Supporting information for

Synthesis of BiOBr/WO₃ *p-n* heterojunction with enhanced visible light photocatalytic activity

Junlei Zhang, Lisha Zhang,* Xiaofeng Shen, Pengfei Xu and Jianshe Liu*

State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

*Corresponding authors. E-mail: <u>lszhang@dhu.edu.cn</u> (L.S. Zhang); <u>liujianshe@dhu.edu.cn</u> (J.S. Liu). Tel.: +86-21-67792548; Fax: +86-21-67792522.

Figure S1 The adsorption and degradation efficiency of MO (10 mg L⁻¹, 50 mL, pH =7.93) in the presence of BiOBr/WO₃-1/1.

Figure S2 The adsorption and degradation efficiency of 4-CP (1 mg L⁻¹, 50 mL, pH = 6.34) versus the exposure time under visible-light irradiation ($\lambda > 400$ nm) in the presence of the BiOBr/WO₃-1/1 (25 mg).

Figure S3 TOC removal during RhB (40 mg L^{-1} , 100 mL) photocatalytic degradation process in the presence of the BiOBr/WO₃-1/1 (60 mg).

Figure S4 Cycling runs in photocatalytic degradation of (a) RhB and (c) MO over $BiOBr/WO_3-1/1$, respectively; XRD patterns of $BiOBr/WO_3-1/1$ before and after photocatalytic reaction of (b) RhB and (d) MO, respectively.

Figure S5 Photoluminescence spectra (PL) of the BiOBr and BiOBr/WO₃-1/1 samples.