Crystal engineering urea organic acid hydrogen bonded networks with solvent inclusion properties

Lucy K. Saunders^{a,b}, Harriott Nowell^b, Paul R. Raithby^a, Chick C. Wilson^a a Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. b Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK. E-mail: C.C.Wilson@bath.ac.uk

SUPPLEMENTARY INFORMATION

Contents

Table S1	Hydrogen atom refinement details for all molecular complexes
Table S2	Structural variation in the molecular components across the IMs; including the angle between the urea and phenyl moiety planes in <i>N</i> -phenylurea (co-planarity) and the 5-nitroisophthalic acid carboxylic acid group torsion angle to the benzene ring (torsion angle 1 and torsion angle 2)
Table S3	Hydrogen bond details of those involved in network formation in IM1 to IM2.
Table S4	Hydrogen bond details of those involved in network formation in IM3 and IM4 .
Table S5	Hydrogen bond details of those involved in network formation in IM5 to IM7 .
Table S6	Hydrogen bond details of those involved in network formation in CIM1 and CIM2 .
Table S7	Hydrogen bond details of those involved in the host-guest interactions in IM4 to IM7 , CIM1 and CIM2 .
Table S8	Hydrogen bond details of those involved in network formation in NS1 and NS2.
Figure S9	The TG-MS analysis for (a) IM1 : methanol peaks $MS1 = 31 \text{ m/z}$, $MS2 = 32 \text{ m/z}$, $MS3 = 29 \text{ m/z}$, $MS4 = 15 \text{ m/z}$, (b) IM2 : ethanol peaks $MS1 = 31 \text{ m/z}$, $MS2 = 45$

m/z, MS3 = 27 m/z, MS4 = 29 m/z, water peak MS5 = 18 m/z and (c) IM3: acetonitrile peaks MS1 = 41 m/z, MS2 = 39 m/z, MS3 = 28 m/z, MS4 = 14 m/z.

- Figure S10 The TG-MS analysis for (a) IM4: acetone peaks MS1 = 43 m/z, MS2 = 58 m/z, MS3 = 15 m/z, MS4 = 42 m/z, water peaks MS5 = 18 m/z, (b) IM5: THF peaks MS1 = 42 m/z, MS2 = 41 m/z, MS3 = 71 m/z, MS4 = 43 m/z, water peak MS5 18 m/z and (c) IM6: ethyl acetate peaks MS1 = 43 m/z, MS2 = 61 m/z, MS3 = 45 m/z, MS4 = 70 m/z.
- Figure S11 The TG-MS analysis for (a) IM7: THF peaks MS1 = 42, MS2 = 41, MS3 = 71, MS4 = 43, methanol peaks and MS5 = 31, MS6 = 32, MS7 = 29, MS8 = 15, (b) CIM1: water peaks MS1 = 18 m/z, MS2 = 17 m/z and MS3 = 16 m/z and (c) CIM2: acetone peaks MS1 = 43 m/z, MS2 = 58 m/z, MS3 = 15 m/z, MS4 = 42 m/z, water peaks MS5 = 18 m/z.
- **Table S12**Mass loss data for TG analysis of IM1 to IM7, CIM1 and CIM2.
- Table S13The corresponding energies of the desolvation endotherm for IM1 IM7, CIM1
and CIM2.
- Figure S14PXRD patterns for (a) IM1, (b) IM2, (c) IM3 and (d) IM4 at 25 °C on samples at
25 °C and preheated to 145 °C.
- Figure S15PXRD patterns for (a) IM5, (b) IM6, (c) IM7 and (d) CIM2 at 25 °C on samplesat 25 °C and preheated to 145 °C (CIM2 preheated to 150 °C).

Figure S16PXRD patterns for (a) NS2 at 25 °C and on a sample preheated to 150 °C and (b)CIM1 at 25 °C and on a sample preheated to 145 ° C and 189 °C.

Figure S17 PXRD patterns of (a) NS1 and (b) NS2: (i) the simulated powder pattern of the material, (ii) each material pre-vapour diffusion and post vapour diffusion with (iii) methanol, (iv) ethanol, (v) acetonitrile, (vi) acetone, (vii) THF and (viii) ethyl acetate at -18 °C.

