õ              | 0.855575             | -5.006648              | -0.907346              |
| 46               | 6                | 0              | 0.742999             | -4.202529              | 0.395062               |
| 47               | 1                | 0              | -2.803579            | 3.661299               | 0.061847               |
| 48               | 1                | 0              | 1.401465             | 4.390101               | -0.005039              |
| 49               | 1                | 0              | -4.500543            | -0.980965              | 0.057296               |
| 50               | 1                | 0              | -1./6945/            | -4.261629              | 0.116218               |
| 52               | 1                | 0              | A 572258             | 0 596824               | -0.022000              |
| 53               | 1                | õ              | -2.879898            | 5.757064               | 1.094854               |
| 54               | 1                | 0              | -2.770457            | 8.355516               | 0.767164               |
| 55               | 1                | 0              | -0.580177            | 9.080871               | -0.511971              |
| 56               | 1                | 0              | -3.484244            | -5.388674              | -0.949476              |
| 57               | 1                | 0              | -5.809185            | -6.581623              | -0.758744              |
| 58               | 1                | 0              | -/.607011            | -5.027667              | 0.387432               |
| 59<br>59         | 11               | 0              | 0.405858<br>8 607200 | -0.308240<br>-1 766703 | -1.130083<br>-0 868017 |
| 61               | ±<br>1           | 0              | 8.165552             | -4.046467              | 0.383841               |
| 62               | 1                | õ              | -6.724817            | 2.460384               | -1.491513              |
| 63               | 1                | 0              | -6.772098            | 1.535190               | 0.014517               |
| 64               | 1                | 0              | -6.165045            | 3.198416               | 0.014476               |
| 65               | 1                | 0              | -4.220107            | 2.478121               | -1.448958              |

| Table S5. Cartesian Coordinates ( | (Å) of o | ptimized | structure of | f comp | ound 3 | at the | ground | state ( | $(\mathbf{S}_0)$ |
|-----------------------------------|----------|----------|--------------|--------|--------|--------|--------|---------|------------------|



| 66              | 1      | 0 | -4.822607 | 0.831270  | -1.447381 |
|-----------------|--------|---|-----------|-----------|-----------|
| 67              | 1      | 0 | -4.527178 | 0.733507  | 1.064487  |
| 68              | 1      | 0 | -3.929005 | 2.365712  | 1.063030  |
| 69              | 1      | 0 | 5.542250  | 4.613207  | 1.414696  |
| 70              | 1      | 0 | 5.851176  | 3.742221  | -0.092644 |
| 71              | 1      | 0 | 4.714337  | 5.099384  | -0.070051 |
| 72              | 1      | 0 | 3.180095  | 3.779930  | 1.458636  |
| 73              | 1      | 0 | 4.305358  | 2.435149  | 1.439375  |
| 74              | 1      | 0 | 3.979832  | 2.208146  | -1.060165 |
| 75              | 1      | 0 | 2.865205  | 3.542121  | -1.041745 |
| 76              | 1      | 0 | 1.194721  | -7.050628 | -1.570242 |
| 77              | 1      | 0 | 2.055081  | -6.637320 | -0.082176 |
| 78              | 1      | 0 | 0.311493  | -6.940026 | -0.041827 |
| 79              | 1      | 0 | -0.067163 | -4.886870 | -1.488186 |
| 80              | 1      | 0 | 1.660517  | -4.589140 | -1.524114 |
| 81              | 1      | 0 | 1.654464  | -4.294874 | 0.989042  |
| 82              | 1      | 0 | -0.056088 | -4.595033 | 1.027242  |
|                 |        |   |           |           |           |
| D 2 1 1 / D / C | 24 (1) |   |           |           |           |

B3LYP/6-31g(d) Int = Ultrafine E = -2904.64584028 hartree # of imaginary frequencies = 0

Zero-point correction=0.668027 (Hartree/Particle)Thermal correction to Energy=0.708196Thermal correction to Enthalpy=0.709140Thermal correction to Gibbs Free Energy=0.592222Sum of electronic and zero-point Energies=-2903.977813Sum of electronic and thermal Energies=-2903.937645Sum of electronic and thermal Enthalpies=-2903.936701Sum of electronic and thermal Free Energies=-2904.053618

