# Layer-structured coordination polymers based on 5-(1H-tetrazol-5-

# yl)isophthalic acid: structure, sensitization of lanthanide(III) cations

## and small-molecule sensing

Jia Jia<sup>a,b</sup>, Jianing Xu<sup>a</sup>, Shengyan Wang<sup>a</sup>, Pengcheng Wang<sup>a</sup>, Lijuan Gao<sup>a</sup>, Juan Chai<sup>a</sup>, Lanlan Shen<sup>a</sup>, Xiaobo Chen<sup>c</sup>, Yong Fan<sup>\*a</sup> and Li Wang<sup>\*a</sup>

<sup>a</sup> State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, P. R. China.
E-mail: lhl222@jlu.edu.cn; Fax: +86-431-85168439; Tel: +86-431-85168439

<sup>b</sup> College of Chemistry, Baicheng Normal University, Baicheng 137000, Jilin, P. R. China. E-mail: jj\_zhx@126.com

<sup>c</sup> Department of Materials Science and Engineering, Monash University Clayton, VIC 3800, Australia. E-mail: xiaobo.chen@monash.edu

### **Supporting Information**

#### **Table of Contents**

- 1. PXRD patterns for 1 and activated 1 (Fig. S1)
- 2. TGA curves of 1 and activated 1 measured in air atmosphere (Fig. S2)
- **3.** PXRD patterns for Ln<sup>3+</sup>@l (Fig. S3)
- 4. Excitation spectra of compounds 1-3 and H<sub>3</sub>TZI ligand (Fig. S4)
- 5. UV-vis absorption spectra for compound 1 and H<sub>3</sub>TZI ligand (Fig. S5)
- 6. Luminescence decay profiles for compounds 1-3 and H<sub>3</sub>TZI ligand (Fig. S6)
- 7. Luminescence decay profiles for Eu<sup>3+</sup>@1, Tb<sup>3+</sup>@1, Dy<sup>3+</sup>@1 and Sm<sup>3+</sup>@1 (Fig. S7)
- 8. The emission spectra and CIE chromaticity diagram of Eu<sub>0.5</sub>Tb<sub>0.5</sub>@l (Fig. S8)
- 9. Luminescence decay profiles for Eu<sup>3+</sup>/Tb<sup>3+</sup>-loaded samples (Fig. S9)
- 10. The emission spectra of 1-solvent emulsions at room temperature (Fig. S10)
- 11. PXRD patterns for 1 after soaking in different solvents (Fig. S11)
- 12. IR spectra of compounds 1-3 (Fig. S12)
- **13.** IR spectra of **1**, Eu<sup>3+</sup>@1, Tb<sup>3+</sup>@1, Dy<sup>3+</sup>@1, Sm<sup>3+</sup>@1 and Eu<sup>3+</sup>/Tb<sup>3+</sup>-loaded samples (Fig. S13)
- 14. PXRD patterns for compounds 1-3 (Fig. S14)
- 15. TGA curves of the compounds 1-3 measured in air atmosphere (Fig. S15)
- 16. Crystal data and structure refinement for compounds 1-3 (Table S1)
- **17.** Selected bond lengths [Å] and angles [°] for compounds **1-3** (Table S2)
- 18. ICP analysis for Ln(III)-encapsulated 1 (Table S3)
- **19.** Ratios of Eu<sup>3+</sup>/Tb<sup>3+</sup> added to **1** and determined by ICP in Ln(III)-encapsulated **1** (Table S4)
- **20.** EDX analysis for Ln(III)-encapsulated **1** (Table S5)
- **21.** CIE chromaticity coordinates (x, y) for Eu<sup>3+</sup>@l (Table S6)
- **22.** CIE chromaticity coordinates (x, y) for  $Eu^{3+}@1$ ,  $Tb^{3+}@1$  and  $Eu^{3+}/Tb^{3+}$ -loaded samples under excitation wavelengths at 312 nm (Table S7)
- **23.** CIE chromaticity coordinates (x, y) for Eu<sub>0.5</sub>Tb<sub>0.5</sub>@l (Table S8)
- 24. Luminescence lifetimes of the Eu<sup>3+</sup>/Tb<sup>3+</sup>-loaded samples (Table S9)



Fig. S1 PXRD patterns for 1 and activated 1.