- Figure S18A comparison of PXRD patterns of (i) NS1 pre vapour diffusion with (ii) the acetone
solvent vapour diffusion product and (iii) the simulated powder pattern for CIM2.
The boxes highlight similarities in the patterns.
- Figure S19A comparison of PXRD patterns of (i) NS2 pre vapour diffusion with (ii) the acetone
solvent vapour diffusion product and (ii) the simulated powder pattern for CIM2.
The boxes highlight similarities in the patterns.

 Table S1 Hydrogen atom refinement details for all IMs.

IM	Hydrogen atom refinement details
IM1	Treated by a mixture of independent and constrained refinements, located from Fourier difference maps
	or in calculated positions. The methyl hydrogen atoms of the two methanol solvent molecules were
	positioned geometrically using HFIX 137. The alcohol hydrogen atoms of the two methanol solvent
	molecules were refined with isotropic displacement parameters set to -1.5. Two of the 5-nitroisophthalic
	acid molecules were refined with one of the hydroxyl hydrogen atom isotropic displacement parameters
	set to -1.5. One of the N-phenylurea molecules had a primary N-H hydrogen atom refined with an
	isotropic displacement parameter set to -1.5.
IM2	Treated by constrained refinements in calculated positions. The hydroxyl hydrogen atoms on the 5-
	nitroisophthalic acid molecules were fixed geometrically using HFIX 83. The primary amine hydrogen
	atoms of the <i>N</i> -phenylurea molecules were fixed geometrically using HFIX 93. The aromatic hydrogen
	atoms of the <i>N</i> -phenylurea and 5-nitroisophthalic acid molecules were fixed geometrically using HFIX
	43. The secondary amine hydrogen atoms of the <i>N</i> -phenylurea molecule were fixed geometrically using
	HFIX 43.
IM3	Located from Fourier difference map and refined freely.
IM4	Treated by a mixture of independent and constrained refinements, located from Fourier difference maps
	or in calculated positions. The N-H distances of the secondary amine groups in the N-phenylurea
	molecules were constrained to 0.86 Å. In the water solvent molecule, the O-H distances were
	constrained to 0.82 Å and the HOH angle constrained using DANG 1.319 Å between the two water
	hydrogen atoms. All 5-nitroisophthalic acid molecule hydroxyl hydrogen atoms were positioned
	geometrically using HFIX 83. The aromatic hydrogen atoms in the <i>N</i> -phenylurea and 5-nitroisophthalic
	acid molecules were positioned geometrically using HFIX 43. The methyl hydrogen atoms (both methyl
	groups) of the acetone solvent molecule were positioned geometrically using HFIX 137. The hydrogen
	atoms in the primary amine groups of the N-phenylurea molecule were positioned geometrically using
	HFIX 93.
IM5	Located from Fourier difference map and refined freely.
IM6	Located from Fourier difference map and refined freely.
IM7	Treated by a mixture of independent and constrained refinements, located from Fourier difference maps
	or in calculated positions. Aromatic hydrogen atoms of the 5-nitroisophthalic acid and N-phenylurea
	molecules were positioned geometrically using HFIX 43.
CIM1	Treated by a mixture of independent and constrained refinements, located from Fourier difference maps
	or in calculated positions. The water solvent hydrogen atoms were located in Fourier difference maps
	and refined with an O—H distance constrained to 0.82 Å. The <i>N</i> -phenylurea and 5-nitroisophthalic acid
	aromatic and secondary amine hydrogen atoms were positioned geometrically using HFIX 43. The
	primary amine hydrogen atoms were positioned geometrically using HFIX 93.
CIM2	Located from Fourier difference map and refined freely.
NS1	Located from Fourier difference map and refined freely.
NS2	Located from Fourier difference map and refined freely.