| Center<br>Number | Atomic<br>Number | Atomic<br>Tvpe | Coor<br>X            | rdinates (An<br>Y    | gstroms)<br>Z          |
|------------------|------------------|----------------|----------------------|----------------------|------------------------|
|                  |                  |                |                      |                      |                        |
| 1                | 6                | 0              | -3.553958            | -1.116765            | 0.107077               |
| 2                | 6                | 0              | -2.156506            | -1.1//133            | 0.144863               |
| 5<br>4           | 6                | 0              | -1.410690            | 1 291328             | -0 057683              |
| 5                | 6                | 0<br>0         | -3.482896            | 1.311436             | -0.053359              |
| 6                | 6                | 0              | -4.209931            | 0.117245             | 0.021361               |
| 7                | 7                | 0              | -1.471102            | -2.384249            | 0.256119               |
| 8                | 6                | 0              | -0.081483            | -2.454218            | 0.187330               |
| 9                | 6                | 0              | 0.670606             | -1.241032            | 0.161943               |
| 10               | 6                | 0              | 0.000034             | -0.000492            | 0.097060               |
| 12               | 6                | 0              | 0.060533             | 2,449749             | -0.069723              |
| 13               | 7                | õ              | -1.327955            | 2.454957             | -0.176964              |
| 14               | 6                | 0              | 2.097129             | -1.276276            | 0.190781               |
| 15               | 7                | 0              | 2.800804             | -0.075454            | 0.240912               |
| 16               | 6                | 0              | 2.166451             | 1.158687             | 0.123757               |
| 17               | 6                | 0              | 0.602100             | -3.674536            | 0.161727               |
| 18               | 6                | 0              | 2.001957             | -3./03959            | 0.145455               |
| 20               | 6                | 0              | 2.744004             | 2 360012             | 0.171095               |
| 20               | 6                | 0              | 2.208828             | 3.584588             | -0.017049              |
| 22               | 6                | õ              | 0.810869             | 3.630792             | -0.079329              |
| 23               | 6                | 0              | 2.708762             | -5.009400            | 0.093971               |
| 24               | 6                | 0              | -5.694416            | 0.159296             | 0.006407               |
| 25               | 6                | 0              | 2.987173             | 4.849087             | -0.047375              |
| 26               | 6                | 0              | 4.122452             | 5.027260             | 0.756096               |
| 2/               | 6                | 0              | 4.815/20             | 6.235823             | 0.692387               |
| 20<br>29         | 6                | 0              | 3 385648             | 7.252929             | -0.103907              |
| 30               | 6                | 0              | 2.617941             | 5.915025             | -0.880212              |
| 31               | 6                | õ              | -6.392310            | 1.048255             | -0.823552              |
| 32               | 6                | 0              | -7.786868            | 1.044362             | -0.801055              |
| 33               | 7                | 0              | -8.516622            | 0.238638             | -0.021014              |
| 34               | 6                | 0              | -7.848591            | -0.606320            | 0.772681               |
| 35               | 6                | 0              | -6.45/155            | -0.688561            | 0.822221               |
| 30<br>37         | 6                | 0              | 2.241740             | -0.002585            | -0.705109              |
| 38               | 7                | 0              | 4.053705             | -7.489922            | -0.003661              |
| 39               | 6                | 0              | 4.495358             | -6.484714            | 0.760893               |
| 40               | 6                | 0              | 3.871718             | -5.239794            | 0.842543               |
| 41               | 6                | 0              | -3.449789            | -5.614123            | -0.551884              |
| 42               | 6                | 0              | -2.660958            | -4.330986            | -0.833665              |
| 43               | 6                | 0              | -2.2410//            | -3.6294/1            | 0.465035               |
| 44               | 6                | 0              | -2 427740            | 4 503055             | 0.475554               |
| 46               | 6                | 0              | -2.020261            | 3.733695             | -0.446365              |
| 47               | 6                | 0              | 6.580003             | -0.192916            | -0.598281              |
| 48               | 6                | 0              | 5.072029             | -0.155642            | -0.867936              |
| 49               | 6                | 0              | 4.265986             | -0.113101            | 0.437407               |
| 50               | 1                | 0              | -4.154717            | -2.013945            | 0.097413               |
| 51               | 1                | 0              | -4.030952            | 2.241833             | -0.062648              |
| 53               | 1                | 0              | 3.820042             | -2.587250            | 0.111390               |
| 54               | 1                | õ              | 3.961545             | 2.370228             | 0.052055               |
| 55               | 1                | 0              | 0.333168             | 4.599166             | -0.090262              |
| 56               | 1                | 0              | 4.445750             | 4.253105             | 1.445477               |
| 57               | 1                | 0              | 5.692503             | 6.395379             | 1.316972               |
| 58               | 1                | 0              | 3.119962             | /.912435             | -1.520283              |
| 59<br>59         | 1                | 0              | 1./009/9<br>5 862/07 | J.83∠838<br>1 711701 | -1.549585<br>-1 501669 |
| 61               | 1<br>1           | 0              | -8,344781            | 1.719918             | -1.446557              |
| 62               | 1                | 0              | -8.455992            | -1.249054            | 1.406927               |
| 63               | 1                | Õ              | -5.979615            | -1.379740            | 1.510194               |
| 64               | 1                | 0              | 1.363789             | -5.941382            | -1.332624              |
| 65               | 1                | 0              | 2.604074             | -8.090670            | -1.342893              |