Fig. S2 TGA curve of 1 and activated 1 measured in air atmosphere.



Fig.S3 Simulated and experimental X-ray diffraction patterns of  $Ln^{3+}@l$ .



Fig. S4 Solid-state excitation spectra of (a)  $H_3TZI$  ligand, (b) compound 1, (c) compound 2 and (d) compound 3 at room temperature.



Fig. S5 UV-vis absorption spectra for compound 1 and H<sub>3</sub>TZI ligand at room temperature.



Fig. S6 Luminescence decay profiles for compounds 1-(a), 2-(b), 3-(c) and  $H_3TZI$  ligand-(d) recorded at room temperature.



**Fig.S7** Luminescence decay profiles for  $\text{Eu}^{3+}@1\text{-}(a)$ ,  $\text{Tb}^{3+}@1\text{-}(b)$ ,  $\text{Dy}^{3+}@1\text{-}(c)$  and  $\text{Sm}^{3+}@1\text{-}(d)$  recorded at room temperature. The  ${}^5\text{D}_0$  decay curve of  $\text{Eu}^{3+}@1\text{-}(b)$  must be exponential function, giving the value of  $\tau_1 = 0.18\text{ms}$  and  $\tau_2 = 2.66\text{ms}$ . The  ${}^5\text{D}_4$  decay curve of  $\text{Tb}^{3+}@1$  with emission was monitored at 544 nm ( $\lambda_{ex} = 350 \text{ nm}$ ),  $\tau_1 = 0.53\text{ms}$  and  $\tau_2 = 2.71\text{ms}$ . The decay curve of  $\text{Dy}^{3+}@1$  with emission was monitored at 574 nm ( $\lambda_{ex} = 350 \text{ nm}$ ),  $\tau_1 = 0.56\text{ms}$  and  $\tau_2 = 4.01\text{ms}$ . The decay curve of  $\text{Sm}^{3+}@1$  with emission was monitored at 642 nm ( $\lambda_{ex} = 350 \text{ nm}$ ),  $\tau_1 = 0.65\text{ms}$  and  $\tau_2 = 4.28\text{ms}$ .



**Fig. S8**(a) Solid-state emission spectra of  $Eu_{0.5}Tb_{0.5}@l$  with excitation wavelengths varying from 320 to 394 nm. (b) The CIE chromaticity diagram for  $Eu_{0.5}Tb_{0.5}@l$  under excitation wavelengths from 320 to 394 nm.

 $Eu_{0.5}Tb_{0.5}@l$  mainly emits intense yellow luminescence upon excitation at 320 and 330 nm. Adjusting the excitation light from 340 to 390 nm, it mainly displays green light. When excited at 394nm, near white light emission is also obtained and its CIE coordination is (0.384, 0.325). The quantum yield is 3.07%.



**Fig. S9** Luminescence decay profiles for  $Eu^{3+}/Tb^{3+}$ -loaded samples recorded at room temperature.  $Eu_{0.2}Tb_{0.8}@l$  -(a),  $Eu_{0.3}Tb_{0.7}@l$  -(b),  $Eu_{0.4}Tb_{0.6}@l$  -(c),  $Eu_{0.5}Tb_{0.5}@l$  -(d),  $Eu_{0.6}Tb_{0.4}@l$  -(e),  $Eu_{0.7}Tb_{0.3}@l$  -(f) and  $Eu_{0.8}Tb_{0.2}@l$  -(g). The decay curves were recorded with emission monitored by the  ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$  transition at 544 nm and the  ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$  transition at 616 nm ( $\lambda_{ex} = 312$  nm).



Fig. S10 The emission spectra of 1-solvent emulsions at room temperature (excited at 256 nm).



Fig. S11 PXRD patterns for 1 after soaking in different solvents.



Fig. S12 IR spectra of compounds 1-3.