Table S2 Structural variation in the molecular components across the IMs; including the anglebetween the urea and phenyl moiety planes in *N*-phenylurea (co-planarity) and the 5-nitroisophthalicacid carboxylic acid group torsion angle to the benzene ring (torsion angle 1 and torsion angle 2)

IM	Co-planarity		Torsion angle			
	<i>N</i> -phenylurea	Angle (°)	5-nitroisophthalic	Torsion angle 1 (°)	Torsion angle 2 (°)	
			acid			
IM1	1	2.93	1	-0.6(3)	-2.6(4)	
	2	2.73	2	-3.5(4)	-1.2(4)	
	3	20.40	3	1.9(4)	3.3(3)	
	4	10.13	4	0.8(3)	2.6(3)	
	5	12.56				
	6	8.02				
	7	8.58				
IM2	1	7.13	1	-0.2(8)	-1(1)	
	2	11.58	2	-0.1(9)	2(1)	
	3	3.42				
IM3	1	3.83	1	4.0(2)	-1.9(2)	
	2	9.45	2	-4.2(2)	-3.9(2)	
	3	28.37				
IM4	1	5.05	1	3.3(8)	-11.6(9)	
	2	3.34	2	-2.4(8)	8.4(9)	
	3	5.85				
IM5	1	0.35	1	6.0(3)	-1.3(3)	
	2	3.57	2	8.3(3)	5.7(3)	
	3	35.41				
IM6	1	6.54	1	-4.2(3)	0.4(3)	
	2	6.93	2	0.2(3)	0.3(3)	
	3	13.67				
	4	7.12				
IM7	1	13.85	1	1.0(3)	4.5(3)	
CIM1	1	4.40	1	1.0(5)	-2.1(5)	
	2	33.68	2	4.0(5)	-3.2(5)	
CIM2	1	8.08	1	1.5(1)	-3.4(1)	
NS1	1	31.66	1	6.9(3)	4.4(3)	
	2	16.78				
NS2	1	17.83	1	-4.4(3)	12.1(3)	
	2	14.65	2	163(3)	1.8(3)	

IM	D-HA	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	<(DHA) (°)	Sym op
IM1	N(14)-H(26)O(8)#3	0.87(3)	2.20(3)	3.044(3)	161(2)	#3 -x,-y+1,-z
	O(7)-H(102)O(14)#3	1.05(4)	1.45(4)	2.500(2)	175(3)	#3 -x,-y+1,-z
	N(3)-H(42)O(32)#2	0.96(3)	1.93(3)	2.877(3)	170(3)	#2 x+1,y,z
	O(31)-H(79)O(26)#1	1.04(4)	1.61(4)	2.632(2)	170(3)	#1 x-1,y,z
	N(1)-H(51)O(5)#4	0.88(3)	2.13(3)	2.984(3)	161(2)	#4 -x+1,-y+1,-z+1
	O(6)-H(80)O(25)#4	0.91(4)	1.62(4)	2.520(3)	168(3)	#4 -x+1,-y+1,-z+1
	N(9)-H(73)O(4)#3	0.92(3)	1.97(3)	2.882(3)	174(2)	#3 -x,-y+1,-z
	O(3)-H(81)O(21)#3	0.96(3)	1.61(4)	2.555(2)	165(3)	#3 -x,-y+1,-z
	N(11)-H(77)O(18)#1	0.93(3)	1.93(3)	2.850(3)	169(3)	#1 x-1,y,z
	O(17)-H(83)O(13)#2	1.06(3)	1.55(4)	2.595(2)	169(3)	#2 x+1,y,z
	N(7)-H(101)O(11)	0.95(3)	1.96(3)	2.902(3)	173(3)	
	O(12)-H(82)O(23)	1.02(3)	1.56(3)	2.559(2)	166(3)	
	N(13)-H(28)O(20)	0.86(2)	2.07(2)	2.899(3)	162.0(19)	
	N(14)-H(27)O(20)	0.89(3)	2.35(3)	3.085(3)	140(2)	
	N(2)-H(53)O(28)	0.87(2)	2.11(2)	2.927(3)	158(2)	
	N(1)-H(52)O(28)	0.93(3)	2.25(3)	3.042(3)	142(2)	
	N(3)-H(41)O(29)	0.90(2)	2.18(3)	3.064(3)	169(2)	
	N(4)-H(56)O(30)	0.87(2)	2.30(2)	3.157(3)	172(2)	
	N(6)-H(16)O(10)#2	0.88(3)	2.40(3)	3.273(3)	177(2)	#2 x+1,y,z
	N(7)-H(17)O(9)#2	0.88(3)	2.10(3)	2.980(3)	176(2)	#2 x+1,y,z
	N(9)-H(72)O(1)#5	0.96(3)	2.05(3)	3.006(3)	179(2)	#5 -x+1,-y+1,-z
	N(8)-H(74)O(2)#5	0.83(3)	2.44(3)	3.265(3)	171(3)	#5 -x+1,-y+1,-z
	N(11)-H(14)O(16)	0.86(2)	2.13(3)	2.986(3)	171(2)	
	N(10)-H(12)O(15)	0.87(2)	2.33(2)	3.179(3)	164(2)	
IM2	O(1)-H(3)O(14)#4	0.82	1.73	2.534(6)	166	#4 -x+1,-y,-z+1
	N(6)-H(20)O(2)#4	0.86	2.18	2.961(7)	150	#4 -x+1,-y,-z+1
	O(6)-H(1)O(13)	0.82	1.71	2.514(6)	164	
	N(4)-H(11)O(5)	0.86	2.23	3.061(7)	161	
	O(10)-H(6)O(15)#2	0.82	1.81	2.580(6)	156	#2 -x+1,-y+1,-z
	N(8)-H(27)O(9)#2	0.86	2.06	2.904(6)	165	#2 -x+1,-y+1,-z
	N(4)-H(12)O(7)#5	0.86	2.39	3.150(7)	146	#5 x,y+1,z
	N(3)-H(13)O(7)#5	0.86	2.08	2.923(7)	165	#5 x,y+1,z
	N(5)-H(19)O(3)#7	0.86	2.55	3.384(7)	164	#7 -x+1,-y+1,-z+1
	N(6)-H(21)O(4)#7	0.86	2.20	3.043(7)	167	#7 -x+1,-y+1,-z+1
	N(7)-H(29)O(11)#3	0.86	2.54	3.371(7)	162	#3 -x+1,-y,-z
	N(8)-H(28)O(12)#3	0.86	2.18	3.020(7)	166	#3 -x+1,-y,-z

