pH-Dependent Assembly of Three Novel Inorganic-Organic Hybrids Based on Different Isopolymolybdates and Cu^{I/II}(bbx)_n Units

Panfeng Wu, Qi Xue, Xinbo Dong, Yanjie Zhang, Bin Liu, Huaiming Hu, Ganglin Xue*

Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Department of Chemistry, Northwest University, Xi'an, 710069, China.E-mail: <u>xglin707@163.com</u>

	Cor	npound 1		
Cu(1)-N(4)#1	1.909(8)	Cu(1)-N(1)	1.944(8)	
Cu(1)-O(9)	1.993(6)	Cu(1)-O(14)	2.045(7)	
Mo(1)-O(6)	1.688(6)	Mo(1)-O(7)	1.719(6)	
Mo(1)-O(5)	1.938(6)	Mo(1)-O(4)	1.959(6)	
Mo(1)-O(13)	2.158(6)	Mo(1)-O(13)#2	2.336(6)	
Mo(2)-O(12)	1.685(7)	Mo(2)-O(9)	1.713(6)	
Mo(2)-O(1)	1.886(7)	Mo(2)-O(10)	1.912(7)	
Mo(2)-O(7)#2	2.275(7)	Mo(2)-O(13)	2.357(6)	
Mo(3)-O(11)	1.707(6)	Mo(3)-O(2)	1.712(7)	
Mo(3)-O(10)	1.876(6)	Mo(3)-O(4)	1.975(6)	
Mo(3)-O(5)#2	2.313(6)	Mo(3)-O(13)	2.343(6)	
Mo(4)-O(8)	1.680(7)	Mo(4)-O(3)	1.717(7)	
Mo(4)-O(1)	1.898(7)	Mo(4)-O(5)	1.989(6)	
Mo(4)-O(4)#2	2.328(6)	Mo(4)-O(13)	2.355(6)	
O(4)-Mo(4)#2	2.328(6)	O(5)-Mo(3)#2	2.313(6)	
O(7)-Mo(2)#2	2.275(7)	O(13)-Mo(1)#2	2.336(6)	
N(4)-Cu(1)#3	1.909(8)	N(4)#1-Cu(1)-O(9)	89.4(3)	
N(4)#1-Cu(1)-N(1)	172.5(4)	N(4)#1-Cu(1)-O(14)	90.1(3)	
N(1)-Cu(1)-O(9)	85.4(3)	O(9)-Cu(1)-O(14)	163.3(3)	
N(1)-Cu(1)-O(14)	96.4(3)			
	Cor	npound 2		
N(8)-Cu(1)#1	2.003(5)	N(4)-Cu(1)#2	1.969(5)	
Mo(1)-O(6)	1.729(4)	Mo(1)-O(13)	1.700(4)	
Mo(1)-O(7)	1.913(4)	Mo(1)-O(2)	1.880(4)	
Mo(1)-O(7)#3	2.385(4)	Mo(1)-O(1)	2.293(4)	
Mo(2)-O(4)	1.692(5)	Mo(2)-O(5)	1.689(4)	
Mo(2)-O(1)	1.869(4)	Mo(2)-O(3)	1.822(4)	
Mo(3)-O(12)	1.686(4)	Mo(2)-O(2)	2.413(4)	

Table S1. Selected bond lengths (Å) and angles (°) of the compounds 1–3.

Mo(3)-O(10)	1.905(4)	Mo(3)-O(11)	1.707(4)	
Mo(3)-O(2)#3	2.114(4)	Mo(3)-O(3)#3	2.008(4)	
Mo(4)-O(9)	1.687(5)	Mo(3)-O(7)	2.519(4)	
Mo(4)-O(10)	1.900(4)	Mo(4)-O(8)	1.692(5)	
Mo(4)-O(7)	2.229(4)	Mo(4)-O(1)	2.017(4)	
Cu(1)-N(4)#4	1.969(5)	Mo(4)-O(6)#3	2.364(4)	
Cu(1)-N(5)	1.987(5)	Cu(1)-N(1)	1.983(5)	
Cu(1)-O(11)	2.408(5)	Cu(1)-N(8)#5	2.003(5)	
O(7)-Mo(1)#3	2.385(4)	N(4)#4-Cu(1)-N(1)	172.7(2)	
N(4)#4-Cu(1)-N(5)	92.3(2)	N(1)-Cu(1)-N(5)	92.4(2)	
N(4)#4-Cu(1)-N(8)#5	86.5(2)	N(1)-Cu(1)-N(8)#5	88.3(2)	
N(5)-Cu(1)-N(8)#5	174.5(2)	N(4)#4-Cu(1)-O(11)	93.62(19)	
N(1)-Cu(1)-O(11)	91.84(19)	N(5)-Cu(1)-O(11)	90.65(19)	
	Cor	npound 3		
Cu(1)-N(1)#1	1.889(5)	N(1)#1-Cu(1)-O(1)	96.1(2)	
Cu(1)-O(1)	2.269(6)	N(1)#1-Cu(1)-N(3)	165.0(3)	
Mo(1)-O(2)	1.709(6)	N(3)-Cu(1)-O(1)	98.3(2)	
Mo(1)-O(3)#2	1.850(15)	Cu(1)-N(3)	1.894(5)	
O(3)-Mo(1)#2	1.850(15)	N(1)-Cu(1)#3	1.889(5)	

Symmetry transformations used to generate equivalent atoms:

Compound 1: #1 x-1/2, -y+3/2, z+1/2; #2 -x+1, -y+2, -z+2; #3 x+1/2, -y+3/2, z-1/2.

Compound 2: #1 -x+3/2, y-1/2, -z+1/2; #2 x+1, y, z; #3 -x+2, -y, -z+1; #4 x-1, y, z; #5 -x+3/2, y+1/2, -z+1/2.

Compound 3: #1 x, y-1, z; #2 -x+3/2, -y+3/2,-z; #3 x, y+1, z.

Magnetism measurements were performed on a Quantum Design MPMS SQUID magnetometer. The experimental susceptibilities were corrected for the diamagnetism of the constituent atoms (Pascal's tables).

Fig. S1. M(H) data for polycrystalline samples of compound 3 at 2.0 K.

Fig. S2. The detail of π - π interactions in **3**.

Fig. S3. PXRD patterns for simulated and experimental samples 1-3.

Fig. S4. UV-vis absorption spectra for compounds 1-3.

Fig. S5. TG curve of compounds 1-3.

Fig. S6. (a) Cyclic voltammograms of Compounds **1-3** in 1 M H_2SO_4 at scan rates of 60mV/s. (b) Cyclic voltammograms of Compounds **1-3** in 1 M H_2SO_4 at different scan rates (from inner to outer: 60, 80, 100, 120, 140, 160, 200mV/s).

Fig. S7. Absorption spectra of the MB solution during the decomposition reaction use of PMS as compounds 1 and 3.