Table S6. Cartesian Coordinates (Å) of optimized structure of compound 4 at the ground state  $(S_0)$ 



| 66                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 5,392525  | -6.684615 | 1.343521  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|-----------|-----------|--|--|
| 67                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | õ                      | 4.270326  | -4.476817 | 1.504444  |  |  |
| 68                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -3.740822 | -6.101848 | -1.486906 |  |  |
| 69                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -2.857119 | -6.331872 | 0.027455  |  |  |
| 70                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -4.366263 | -5.406362 | 0.012798  |  |  |
| 71                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -3.262736 | -3.643650 | -1.440424 |  |  |
| 72                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -1.767272 | -4.559606 | -1.427158 |  |  |
| 73                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -1.635126 | -4.290370 | 1.087599  |  |  |
| 74                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -3.112901 | -3.378555 | 1.072267  |  |  |
| 75                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -3.422207 | 6.351536  | 1.384445  |  |  |
| 76                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -2.494878 | 6.480118  | -0.115051 |  |  |
| 77                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -4.052990 | 5.638798  | -0.105204 |  |  |
| 78                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -3.079383 | 3.871193  | 1.433097  |  |  |
| 79                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -1.535994 | 4.704475  | 1.423345  |  |  |
| 80                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -1.362903 | 4.336909  | -1.075455 |  |  |
| 81                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | -2.891233 | 3.511439  | -1.065819 |  |  |
| 82                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 7.139361  | -0.223319 | -1.537920 |  |  |
| 83                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 6.911356  | 0.692668  | -0.043292 |  |  |
| 84                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 6.862661  | -1.077192 | -0.014985 |  |  |
| 85                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 4.771349  | -1.033969 | -1.451861 |  |  |
| 86                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 4.819772  | 0.719133  | -1.479366 |  |  |
| 87                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 4.539587  | 0.757340  | 1.036882  |  |  |
| 88                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                | 0                      | 4.490804  | -0.978785 | 1.063287  |  |  |
| B3LYP/6<br>Int = l<br>E = -19<br># of in                           | 5-31g(d)<br>Jltrafine<br>990.47542776<br>naginary fre                                                                                                                                                                                                                                                                                                                                            | 5 hartree<br>equencies | = 0       |           |           |  |  |
| Zero-p<br>Therma<br>Therma<br>Sum of<br>Sum of<br>Sum of<br>Sum of | Zero-point correction=0.733766 (Hartree/Particle)Thermal correction to Energy=0.774414Thermal correction to Enthalpy=0.775358Thermal correction to Gibbs Free Energy=0.657779Sum of electronic and zero-point Energies=-1989.741662Sum of electronic and thermal Energies=-1989.701014Sum of electronic and thermal Enthalpies=-1989.700070Sum of electronic and thermal Enthalpies=-1989.817648 |                        |           |           |           |  |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                  |                        |           | -         |           |  |  |

| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coor<br>X              | rdinates (Ang<br>Y    | gstroms)<br>Z        |
|------------------|------------------|----------------|------------------------|-----------------------|----------------------|
|                  | <br>C            | <br>م          | _2 100/17              | -1 011750             | 0 106207             |
| 2                | 6                | 0              | -3.19041/<br>-1.825232 | -1.646277             | 0.148285             |
| 3                | 6                | 0              | -1.382011              | -0.290817             | 0.074020             |
| 4                | 6                | 0              | -2.327993              | 0.773338              | -0.033010            |
| 5                | 6                | 0              | -3.693369              | 0.468440              | -0.022106            |
| 6<br>7           | 6<br>7           | 0              | -4.123772              | -0.862927             | 0.03/11/             |
| 8                | 6                | 0<br>0         | 0.489218               | -2.406111             | 0.207153             |
| 9                | 6                | 0              | 0.939215               | -1.051589             | 0.177309             |
| 10               | 6                | 0              | -0.000863              | -0.000686             | 0.109633             |
| 11<br>12         | 6                | 0              | 0.4411/9               | 1.33903/              | 0.059/2/             |
| 12               | 7                | 0              | -1.862683              | 2.079664              | -0.164956            |
| 14               | 6                | 0              | 2.334922               | -0.754640             | 0.208275             |
| 15               | 7                | 0              | 2.740836               | 0.576749              | 0.252742             |
| 16               | 6                | 0              | 1.837553               | 1.629363              | 0.130031             |
| 17               | 6                | 0              | 2 806871               | -3.434431             | 0.190131<br>0 175814 |
| 19               | 6                | õ              | 3.252432               | -1.811227             | 0.195390             |
| 20               | 6                | 0              | 2.255530               | 2.963331              | 0.068550             |
| 21               | 6                | 0              | 1.317274               | 3.999144              | -0.024223            |
| 22               | 6                | 0              | -0.053807              | 3.719003              | -0.082171            |
| 23               | 6                | 0              | -5.578415              | -4.245052             | 0.132007             |
| 25               | 6                | õ              | 1.781662               | 5.409383              | -0.063777            |
| 26               | 6                | 0              | 4.970782               | -4.184880             | 0.905521             |
| 27               | 6                | 0              | 5.901941               | -5.217867             | 0.872869             |
| 28<br>29         | 6                | 0              | 5.653495               | -6.315658             | 0.053572             |
| 30               | 6                | 0              | 3.579668               | -5.370951             | -0.680712            |
| 31               | 6                | 0              | -6.079260              | -2.239107             | -0.734327            |
| 32               | 6                | 0              | -7.440263              | -2.526295             | -0.753789            |
| 33               | 6                | 0              | -8.301680              | -1.732034             | -0.001932            |
| 54<br>35         | 6                | 0              | -6.478905              | -0.383864             | 0.767842             |
| 36               | 6                | õ              | 2.841072               | 5.837313              | 0.755928             |
| 37               | 6                | 0              | 3.279958               | 7.156973              | 0.726222             |
| 38               | 6                | 0              | 2.652147               | 8.050519              | -0.137296            |
| 39               | 6                | 0              | 1.602110               | 7.662871<br>6 3/1198  | -0.965182            |
| 40               | 6                | 0              | -2.056087              | -6.265053             | -0.520874            |
| 42               | 6                | 0              | -1.582474              | -4.836375             | -0.808710            |
| 43               | 6                | 0              | -1.339105              | -4.050209             | 0.486343             |
| 44               | 6                | 0              | -4.403373              | 4.932747              | 0.473683             |
| 45<br>46         | 6                | 0              | -3.406277              | 3.822473              | -0 439038            |
| 47               | 6                | õ              | 6.447355               | 1.334226              | -0.579997            |
| 48               | 6                | 0              | 4.972630               | 1.019462              | -0.852744            |
| 49               | 6                | 0              | 4.174685               | 0.881132              | 0.450983             |
| 50<br>E1         | 7                | 0              | -9.747005              | -2.032520             | -0.015407            |
| 51               | 8                | 0              | -10.117584             | -2.989793             | -0.690430            |
| 53               | 7                | 0              | 3.114199               | 9.452263              | -0.176325            |
| 54               | 8                | 0              | 2.530780               | 10.217094             | -0.940467            |
| 55               | 8                | 0              | 4.050472               | 9.757863              | 0.558027             |
| 50               | /<br>8           | 0              | 6 382688               | -7.414686             | -0 713171            |
| 58               | 8                | õ              | 7.646301               | -7.295396             | 0.703575             |
| 59               | 1                | 0              | -3.575832              | -2.922435             | 0.148947             |
| 60               | 1                | 0              | -4.441768              | 1.244363              | -0.082643            |
| 61               | 1                | 0              | 1.139667               | -4.472277             | 0.192049             |
| o∠<br>63         | ⊥<br>1           | 0              | 4.314990<br>3.303748   | -1.028541<br>3.221223 | 0.134249<br>0.043600 |
| 64               | 1                | õ              | -0.743906              | 4.549446              | -0.093152            |
| 65               | 1                | 0              | 5.141985               | -3.337941             | 1.562781             |

| Table S7. Cartesian Coordinates | (Å) of optimized structure | of compound <b>5</b> at the gro | bund state $(S_0)$ |
|---------------------------------|----------------------------|---------------------------------|--------------------|