 Table S3 Hydrogen bond details of those involved in network formation in IM1 to IM2.

Table S4 Hydrogen bond details of those involved in network formation in IM3 and IM4.

IM	D-HA	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	<(DHA) (°)	Sym op
IM3	O(6)-H(21)O(1)#1	0.92(3)	1.64(3)	2.5566(15)	174(2)	#1 -x,-y+2,-z
	N(3)-H(14)O(10)#1	0.87(2)	2.00(2)	2.8559(17)	166.5(19)	#1 -x,-y+2,-z
	O(3)-H(20)O(4)	0.94(3)	1.59(3)	2.5256(15)	169(2)	
	N(7)-H(4)O(9)	0.89(2)	2.10(2)	2.9706(17)	167.9(18)	
	O(8)-H(23)O(5)#3	0.93(2)	1.63(3)	2.5538(15)	171(2)	#3 -x+2,-y+1,-z+1
	N(6)-H(12)O(11)#3	0.84(2)	2.06(2)	2.8939(19)	170(2)	#3 -x+2,-y+1,-z+1
	N(1)-H(6)O(2)	0.88(2)	2.22(2)	3.0254(16)	152.1(18)	
	N(7)-H(5)O(2)	0.92(2)	2.07(2)	2.9087(17)	151.9(18)	
	N(6)-H(13)O(14)#4	0.84(2)	2.13(2)	2.9580(18)	171(2)	#4 -x+2,-y+2,-z+1
	N(5)-H(27)O(12)#4	0.82(2)	2.48(2)	3.2791(17)	164(2)	#4 -x+2,-y+2,-z+1
	N(2)-H(16)O(13)#2	0.84(2)	2.38(2)	3.2152(17)	171.4(18)	#2 -x,-y+1,-z
	N(3)-H(15)O(15)#2	0.85(2)	2.14(2)	2.9873(18)	177(2)	#2 -x,-y+1,-z
IM4	O(7)-H(42)O(5)#2	0.82	1.76	2.572(5)	168	#2 x,y,z-1
	N(4)-H(4A)O(10)#1	0.86	2.04	2.862(6)	158	#1 x,y,z+1
	O(1)-H(1)O(4)	0.82	1.70	2.506(6)	166	
	N(10)-H(10A)O(12)	0.86	2.13	2.966(7)	163	
	O(3)-H(60)O(11)#1	0.82	1.76	2.576(5)	171	#1 x,y,z+1
	N(3)-H(3A)O(14)#2	0.86	2.07	2.894(5)	161	#2 x,y,z-1
	N(7)-H(52)O(13)#5	0.857(19)	2.09(3)	2.914(6)	162(5)	#5 x-1,y,z
	N(10)-H(10B)O(13)#5	0.86	2.37	3.113(6)	145	#5 x-1,y,z
	N(3)-H(3B)O(9)#3	0.86	2.18	3.038(6)	173	#3 x+1,y,z-1
	N(2)-H(51)O(6)#3	0.865(19)	2.44(2)	3.280(6)	164(4)	#3 x+1,y,z-1
	N(4)-H(4B)O(8)#4	0.86	2.16	3.021(6)	174	#4 x-1,y,z+1
	N(6)-H(50)O(15)#4	0.80(6)	2.45(6)	3.236(7)	164(6)	#4 x-1,y,z+1