Fig. S13 IR spectra of 1,  $Eu^{3+}@1$ ,  $Tb^{3+}@1$ ,  $Dy^{3+}@1$  and  $Sm^{3+}@1$  (top),  $Eu_{0.8}Tb_{0.2}@1$ ,  $Eu_{0.7}Tb_{0.3}@1$ ,  $Eu_{0.6}Tb_{0.4}@1$ ,  $Eu_{0.5}Tb_{0.5}@1$ ,  $Eu_{0.4}Tb_{0.6}@1$ ,  $Eu_{0.3}Tb_{0.7}@1$  and  $Eu_{0.2}Tb_{0.8}@1$  (bottom).



Fig. S14 Simulated and experimental X-ray diffraction patterns of compounds 1 (top), 2 (middle) and 3 (bottom).



Fig. S15 TGA curves of the compounds 1 (top), 2 (middle) and 3 (bottom) measured in air atmosphere.

For 1, the first step from 50°C to 220 °C corresponds to the removal of the coordinated and the free water molecules (weight loss ca. 4.46%, calculated 5.16%), and the structure then decomposed starting at 350 °C. The weight loss from 350 to 430 °C is attributed to the collapse of the framework of 1. The remaining weight of 65.60% is attributed to the final product of PbO (cal. 64.00%). For 2, the water molecule was lost at the temperature of 50°C to 167 °C (weight loss ca. 3.12%, calculated 2.82%) and the final product of PbO is 35.94% (cal. 35.01%). For 3, the weight loss of 9.95% observed from 50 to 180 °C corresponds to the departure of the water molecules (cal. 10.61%), and the framework of 3 begins to collapse at 370°C. The final residue is ZnO with the weight of 39.26% (cal. 38.39%).

| Compounds                                     | 1                                                                           | 2                      | 3                                                                             |
|-----------------------------------------------|-----------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------|
| Formula                                       | C <sub>9</sub> H <sub>8</sub> N <sub>4</sub> O <sub>7</sub> Pb <sub>2</sub> | $C_{21}H_{14}N_6O_5Pb$ | C <sub>9</sub> H <sub>9</sub> N <sub>4</sub> O <sub>7.5</sub> Zn <sub>2</sub> |
| Fw (g mol <sup>-1</sup> )                     | 698.59                                                                      | 637.57                 | 423.97                                                                        |
| Crystal system                                | triclinic                                                                   | monoclinic             | triclinic                                                                     |
| space group                                   | <i>P</i> -1                                                                 | P21/c                  | <i>P</i> -1                                                                   |
| $a(\text{\AA})$                               | 7.8513(2)                                                                   | 11.2006(16)            | 7.794(2)                                                                      |
| $b(\text{\AA})$                               | 9.1456(2)                                                                   | 11.1967(16)            | 9.057(3)                                                                      |
| $c(\text{\AA})$                               | 10.6941(3)                                                                  | 18.5221(18)            | 9.169(3)                                                                      |
| $\alpha(^{\circ})$                            | 112.083(2)                                                                  | 90                     | 90.38(3)                                                                      |
| $\beta(^{\circ})$                             | 108.443(2)                                                                  | 121.700(6)             | 91.24(2)                                                                      |
| γ(°)                                          | 96.4630(10)                                                                 | 90                     | 107.59(2)                                                                     |
| $V(Å^3)$                                      | 651.18(3)                                                                   | 1976.3(4)              | 616.8(3)                                                                      |
| Ζ                                             | 2                                                                           | 4                      | 2                                                                             |
| $D_{calc}(g \cdot cm^{-3})$                   | 3.537                                                                       | 2.136                  | 2.229                                                                         |
| $\mu(\text{mm}^{-1})$                         | 25.864                                                                      | 8.588                  | 3.935                                                                         |
| <i>F</i> (000)                                | 610                                                                         | 1208                   | 410                                                                           |
| $\theta$ range (°)                            | 2.23 - 24.99                                                                | 2.14 - 26.38           | 3.03 - 27.45                                                                  |
| Limiting indices                              | $-8 \le h \le 8$                                                            | $-13 \le h \le 13$     | $-9 \le h \le 10$                                                             |
|                                               | $-10 \le k \le 10$                                                          | $-13 \le k \le 13$     | $-11 \leq k \leq 11$                                                          |
|                                               | $-12 \le l \le 12$                                                          | $-23 \le l \le 23$     | $-11 \le l \le 10$                                                            |
| Refl.Collected / unique                       | 5783/ 2254                                                                  | 14822/4028             | 5771 / 2709                                                                   |
| R <sub>int</sub>                              | 0.1056                                                                      | 0.0331                 | 0.0431                                                                        |
| Data / restraints / parameters                | 2254 / 37 / 199                                                             | 4028 / 0 / 302         | 2709 / 4 / 215                                                                |
| GOF                                           | 1.041                                                                       | 1.070                  | 1.040                                                                         |
| $R_{I} [I \ge 2\sigma(I)]$                    | 0.0456                                                                      | 0.0210                 | 0.0472                                                                        |
| $wR_2[I>2\sigma(I)]$                          | 0.1273                                                                      | 0.0523                 | 0.1129                                                                        |
| $R_I$ (all data)                              | 0.0481                                                                      | 0.0242                 | 0.0613                                                                        |
| $wR_2(all data)$                              | 0.1298                                                                      | 0.0535                 | 0.1192                                                                        |
| Largest diff.peakand hole(e·Å <sup>-3</sup> ) | 2.475 and -3.353                                                            | 1.304 and -1.211       | 1.252 and -0.928                                                              |
| CCDC No.                                      | 1418713                                                                     | 1418704                | 1418639                                                                       |

