Supplementary Information

Photoinduced Topographical Changes on Microcrystalline Surfaces of Diarylethenes: Versatile Shapes Generation Reflecting the Crystal Habit of Derivatives

Noriko Fujinaga,¹ Naoki Nishikawa,¹ Ryo Nishimura,¹ Kengo Hyodo,¹ Seiji Yamazoe,^{1,2} Yuko Kojima,³ Kazuki Yamamoto,⁴ Tsuyoshi Tsujioka,⁴ Masakazu Morimoto,⁵ Satoshi Yokojima,⁶ Shinichiro Nakamura,⁷ and Kingo Uchida,^{1*}

¹Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan,

² Department of Chemistry, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyoku, Tokyo, 221-0033, Japan.

- ³ MCHC R&D Synergy Center, 1000 Kamoshida, Yokohama 227-8502, Japan,
- ⁴Department of Arts and Sciences Faculty of Education Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 (Japan)
- ⁵ Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- ⁶ School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan,
- ⁷ RIKEN Innovation Center, Nakamura Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Table of Contents

1. DSC curves measured for a mixture of 40 and 4c .	S 3
2. Absorption spectral changes of 40 in hexane solution.	S4
3. Thermal stability of 4c in decalin solution at elevated temperatures.	S5
4. Force curves obtained by SPM on single crystalline surfaces of 10 , 30 , and 40 .	S 6
5. Relation between temperatures and slope of force curves indicating the hardness	
of the surface obtained by SPM on single crystalline surfaces of 40.	S 7
6. The XRD patterns of microcrystalline surfaces.	S10

Fig. S1. DSC curves measured for the samples of (a) a mixture of **4o** and **4c** (**4o/4c** = 74.2/25.8) and (b) 100% of **4c** with heating rate of 5 °C/min. After DSC measurement the ratio of the **4c** was measured by absorption spectra, and found the contents were reduced from 25.8% to 10.5% for (a), and 100% to 17.1% for (b), respectively.

Fig. S2. (a) Absorption spectral changes of **40** in hexane solution $(3.55 \times 10^{-5} \text{ mol/L})$. **40**: black solid line, **4c**: purple solid line, photostationary state (PSS) upon UV irradiation (**40**:**4c**=1:99): red broken line. λ_{max} of **40**: 267 nm (ε : 2.24 × 10⁴ M⁻¹cm⁻¹), λ_{max} of **4c**: 542 nm (ε : 1.11 × 10⁴ M⁻¹cm⁻¹), (b) Absorption spectrum of **40**-4c mixture after measurement of DSC (red-line) and the spectrum of **40** upon visible light irradiation (black line). New band around 370 nm indicating decomposition product.

Fig. S3. Thermal stability of **4c** in decalin solution at elevated temperatures (monitored at 547 nm).

Fig. S4. Force curves obtained by SPM on single crystalline surfaces of **10** ((a) before and (b) after irradiation with UV light at 22 °C. (c) before irradiation with UV light at 30 °C. (d) before irradiation with UV light at 50 °C. (e) before irradiation with UV light at 100 °C. (f) after irradiation with UV light at 30 °C.) Approach and release processes are depicted as red and blue lines, respectively. The speed of th*e* approach and the release of the cantilever were both 100 nm/s. The spring constant was 42 N/m.

Fig. S5. Force curves obtained by SPM on single crystalline surfaces of **30** at 30 °C ((a) before and (b) after UV irradiation).

Fig. S6. Summary of the force curves (FC) obtained by SPM on single crystalline surfaces of **40**. FCs were measured at 23 (a, b), 25 (c, d), 29 (e, f), and 50 °C (g, h). FCs before UV irradiation are shown in Figs. (a), (c), (e), (g), and FCs after UV irradiation are shown in Figs. (b), (d), (f), (h).

Fig. S7. Relation between temperatures and slope of force curves indicating the hardness of the surface obtained by SPM on single crystalline surfaces of **40** ((a) before and (b) after UV irradiation).

Fig. S8. The XRD patterns of microcrystalline surfaces of **10**, **20**, **30** and **40** (a, c, e, g), and microcrystalline surfaces storage at eutectic temperatures in the dark after UV irradiation (b, d, f, h). The diffraction peak at 27.9 °, attributed to 113 diffraction of **1c** (b), the diffraction peak at 5.00 °, attributed to 001 diffraction of **2c** (d), the diffraction peak at 16.7 °, attributed to 012 diffraction of **3c** (f), the diffraction peaks at 27.3 ° and 28.1°, attributed to 21-6 and 52-2 diffractions of **4c** (h) were observed.