IM	D-HA	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	<(DHA) (°)	Sym op
IM5	O(4)-H(43)O(13)#2	0.98(5)	1.56(4)	2.5333(19)	170(4)	#2 -x,-y+1,-z
	N(7)-H(39)O(3)#2	0.84(3)	2.21(3)	3.022(2)	164(2)	#2 -x,-y+1,-z
	O(6)-H(41)O(15)#7	1.00(3)	1.51(3)	2.5115(19)	174(3)	#7 x-1,y-1,z
	N(3)-H(8)O(5)#4	0.85(3)	2.09(3)	2.918(2)	168(2)	#4 x+1,y+1,z
	O(7)-H(4)O(14)#6	0.83(3)	1.78(3)	2.6112(19)	175(3)	#6 -x+2,-y,-z+1
	N(5)-H(14)O(10)#6	0.84(3)	2.07(3)	2.900(2)	169(2)	#6 -x+2,-y,-z+1
	N(7)-H(38)O(11)#1	0.89(3)	2.38(3)	3.153(2)	146(2)	#1 x-1,y,z
	N(8)-H(37)O(11)#1	0.87(3)	2.10(3)	2.942(2)	161(2)	#1 x-1,y,z
	N(4)-H(6)O(1)#3	0.92(3)	2.47(3)	3.363(2)	164(2)	#3 x,y+1,z
	N(3)-H(7)O(2)#3	0.84(3)	2.15(3)	2.964(2)	161(2)	#3 x,y+1,z
	N(5)-H(15)O(8)#5	0.88(3)	2.17(3)	3.034(2)	170(3)	#5 -x+1,-y,-z+1
	N(6)-H(16)O(9)#5	0.88(3)	2.40(3)	3.270(2)	172(2)	#5 -x+1,-y,-z+1
IM6	O(4)-H(33)O(8)#2	0.98(4)	1.56(4)	2.5288(19)	169(4)	#2 -x+1,-y+1,-z+1
	N(8)-H(13)O(3)#2	0.88(3)	2.06(3)	2.927(2)	169(2)	#2 -x+1,-y+1,-z+1
	O(5)-H(42)O(7)	1.07(3)	1.47(3)	2.525(2)	169(3)	
	N(4)-H(1)O(6)	0.87(3)	2.07(3)	2.929(2)	168(2)	
	O(9)-H(20)O(11)	1.00(3)	1.57(3)	2.574(2)	176(3)	
	N(5)-H(18)O(10)	0.89(3)	2.01(3)	2.871(2)	163(2)	
	N(7)-H(29)O(15)#1	0.87(3)	2.13(3)	2.928(2)	152(2)	#1 x,y+1,z
	N(8)-H(14)O(15)#1	0.87(2)	2.14(2)	2.927(2)	150(2)	#1 x,y+1,z
	N(6)-H(21)O(1)#3	0.85(3)	2.50(3)	3.342(2)	168(2)	#3 x,y-1,z-1
	N(5)-H(19)O(2)#3	0.85(3)	2.16(3)	3.001(2)	176(3)	#3 x,y-1,z
	N(4)-H(1)O(6)	0.87(3)	2.07(3)	2.929(2)	168(2)	
	N(3)-H(3)O(12)	0.82(3)	2.46(3)	3.257(2)	164(2)	
IM7	O(2)-H(5)O(7)#3	0.94(5)	1.60(5)	2.534(2)	169(4)	#3 -x+1,-y+1,-z+1
	N(3)-H(7)O(1)#3	0.85(3)	2.17(3)	3.007(3)	167(3)	#3 -x+1,-y+1,-z+1
	N(3)-H(6)O(4)#2	0.83(3)	2.25(3)	3.045(3)	159(3)	#2 -x+1,-y+1,-z+1
	N(2)-H(8)O(4)#2	0.96(4)	2.23(4)	3.143(2)	158(3)	#2 -x+1,-y+1,-z+1
	O(6)-H(1)O(5)#4	0.96(6)	1.70(7)	2.623(2)	160(6)	#4 -x+2,-y+1,-z+1