Table S1. Crystal data and structure refinement for compounds 1-3

|             |               | 0           |              |             |            |
|-------------|---------------|-------------|--------------|-------------|------------|
| Table S2. S | Selected bond | lengths [Å] | l and angles | [°] for com | pounds 1-3 |

|                       | 1           |                      |            |
|-----------------------|-------------|----------------------|------------|
| Pb(1)-O(6)#1          | 2.518(8)    | Pb(2) -O(7)          | 2.829(9)   |
| Pb(1)-O(3)#2          | 2.548(9)    | Pb(2)-O(2)           | 2.429(8)   |
| Pb(1)-O(5)            | 3.027(11)   | Pb(2)-O(1)#5         | 2.869(7)   |
| Pb(1)-Pb(1)#1         | 3.9256(8)   | Pb(2)-N(4)#3         | 2.618(10)  |
| Pb(1)-O(2)            | 2.690(7)    | Pb(2)-O(1)           | 2.725(9)   |
| Pb(1)-O(4)#2          | 2.620(8)    | Pb(2)-O(4)#4         | 2.742(9)   |
| Pb(1)-N(3)#3          | 2.668(9)    | Pb(2)-Pb(1)#1        | 4.0103(6)  |
| Pb(1)-Pb(2)#1         | 4.0103(6)   | Pb(2)- O(6)          | 2.403(7)   |
| Pb(1)- O(6)           | 2.331(8)    | O(3)#2-Pb(1)-N(3)#3  | 75.7(3)    |
| O(6)-Pb(1)-O(6)#1     | 72.0(3)     | O(4)#2-Pb(1)-N(3)#3  | 120.0(3)   |
| O(6)-Pb(1)-O(3)#2     | 72.3(3)     | O(6)-Pb(1)-O(2)      | 65.7(3)    |
| O(6)#1-Pb(1)-O(3)#2   | 100.5(3)    | O(6)#1-Pb(1)-O(2)    | 85.9(2)    |
| O(6)-Pb(1)-O(4)#2     | 104.9(3)    | O(3)#2-Pb(1)-O(2)    | 133.1(3)   |
| O(6)#1-Pb(1)-O(4)#2   | 76.2(3)     | O(4)#2-Pb(1)-O(2)    | 161.8(3)   |
| O(3)#2-Pb(1)-O(4)#2   | 49.7(3)     | N(3)#3-Pb(1)-O(2)    | 73.9(3)    |
| O(6)-Pb(1)-N(3)#3     | 74.6(3)     | O(6)-Pb(1)-C(8)#2    | 89.2(3)    |
| O(6)#1-Pb(1)-N(3)#3   | 145.7(3)    | O(3)#2-Pb(1)-N(3)#3  | 75.8(3)    |
