Electric Supplemental Information for:

The Factors Affecting on the Assembly of Keggin-Metal-Bimb

System: Charge/Polarity of Keggin Polyanions and Coordination

modes of Metal Cations

Chunyan Zhao^{a,b}, Shaobin Li^{a,b}, Huiyuan Ma*a, Chunjing Zhang^{a,c}, Haijun Pang*a,

Yan Yu^{a,b}, and Zhuanfang Zhang^{a,b}

Table of contents:

- **1. Table S1.** A summarization of the coordination modes of POM clusters and the coordination geometries of metal cations in compounds **1-6**
- **2. Fig. S1.** (a) Ball-and-stick representation of the (4,4) sheet structure in **1**. (b) The ladder-like chain in **1**.
- 3. Fig. S2. View of bamboo-shaped cylinder in 2.
- 4. Figure S3. View of per joint in the bamboo-shaped cylinder in 2.
- **5. Fig. S4.** View of the 1D undulated chain in **2**. (b) the topology of the 3D framework in **2**. Color codes: pink, connected nodes of Co cations, blue, connected nodes of GeW₁₂ anions.
- 6. Fig. S5. XPS of compound 1.
- 7. Fig. S6. The IR spectra of compounds 1-6.
- 8. Fig. S7. The simulative (red) and experimental (black) powder X-ray diffraction patterns for 1-6.
- **9. Fig. S8.** Solid-state emission spectrum of bimb ($\lambda ex = 310 \text{ nm}$) at room temperature.

Compound coordination mode123456Coordination modeImage: Construction modeImage: Construction mode			geometries of i	inetal cations in con	iipounus 1-0		
Coordination modeIIIIIIIPOM cluster $\widetilde{\mathcal{M}}_{2}^{(0)}$	Compound	1	2	3	4	5	6
POM clusterImage: c	Coordination mode						
tritopic PW12hexadentate W12hexadentate W12hexadentate W12hexadentate W12ditopic BW12hexadentate BW12Metal cation v_{12}^{0000} v_{2000}^{00000} v_{12}^{000000} $v_{1000000000000000000000000000000000000$	POM cluster				A A A A A A A A A A A A A A A A A A A	Contraction of the second	
Metal cation 0^{00271} 1^{002} N_{1}^{0} 0^{002} N_{1}^{0} 0^{012} N		tritopic PW ₁₂	hexadentate W ₁₂	hexadentate W ₁₂	hexadentate W ₁₂	ditopic BW ₁₂	hexadentate BW ₁₂
$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$	Metal cation	0W2#1 N1 OW2 OW2	010 N1	010 N2 07#2 N1	010 N2 06#3 010	011#1 011#2	024 020 Ag1 01 N1
$\begin{bmatrix} \mathbf{N}_{14} \\ \mathbf{O}_{24} \\ \mathbf{O}_{3} \\ \mathbf{O}_{043} \\ \mathbf{N}_{6} \\ N$		N9 N3 N3 O5					
crystallographic-ally independent Co2+One crystallographic- ally independentOne crystallographic- ally independentOne crystallographic- 		OW4 Co3 N7 					
independent Co2+One crystallographic- ally independentOne crystallographic- ally independentOne crystallographic- ally independentOne crystallographic- ally independentOne 		crystallographic-ally					
		independent Co ²⁺	One crystallographic- ally independent Co ²⁺	One crystallographic- ally independent Co ²⁺	One crystallographic- ally independent Co ²⁺	One crystallographic-ally independent Cu ⁺	One crystallographic-ally independent Ag ⁺

 Table S1. A summarization of the coordination modes of POM clusters and the coordination geometries of metal cations in compounds 1-6

Fig. S1. (a) Ball-and-stick representation of the (4,4) sheet structure in **1**. (b) The ladder-like chain in **1**.

Fig. S2. View of bamboo-shaped cylinder in 2.

Fig. S3. View of per joint in the bamboo-shaped cylinder in 2.

Fig. S4. View of the 1D undulated chain in **2**. (b) the topology of the 3D framework in **2**. Color codes: pink, connected nodes of Co cations, blue, connected nodes of GeW₁₂ anions.

Fig. S5. XPS of compound 1.

Figure S6. The IR spectra of compounds 1-6.

Fig. S7. The simulative (red) and experimental (black) powder X-ray diffraction patterns for 1-6.

Fig. S8. Solid-state emission spectrum of bimb ($\lambda_{ex} = 310$ nm) at room temperature.