Table S5 Hydrogen bond details of those involved in network formation in IM5 to IM7.

IM	D-HA	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	<(DHA) (°)	Sym op
CIM1	O(13)-H(13)O(1)#3	0.82	1.72	2.516(4)	163	#3 -x+1,-y+1,-z
	N(5)-H(5A)O(12)#3	0.86	2.12	2.954(4)	163	#3 -x+1,-y+1,-z
	N(4)-H(4A)O(3)	0.86	2.14	2.955(4)	157	
	N(5)-H(5B)O(3)	0.86	2.20	2.977(4)	150	
	N(2)-H(2A)O(6)#5	0.86	2.29	3.137(4)	168	#5 -x+1,-y+1,-z+1
	N(3)-H(3B)O(7)#5	0.86	2.11	2.962(4)	169	#5 -x+1,-y+1,-z+1
CIM2	O(1)-H(3)O(7)#1	0.97(2)	1.54(2)	2.5057(11)	171.2(18)	#1 -x,-y+2,-z+2
	N(3)-H(9)O(2)#1	0.861(15)	2.115(15)	2.9600(13)	166.7(13)	#1 -x,-y+2,-z+2
	N(3)-H(8)O(3)#2	0.855(16)	2.325(16)	3.0673(13)	145.5(13)	#2 x-1,-y+3/2,z+1/2
	N(2)-H(7)O(3)#2	0.865(15)	2.072(15)	2.9058(12)	161.6(13)	#2 x-1,-y+3/2,z+1/2

Table S6 Hydrogen bond details of those involved in network formation in CIM1 and CIM2.

IM	D-HA	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	<(DHA) (°)	Sym op
IM1	O(27)-H(78)O(100)#4	0.88(4)	1.72(4)	2.603(3)	172(3)	#4 -x+1,-y+1,-z+1
	O(100)-H(106)O(26)#1	0.92(5)	1.99(5)	2.801(3)	146(4)	#1 x-1,y,z
	N(16)-H(48)O(101)	0.85(3)	2.08(3)	2.918(3)	167(3)	
	O(101)-H(107)O(8)#2	1.09(4)	1.70(4)	2.783(3)	172(4)	#2 x+1,y,z
	O(19)-H(100)O(22)	0.98(4)	1.58(4)	2.561(3)	177(4)	
	O(27)-H(78)O(100)#4	0.88(4)	1.72(4)	2.603(3)	172(3)	#4 -x+1,-y+1,-z+1
IM2	O(8)-H(10)O(16)#1	0.82	1.79	2.611(9)	176	#1 x-1,y-1,z
IM3	O(7)-H(22)N(9)	0.92(2)	1.85(2)	2.762(2)	174(2)	
IM4	O(2)-H(2)O(17)	0.82	1.81	2.626(7)	175	
	O(17)-H(54)O(100)	0.814(19)	2.02(3)	2.795(10)	158(5)	
	O(17)-H(53)O(10)#6	0.809(19)	2.24(5)	2.859(8)	133(6)	#6 -x+1,-y+1,-z
IM5	O(12)-H(5)O(17)	0.82(3)	1.78(3)	2.594(2)	176(3)	
	O(17)-H(23)O(16)	0.86(5)	1.96(5)	2.805(3)	167(4)	
	O(17)-H(22)O(14)	0.84(5)	2.07(5)	2.867(2)	160(4)	
IM6	O(14)-H(32)O(16)#4	0.89(3)	1.75(3)	2.630(2)	168(3)	#4 x,y-1,z
CIM1	O(2)-H(2B)O(16)	0.82	1.74	2.555(4)	176	
	O(16)-H(100)O(10)	0.85(7)	1.95(7)	2.783(4)	169(6)	
	O(11)-H(105)O(15)	0.82	1.88	2.690(4)	171.3	
	O(15)-H(103)O(8)#2	0.84(2)	2.02(3)	2.840(4)	167(6)	#2 x,y-1,z
	O(15)-H(102)O(14)#1	0.83(2)	1.93(4)	2.691(4)	151(7)	#1 x-1,y,z
CIM2	O(4)-H(1)O(8)	0.88(2)	1.77(2)	2.6433(12)	175.8(19)	
	N(3)-H(8)O(8)#2	0.855(16)	2.453(15)	3.0691(13)	129.6(12)	#2 x-1,-y+3/2,z+1/2

