Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Wafer-scale porous GaN single crystal substrates and its application in energy storage

Jiaoxian Yu, a†‡ Lei Zhang, b‡, Jianxing Shena, Zhiliang Xiua and Suwen Liua

- a. Department of Materials Science and Engineering, Qilu University of Technology, Jinan 250353, P. R. China
- b. State Key laboratory of Crystal Material, Shandong University, Jinan, 250100

†E-mail:yjx0327@qlu.edu.cn

‡These authors (Jiaoxian Yu and Lei Zhang) contributed equally to this work.

SEM characterization of porous GaN

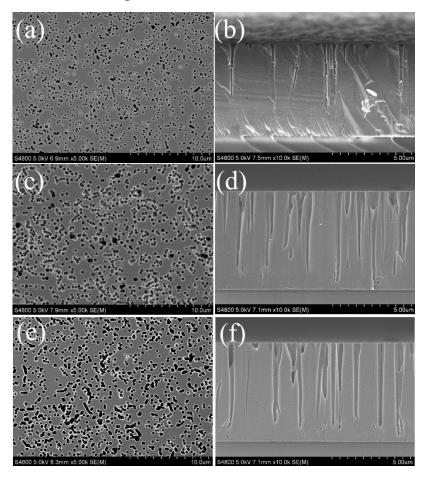


Figure S1. Surface and cross section SEM images of porous GaN samples annealed at 1150 °C for different times (a, b) 45min, (c, d) 75min, (e, f) 90 min.

High-resolution X-ray diffraction (HRXRD) rocking curves of as grown GaN and porous GaN samples

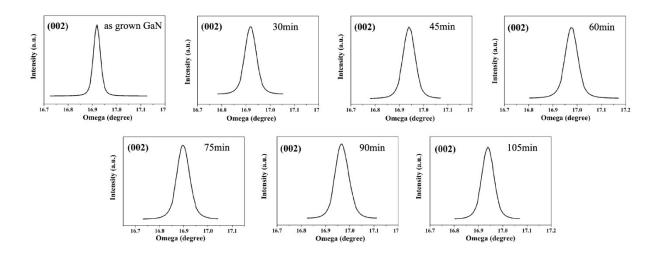


Figure S2. High-resolution X-ray diffraction (HRXRD) (002) ω-scans rocking curves of as grown GaN and porous GaN samples annealed at 1150 °C for different times 30min, 45min, 60min, 75min, 90min, 105min.

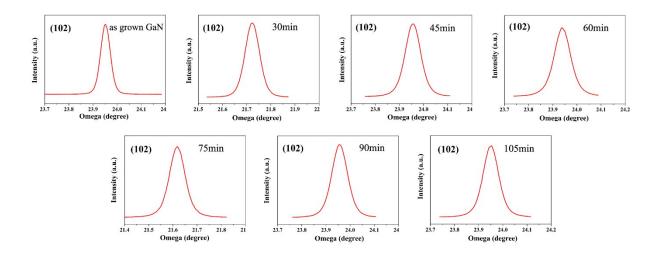


Figure S3. High-resolution X-ray diffraction (HRXRD) (002) ω -scans rocking curves of as grown GaN and porous GaN samples annealed at 1150 °C for different times 30min, 45min, 60min, 75min, 90min, 105min.