| 66                                  | 1                                                     | 0                                 | 6.803951      | -5.191165          | 1.471811                              |       |
|-------------------------------------|-------------------------------------------------------|-----------------------------------|---------------|--------------------|---------------------------------------|-------|
| 67                                  | 1                                                     | 0                                 | 4.356449      | -7.276457          | -1.358449                             |       |
| 68                                  | 1                                                     | 0                                 | 2.694873      | -5.421758          | -1.307794                             |       |
| 69                                  | 1                                                     | 0                                 | -5.403606     | -2.835600          | -1.339661                             |       |
| 70                                  | 1                                                     | 0                                 | -7.842224     | -3.341913          | -1.342227                             |       |
| 71                                  | 1                                                     | 0                                 | -8.545762     | -0.077399          | 1.340429                              |       |
| 72                                  | 1                                                     | 0                                 | -6.107740     | 0.430235           | 1.382824                              |       |
| 73                                  | 1                                                     | 0                                 | 3.305134      | 5.140059           | 1.446624                              |       |
| 74                                  | 1                                                     | 0                                 | 4.086439      | 7.503850           | 1.360513                              |       |
| 75                                  | 1                                                     | 0                                 | 1.149275      | 8.388655           | -1.629441                             |       |
| 76                                  | 1                                                     | 0                                 | 0.371768      | 6.022619           | -1.584096                             |       |
| 77                                  | 1                                                     | 0                                 | -2.224547     | -6.811775          | -1.453372                             |       |
| 78                                  | 1                                                     | 0                                 | -1.315604     | -6.824174          | 0.063042                              |       |
| 79                                  | 1                                                     | 0                                 | -2.996628     | -6.270991          | 0.042379                              |       |
| 80                                  | 1                                                     | 0                                 | -2.324094     | -4.308253          | -1.420427                             |       |
| 81                                  | 1                                                     | 0                                 | -0.658932     | -4.856155          | -1.400238                             |       |
| 82                                  | 1                                                     | 0                                 | -0.597183     | -4.549128          | 1.112391                              |       |
| 83                                  | 1                                                     | 0                                 | -2.245423     | -4.006634          | 1.093198                              |       |
| 84                                  | 1                                                     | 0                                 | -4.802633     | 5.392291           | 1.382603                              |       |
| 85                                  | 1                                                     | 0                                 | -3.931442     | 5.725424           | -0.118661                             |       |
| 86                                  | 1                                                     | 0                                 | -5.251309     | 4.545843           | -0.103635                             |       |
| 87                                  | 1                                                     | 0                                 | -3.892170     | 3.059070           | 1.441949                              |       |
| 88                                  | 1                                                     | 0                                 | -2.585393     | 4.228019           | 1.425756                              |       |
| 89                                  | 1                                                     | 0                                 | -2.333006     | 3.898196           | -1.071645                             |       |
| 90                                  | 1                                                     | 0                                 | -3.628722     | 2.742957           | -1.057274                             |       |
| 91                                  | 1                                                     | 0                                 | 7.001419      | 1.429228           | -1.518404                             |       |
| 92                                  | 1                                                     | 0                                 | 6.562848      | 2.2/5413           | -0.029695                             |       |
| 93                                  | 1                                                     | 0                                 | 6.9255/3      | 0.542832           | 0.009082                              |       |
| 94                                  | 1                                                     | 0                                 | 4.885616      | 0.092368           | -1.432221                             |       |
| 95                                  | 1                                                     | 0                                 | 4.526464      | 1.808429           | -1.4/01/3                             |       |
| 96                                  | 1                                                     | 0                                 | 4.23/23/      | 1.794482           | 1.045/58                              |       |
| 97                                  | 1                                                     | 0                                 | 4.592307      | 0.094900           | 1.082/40                              |       |
| B3LYP/<br>Int =<br>E = -2<br># of i | 6-31g(d)<br>Ultrafine<br>555.86221637<br>maginary fre | 7 hartree<br>equencies            | = 0           |                    |                                       |       |
| Zero-<br>Therm<br>Therm             | point correc<br>al correctional correction            | tion=<br>on to Ener<br>on to Enth | gy=<br>alpy=  | 0.77<br>0.8<br>0.8 | 6536 (Hartree/Part:<br>25333<br>26277 | icle) |
| Therm                               | al correctio                                          | on to Gibb                        | s Free Energy | . 0.               | 588023                                |       |
| Sum o                               | + electronio                                          | and zero                          | -point Energi | es=                | -2555.085680                          |       |
| Sum o                               | f electronio                                          | and ther                          | mal Energies= | 1                  | -2555.036884                          |       |
| Sum o                               | f electronio                                          | and ther                          | mal Enthalpie | S=                 | -2555.035939                          |       |
| Sum o                               | + electronio                                          | and ther                          | na⊥ Free Ener | gies=              | -2555.174193                          |       |
|                                     |                                                       |                                   |               |                    |                                       |       |