Table S7 Hydrogen bond details of those involved in the host-guest interactions in IM4 to IM7, CIM1 and CIM2.

IM	D-HA	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	<(DHA) (°)	Sym op
NS1	O(6)-H(21)O(1)#5	0.96(3)	1.66(3)	2.610(2)	170(2)	#5 x-1,y+1,z
	N(3)-H(14)O(5)#2	0.93(3)	1.98(3)	2.889(3)	168(2)	#2 x+1,y-1,z
	O(4)-H(1)O(2)#4	1.02(3)	1.53(3)	2.5232(18)	164(2)	#4 x,y+1,z
	N(4)-H(12)O(3)#3	0.94(3)	2.25(3)	3.135(2)	156(2)	#3 x,y-1,z
	N(4)-H(11)O(3)#1	0.86(2)	2.43(2)	3.045(2)	129(2)	#1 -x+2,-y+1,-z
	N(5)-H(10)O(3)#1	0.87(2)	2.37(2)	3.113(2)	143.4(18)	#1 -x+2,-y+1,-z
	N(2)-H(15)O(7)	0.86(2)	2.30(3)	3.151(2)	171(2)	
	N(3)-H(13)O(8)	0.88(3)	2.21(3)	3.084(3)	174(2)	
NS2	O(8)-H(24)O(1)#4	1.04(5)	1.44(5)	2.479(2)	173(4)	#4 x,y+1,z
	N(4)-H(21)O(7)#3	0.88(3)	2.22(3)	3.068(3)	163(3)	#3 x,y-1,z
	O(13)-H(100)O(2)#2	0.90(4)	1.61(4)	2.481(2)	163(3)	#2 -x+2,-y+2,-z+1
	N(2)-H(15)O(14)#2	0.87(3)	2.15(3)	3.010(3)	170(3)	#2 -x+2,-y+2,-z+1
	N(1)-H(16)O(12)#1	0.89(3)	2.30(3)	3.127(3)	155(3)	#1 -x+2,-y+1,-z+1
	N(2)-H(14)O(12)#1	0.87(3)	2.34(3)	3.121(3)	150(3)	#1 -x+2,-y+1,-z+1
	N(3)-H(17)O(4)	0.86(3)	2.28(3)	3.082(3)	155(3)	
	N(4)-H(22)O(4)	0.89(4)	2.47(4)	3.157(3)	134(3)	
	O(6)-H(23)O(14)#3	0.98(4)	1.68(4)	2.655(2)	175(4)	#3 x,y-1,z
	O(10)-H(1)O(7)	0.95(4)	1.74(4)	2.661(2)	163(3)	

Table S8 Hydrogen bond details of those involved in network formation in NS1 and NS2.

Figure S9 The TG-MS analysis for (a) **IM1**: methanol peaks MS1 = 31 m/z, MS2 = 32 m/z, MS3 = 29 m/z, MS4 = 15 m/z, (b) **IM2**: ethanol peaks MS1 = 31 m/z, MS2 = 45 m/z, MS3 = 27 m/z, MS4 = 29 m/z, water peak MS5 = 18 m/z and (c) **IM3**: acetonitrile peaks MS1 = 41 m/z, MS2 = 39 m/z, MS3 = 28 m/z, MS4 = 14 m/z.

