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Table S1. Bond Valence Sum (BVS) Calculations of All W, Fe and Ln Atoms in 1–4.

Table S2. Variation of Ln−O Bond Lengths with the atomic number in 1−4.

Figure S1 Comparison of the simulated and experimental PXRD patterns of 1-4.

1-BVS 2-BVS 3-BVS 4- BVS

Ln1 3.24 W10 5.29 Ln1 2.95 W10 6.46 Ln1 3.26 Ln1 2.98
Fe1 3.08 W11 6.35 Fe1 3.14 W11 6.14 Fe1 3.23 Fe1 3.06
Fe2 3.11 W12 6.31 Fe2 3.13 W12 6.28 W1 6.03 W1 6.02
W1 6.09 W13 6.44 W1 5.93 W13 6.22 W2 5.95 W2 6.18
W2 5.81 W14 6.15 W2 6.33 W14 6.17 W3 6.40 W3 6.36
W3 5.99 W15 6.11 W3 6.28 W15 5.97 W4 6.10 W4 6.11
W4 5.80 W16 5.93 W4 6.14 W16 5.93 W5 5.91 W5 6.15
W5 6.34 W17 6.47 W5 6.06 W17 5.93 W6 6.09 W6 5.61
W6 5.62 W18 5.06 W6 6.05 W18 5.90 W7 5.65 W7 5.85
W7 6.47 W19 6.07 W7 6.13 W19 6.21 W8 5.66 W8 6.14
W8 5.33 W20 5.94 W8 6.19 W20 6.18 W9 5.95 W9 5.91
W9 5.94 W9 6.20 W10 5.89 W10 5.85

Compoundsatomitic mumber Range of
Ln-O Lengths ( Å)

Average Ln−O
lengths (Å)

1(LaIII)57 2.47(2)-2.589(18) 2.526
2(CeIII)58 2.458(15)-2.529(14) 2.515
3(SmIII)62 2.383(13)-2.471(15) 2.436
4(TbIII)65 2.378(15)-2.429(16) 2.397



Figure S2 The IR spectrum of 1-4.

IR spectra.
The IR spectra of 1–4 were recorded with KBr pellets in the range of 4000–400 cm-1 (Figure S2). 
In the low wavenumber region, IR spectra of 1–4 all exhibit the characteristic νas(P–O), terminal 
νas(W–Ot), corner-sharing νas(W–Ob) and edge-sharing νas(W–Oc) asymmetric vibration patterns 
resulting from the Keggin-type POM framework, which are observed at 1066, 1041; 960, 942; 
912, 867 and 794, 766 cm-1 for 1, 1074, 1042; 963, 943; 868; 795, 767 for 2, 1073, 1043; 945; 
866; 794, 760 for 3, 1083, 1044; 944; 867; 796, 760 for 4, respectively. By a close examination 
of their IR spectra, some stretching vibration bands split into two bands as a consequence of the 
lower symmetry of the divacant poly-oxoanion fragments in 1–4 than those of the plenary Keggin 
POT clusters.1 In contrast, IR spectra of 1–4 obviously differ from those of the trivacant Keggin 
polyoxoanion precursors,1,2 which further confirm the structural transformations from [α-
PW9O34]9- to [α-PW10O38]9- during the course of forming 1–4. Moreover, the resonances 
appearing at 3436; 3437; 3436; 3437 cm-1 and 3027; 3015; 3027; 3015 cm-1 are attributable to 
the ν(-NH2) and ν(-CH2) stretching vibration while the signals at 1617; 1611; 1619; 1613 cm-1 
and 1454; 1454; 1455; 1455 cm-1 are assigned to the δ(-NH2) and δ(-CH2) bending vibration, 
respectively. For 1–4, the resonances at 1498, 1340; 1499, 1341; 1507, 1341; 1506, 1341 cm-1 
are attributed to the vas(C=O) and vas(C-O) stretching vibrations of acetate ligands, respectively.3 
The occurrence of these characteristic signals confirms the presence of en groups and Tart ligands 
in 1–4. In addition, the vibration bands at 3436–3437 cm-1 are indicative of the presence of lattice 
water molecules or coordination water molecules. In a word, the results of the IR spectra are in 
good agreement with those obtained from the X-ray single-crystal structural analyses.



Figure S3 UV-Vis plots of Kunelka-Munk function versus energy E (eV) of 1 (a), 2 (b), 3 (c), 4 (d).

UV spectra
To evaluate the optical properties of 1-4, the measurements of diffuse reflectance spectra for 
powdered crystal samples were performed to obtain their band gaps (Eg) (Figure S3). The band 
gap was determined as the intersection point between the energy axis and the line extrapolated 
from the linear portion of the absorption edge in a plot of the Kubelka–Munk function against 
the energy E.4,5 Their band gaps Eg are 3.18, 4.27, 2.88 and 2.88 eV for 1-4, respectively. These 
band gaps are related to the energy-level difference between the oxygen p-type HOMO and the 
tungsten p-type LUMO.6 Similar behaviors have been observed in several reported TMSPs, such 
as [{Ni6(μ3-OH)3(en)2(H2O)8}(PW9O34) (en = ethylenediamine),7 [Ni6(enMe)3(μ3-OH)3]3 
(Ac)2(H2O)(P2W15O56)]2 (enMe = 1,2-diaminopropane).8 The band gaps of the compounds 
decrease with increasing dimensionality or complexity of the structures, as pointed out by 
Kanatzidis and Papavassiliou.9-11

Figure S4 The TG curve of 1-4.



Figure S5 Coloration change of compound 1-3 after 0-330 min of UV irradiation with a 300 W xenon lamp, 

1 (a), 2 (b), 3 (c). 
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