| Center   | Atomic | Atomic | Coordinates (Angstroms) |           |           |   |
|----------|--------|--------|-------------------------|-----------|-----------|---|
| Number   | Number | Туре   | Х                       | Y         | Z         | _ |
| 1        | 6      | 0      | 2.888020                | -2.355998 | -0.088930 | - |
| 2        | 6      | 0      | 1.566537                | -1.895462 | -0.138663 |   |
| 3        | 6      | 0      | 1.325622                | -0.488095 | -0.066848 |   |
| 4        | 6      | 0      | 2.416081                | 0.428996  | 0.047961  |   |
| 5        | 6      | 0      | 3.722529                | -0.074957 | 0.053351  |   |
| 6        | 6      | 0      | 3.953053                | -1.453181 | -0.006344 |   |
| /<br>0   | 7      | 0      | 0.482403                | -2.760746 | -0.259217 |   |
| o<br>Q   | 6      | 0      | -0.034290               | -2.510978 | -0.205585 |   |
| 10       | 6      | 0      | -0.000320               | 0.000232  | -0.108604 | В |
| 11       | 6      | õ      | -0.243341               | 1.392119  | -0.066100 | _ |
| 12       | 6      | 0      | 0.854309                | 2.300729  | 0.047062  |   |
| 13       | 7      | 0      | 2.144483                | 1.789900  | 0.161970  |   |
| 14       | 6      | 0      | -2.423662               | -0.406335 | -0.204866 |   |
| 15       | 7      | 0      | -2.630407               | 0.969705  | -0.256868 |   |
| 16       | 6      | 0      | -1.584895               | 1.881176  | -0.136000 |   |
| 1/       | 6      | 0      | -1.924383               | -3.189//1 | -0.186930 |   |
| 18       | 6      | 0      | -3.233051               | -2.69//61 | -0.1/128/ |   |
| 20       | 6      | 0      | -3.465565               | 3 263604  | -0.190111 |   |
| 20       | 6      | 0      | -0.722135               | 4,149892  | -0.00135  |   |
| 22       | 6      | 0<br>0 | 0.592831                | 3.676380  | 0.047529  |   |
| 23       | 5      | 0      | 5.424525                | -1.993357 | 0.023692  |   |
| 24       | 8      | 0      | 5.724083                | -3.325811 | 0.027731  |   |
| 25       | 6      | 0      | 7.173553                | -3.442481 | -0.160408 |   |
| 26       | 6      | 0      | 7.687403                | -2.016613 | 0.291441  |   |
| 27       | 8      | 0      | 6.514544                | -1.170897 | 0.048575  |   |
| 28       | 6      | 0      | 7.674118                | -4.610985 | 0.684297  |   |
| 29       | 6      | 0      | 7.393693                | -3./30/08 | -1.650115 |   |
| 50<br>21 | 6      | 0      | 8.85540/                | -1.460459 | 1 702020  |   |
| 32       | 5      | 0      | -4 436755               | -3 701758 | -0 124510 |   |
| 33       | 8      | 0      | -5.738400               | -3.294539 | -0.053153 |   |
| 34       | 6      | õ      | -6.573641               | -4.483982 | -0.246618 |   |
| 35       | 6      | 0      | -5.580229               | -5.656979 | 0.125679  |   |
| 36       | 8      | 0      | -4.271341               | -5.057179 | -0.151568 |   |
| 37       | 6      | 0      | -7.799449               | -4.360542 | 0.654297  |   |
| 38       | 6      | 0      | -6.994920               | -4.480437 | -1.720862 |   |
| 39       | 6      | 0      | -5.718554               | -6.918660 | -0.721922 |   |
| 40       | 6      | 0      | -5.583928               | -6.015030 | 1.616522  |   |
| 41       | 2      | 0      | -0.989094<br>0 011007   | 6 6172/9  | 0.022314  |   |
| 43       | 6      | 0      | -0.591779               | 7,934577  | -0.100425 |   |
| 44       | 6      | õ      | -2.116380               | 7.664881  | 0.221561  |   |
| 45       | 8      | 0      | -2.243779               | 6.230008  | -0.052141 |   |
| 46       | 6      | 0      | 0.098124                | 8.940043  | 0.817532  |   |
| 47       | 6      | 0      | -0.327249               | 8.286869  | -1.569008 |   |
| 48       | 6      | 0      | -3.109477               | 8.411860  | -0.664585 |   |
| 49       | 6      | 0      | -2.474820               | 7.856023  | 1.699999  |   |
| 50       | 6      | 0      | 1.119452                | -6.485120 | 0.579008  |   |
| 51       | 6      | 0      | 0.856014                | -4.999933 | 0.84/909  |   |
| 53       | 6      | 0      | 5 074552                | 4.202055  | -0.437703 |   |
| 54       | 6      | 0      | 3,926841                | 3.273294  | -0.838434 |   |
| 55       | 6      | õ      | 3.260315                | 2.721293  | 0.428567  |   |
| 56       | 6      | 0      | -6.181424               | 2.259565  | 0.583423  |   |
| 57       | 6      | 0      | -4.767575               | 1.733671  | 0.851616  |   |
| 58       | 6      | 0      | -4.003736               | 1.478060  | -0.454371 |   |
| 59       | 1      | 0      | 3.120516                | -3.411348 | -0.102740 |   |
| 60       | 1      | 0      | 4.581471                | 0.579728  | 0.094262  |   |
| 61       | 1      | 0      | -1./86337               | -4.261286 | -0.155190 |   |
| 62<br>62 | 1      | 0      | -4.513031<br>_2 700250  | -0.994044 | -0.104015 |   |
| 64       | ⊥<br>1 | 0      | 1 391715                | 4, 404143 | 0.079715  |   |
| 65       | 1      | õ      | 7.238106                | -5.544479 | 0.315101  |   |
|          | -      | 5      |                         | 2.2.1.472 |           |   |