Figure S10 The TG-MS analysis for (a) **IM4**: acetone peaks MS1 = 43 m/z, MS2 = 58 m/z, MS3 = 15 m/z, MS4 = 42 m/z, water peaks MS5 = 18 m/z, (b) **IM5**: THF peaks MS1 = 42 m/z, MS2 = 41 m/z, MS3 = 71 m/z, MS4 = 43 m/z, water peak MS5 18 m/z and (c) **IM6**: ethyl acetate peaks MS1 = 43 m/z, MS2 = 61 m/z, MS3 = 45 m/z, MS4 = 70 m/z.

Figure S11 The TG-MS analysis for (a) IM7: THF peaks MS1 = 42, MS2 = 41, MS3 = 71, MS4 = 43, methanol peaks MS5 = 31, MS6 = 32, MS7 = 29, MS8 = 15, (b) CIM1: water peaks MS1 = 18 m/z, MS2 = 17 m/z and MS3 = 16 m/z and (c) CIM2: acetone peaks MS1 = 43 m/z, MS2 = 58 m/z, MS3 = 15 m/z, MS4 = 42 m/z, water peaks MS5 = 18 m/z.

IM	Step 1: solvent		Step 2: N-phenylurea		Step 3:	
					5-nitroisophtha	lic acid
	Expected loss	Observed	Expected loss	Observed	Expected loss	Observed loss
	(%)	loss (%)	(%)	loss (%)	(%)	(%)
IM1	3.4	3.4	45.3	47.6	51.1	46.2
IM2	7.2	5.2	45.6	46.2	47.1	43.2
IM3	4.7	3.2	46.9	46.0	48.4	48.0
IM4	8.4	1.7, 2.0	45.0	51.7	46.6	39.2
IM5	9.8	8.1	44.4	46.5	45.9	40.9
IM6	9.6	7.9	44.4	50.4	45.9	40.1
IM7	13.0	10.9	34.0	39.6	52.8	45.2
CIM1	4.9	4.2	37.3	22.8	57.8	68.9
CIM2	14.3	10.7	33.6	43.7	52.0	43.0

Table S12 Mass loss data for TG analysis of IM1 to $IM7,\,CIM1$ and CIM2.

Table S13 The corresponding energies of the desolvation endotherm for IM1 – IM7, CIM1 andCIM2.

IM	Onset temperature (°C)	Energy (J/g)
IM1	103.3	33.8
IM2	86.9, 112.8	26.0, 1.7
IM3	106.6	79.4
IM4	80.8, 99.8	17.3, 21.8
IM5	76.0, 89.5	68.7
IM6	95.8	38.8
IM7	143.4	81.8
CIM1	96.6	0.2
CIM2	83.2	104.5

Figure S14 PXRD patterns for (a) IM1, (b) IM2, (c) IM3 and (d) IM4 at 25 °C on samples at 25 °C and preheated to 145 °C.

Figure S15 PXRD patterns for (a) IM5, (b) IM6, (c) IM7 and (d) CIM2 at 25 °C on samples at 25 °C and preheated to 145 °C (CIM2 pre-heated to 150 °C).

Figure S16 – PXRD patterns for (a) NS2 at 25 °C and on a sample preheated to 150 °C and (b) CIM1 at 25 °C, on a sample preheated to 145 °C and 189 °C.

Figure S17 PXRD patterns of (a) **NS1** and (b) **NS2**: (i) the simulated powder pattern of the material, (ii) each material pre-vapour diffusion and post vapour diffusion with (iii) methanol, (iv) ethanol, (v) acetonitrile, (vi) acetone, (vii) THF and (viii) ethyl acetate at -18 °C.

Figure S18 A comparison of PXRD patterns of (i) **NS1** pre vapour diffusion, (ii) post vapour diffusion with acetone solvent and (iii) the simulated powder pattern for **CIM2**.

Figure S19 A comparison of PXRD patterns of (i) **NS2** pre vapour diffusion, (ii) post vapour diffusion with acetone solvent and (ii) the simulated powder pattern for **CIM2**.