# Table S8. Cartesian Coordinates (Å) of optimized structure of compound 6 at the ground state $(S_0)$



| 66                                                                                                | 1              | 0      | 8,764032  | -4.699081           | 0.616915                |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------|--------|-----------|---------------------|-------------------------|--|--|--|
| 67                                                                                                | -              | õ      | 7.398043  | -4.501263           | 1.735248                |  |  |  |
| 68                                                                                                | 1              | ã      | 8 452554  | -3 892800           | -1 874684               |  |  |  |
| 69                                                                                                | 1              | õ      | 6 843878  | -4 636538           | -1 922983               |  |  |  |
| 70                                                                                                | 1              | ø      | 7 028621  | -2 010007           | -2 277066               |  |  |  |
| 70                                                                                                | 1              | 0      | 0 112754  | -2.910997           | -2.277000               |  |  |  |
| 71                                                                                                | 1              | 0      | 9.112/54  | -0.461275           | -0.155555               |  |  |  |
| 72                                                                                                | 1              | 0      | 9.740615  | -2.096696           | -0.409156               |  |  |  |
| /3                                                                                                | 1              | 0      | 8.613114  | -1.3804/6           | -1.580253               |  |  |  |
| 74                                                                                                | 1              | 0      | 8.889959  | -2.476872           | 2.057754                |  |  |  |
| 75                                                                                                | 1              | 0      | 8.143433  | -0.868802           | 2.056586                |  |  |  |
| 76                                                                                                | 1              | 0      | 7.155349  | -2.299493           | 2.393973                |  |  |  |
| 77                                                                                                | 1              | 0      | -8.402544 | -3.503548           | 0.338616                |  |  |  |
| 78                                                                                                | 1              | 0      | -8.425195 | -5.256918           | 0.582429                |  |  |  |
| 79                                                                                                | 1              | 0      | -7.522547 | -4.212240           | 1.700278                |  |  |  |
| 80                                                                                                | 1              | 0      | -7.675389 | -5.307764           | -1.945301               |  |  |  |
| 81                                                                                                | 1              | 0      | -7.513270 | -3.542302           | -1.941094               |  |  |  |
| 82                                                                                                | 1              | 0      | -6.129510 | -4.553827           | -2.387152               |  |  |  |
| 83                                                                                                | 1              | Â      | -4.968837 | -7.653370           | -0.412158               |  |  |  |
| 84                                                                                                | 1              | ã      | -6 707636 | -7 369941           | -0 586763               |  |  |  |
| 0 <del>4</del><br>85                                                                              | 1              | ø      |           | -6 712287           | 1 784475                |  |  |  |
| 80                                                                                                | 1              | 0      | -5.5/10/0 | -0./1520/           | -1./044/3               |  |  |  |
| 80                                                                                                | 1              | 0      | -0.500159 | -0.520155           | 1.903039                |  |  |  |
| 8/                                                                                                | 1              | 0      | -4./44136 | -6.685043           | 1.824187                |  |  |  |
| 88                                                                                                | 1              | 0      | -5.471038 | -5.125531           | 2.244467                |  |  |  |
| 89                                                                                                | 1              | 0      | 1.152135  | 9.030478            | 0.536996                |  |  |  |
| 90                                                                                                | 1              | 0      | -0.361218 | 9.930137            | 0.722979                |  |  |  |
| 91                                                                                                | 1              | 0      | 0.052010  | 8.633505            | 1.864748                |  |  |  |
| 92                                                                                                | 1              | 0      | -0.694440 | 9.288560            | -1.813273               |  |  |  |
| 93                                                                                                | 1              | 0      | 0.751255  | 8.264053            | -1.752265               |  |  |  |
| 94                                                                                                | 1              | 0      | -0.801298 | 7,569833            | -2.246799               |  |  |  |
| 95                                                                                                | 1              | õ      | -4.130937 | 8.133394            | -0.387287               |  |  |  |
| 96                                                                                                | -              | â      | -3 008472 | 9 494724            | -0 532580               |  |  |  |
| 97                                                                                                | 1              | õ      | -2 969710 | 8 175/89            | -1 721625               |  |  |  |
| 98                                                                                                | 1              | 0      | -2.000710 | 0.17J40J<br>0.12625 | 1 001/07                |  |  |  |
| 90                                                                                                | 1              | 0      | -2.403933 | 7 465930            | 1.901427                |  |  |  |
| 99                                                                                                | 1<br>A         | 0      | -3.481830 | 7.465830            | 1.8/5946                |  |  |  |
| 100                                                                                               | 1              | 0      | -1./8318/ | 7.316626            | 2.354948                |  |  |  |
| 101                                                                                               | 1              | 0      | 1.201798  | -7.040006           | 1.518565                |  |  |  |
| 102                                                                                               | 1              | 0      | 0.308349  | -6.937062           | -0.004176               |  |  |  |
| 103                                                                                               | 1              | 0      | 2.053103  | -6.632376           | 0.023282                |  |  |  |
| 104                                                                                               | 1              | 0      | 1.664640  | -4.577929           | 1.456661                |  |  |  |
| 105                                                                                               | 1              | 0      | -0.065158 | -4.879932           | 1.430827                |  |  |  |
| 106                                                                                               | 1              | 0      | -0.069612 | -4.595924           | -1.080317               |  |  |  |
| 107                                                                                               | 1              | 0      | 1,644145  | -4,298443           | -1.055958               |  |  |  |
| 108                                                                                               | 1              | 0<br>0 | 5.539356  | 4.615383            | -1,412708               |  |  |  |
| 109                                                                                               | -              | â      | 4 721471  | 5 089944            | 0 081761                |  |  |  |
| 110                                                                                               | 1              | 0      | 5 855336  | 2 728020            | 0.084366                |  |  |  |
| 110                                                                                               | 1              | 0      | 1 200502  | 2 A20EA1            | 1 444919                |  |  |  |
| 112                                                                                               | 1              | 0      | 4.290902  | 2.430341            | -1.444010               |  |  |  |
| 112                                                                                               | 1              | 0      | 5.174559  | 5./6//59            | -1.448219               |  |  |  |
| 113                                                                                               | 1              | 0      | 2.8/1980  | 3.531/98            | 1.04/938                |  |  |  |
| 114                                                                                               | 1              | 0      | 3.986194  | 2.195989            | 1.051901                |  |  |  |
| 115                                                                                               | 1              | 0      | -6.713325 | 2.436756            | 1.523171                |  |  |  |
| 116                                                                                               | 1              | 0      | -6.158926 | 3.206082            | 0.030390                |  |  |  |
| 117                                                                                               | 1              | 0      | -6.770844 | 1.544091            | -0.002153               |  |  |  |
| 118                                                                                               | 1              | 0      | -4.814946 | 0.803813            | 1.431095                |  |  |  |
| 119                                                                                               | 1              | 0      | -4.208092 | 2.451484            | 1.463454                |  |  |  |
| 120                                                                                               | 1              | 0      | -3.934746 | 2.390766            | -1.049166               |  |  |  |
| 121                                                                                               | 1              | 0      | -4.534295 | 0.758069            | -1.080064               |  |  |  |
| B3LYP/6-31g(d)<br>Int = Ultrafine<br>E = -2481.29190910 hartree<br># of imaginary frequencies = 0 |                |        |           |                     |                         |  |  |  |
|                                                                                                   |                |        |           |                     |                         |  |  |  |
| Zero-                                                                                             | -point correct | ion=   |           | 1.04                | 4650 (Hartree/Particle) |  |  |  |
| Thermal correction to Energy= 1.102176                                                            |                |        |           |                     |                         |  |  |  |
| Thermal correction to Enthalpy= 1.103120                                                          |                |        |           |                     |                         |  |  |  |
| Thermal correction to Gibbs Free Energy= 0.949954                                                 |                |        |           |                     |                         |  |  |  |
| Sum of electronic and zero-noint Energiac2480_247259                                              |                |        |           |                     |                         |  |  |  |
| Sum of electronic and thermal Energies= -2480 189733                                              |                |        |           |                     |                         |  |  |  |
| Sum of electronic and thermal Enthalpies= -2480 188789                                            |                |        |           |                     |                         |  |  |  |
| Sum of electronic and thermal Eree Energies=                                                      |                |        |           |                     |                         |  |  |  |
|                                                                                                   |                |        |           |                     |                         |  |  |  |

### References

- (S1) J. C. Martin, R. G. Smith, J. Am. Chem. Soc., 1964, 86, 2252.
- (S2) B. W. Laursen, F. C. Krebs, Chem. Eur. J., 2001, 7, 1773.