| O(6)#1-Pb(1)-C(8)#2   | 89.1(3)     | O(2)-Pb(1)-O(5)      | 108.4(3)   |
| O(3)#2-Pb(1)-C(8)#2   | 24.8(3)     | C(8)#2-Pb(1)-O(5)    | 91.4(3)    |
| O(4)#2-Pb(1)-C(8)#2   | 24.9(3)     | O(6)-Pb(1)-Pb(1)#1   | 37.58(18)  |
| N(3)#3-Pb(1)-C(8)#2   | 97.5(3)     | O(6)#1-Pb(1)-Pb(1)#1 | 34.38(17)  |
| O(2)-Pb(1)-C(8)#2     | 154.8(3)    | O(3)#2-Pb(1)-Pb(1)#1 | 86.3(2)    |
| O(6)-Pb(1)-O(5)       | 136.0(3)    | O(4)#2-Pb(1)-Pb(1)#1 | 90.0(2)    |
| O(6)#1-Pb(1)-O(5)     | 64.0(3)     | N(3)#3-Pb(1)-Pb(1)#1 | 111.8(2)   |
| O(3)#2-Pb(1)-O(5)     | 116.2(3)    | O(2)-Pb(1)-Pb(1)#1   | 73.12(19)  |
| O(4)#2-Pb(1)-O(5)     | 66.6(3)     | C(8)#2-Pb(1)-Pb(1)#1 | 89.0(2)    |
| N(3)#3-Pb(1)-O(5)     | 148.5(3)    | O(5)-Pb(1)-Pb(1)#1   | 98.42(19)  |
| O(6)-Pb(1)-Pb(2)      | 34.17(17)   | O(5)-Pb(1)-Pb(2)     | 141.61(18) |
| O(6)#1-Pb(1)-Pb(2)    | 90.96(16)   | Pb(1)#1-Pb(1)-Pb(2)  | 61.274(12) |
| O(3)#2-Pb(1)-Pb(2)    | 95.9(2)     | O(6)-Pb(1)-Pb(2)#1   | 92.17(17)  |
| O(4)#2-Pb(1)-Pb(2)    | 138.3(2)    | O(6)#1-Pb(1)-Pb(2)#1 | 34.48(16)  |
| N(3)#3-Pb(1)-Pb(2)    | 56.3(2)     | O(3)#2-Pb(1)-Pb(2)#1 | 80.6(2)    |
| O(2)-Pb(1)-Pb(2)      | 37.27(17)   | O(4)#2-Pb(1)-Pb(2)#1 | 42.8(2)    |
| C(8)#2-Pb(1)-Pb(2)    | 118.3(2)    | N(3)#3-Pb(1)-Pb(2)#1 | 155.4(2)   |
| O(2)-Pb(1)-Pb(2)#1    | 119.90(18)  | O(2)-Pb(2)-N(4)#3    | 76.5(3)    |
| C(8)#2-Pb(1)-Pb(2)#1  | 61.0(2)     | O(6)-Pb(2)-O(1)      | 118.4(2)   |
| O(5)-Pb(1)-Pb(2)#1    | 51.15(19)   | O(2)-Pb(2)-O(1)      | 49.8(2)    |
| Pb(1)#1-Pb(1)-Pb(2)#1 | 59.587(11)  | N(4)#3-Pb(2)-O(1)    | 89.7(3)    |
| Pb(2)-Pb(1)-Pb(2)#1   | 120.860(11) | O(6)-Pb(2)-O(4)#4    | 75.8(2)    |
| O(6)-Pb(2)-O(2)       | 69.1(3)     | O(2)-Pb(2)-O(4)#4    | 75.1(3)    |
| O(6)-Pb(2)-N(4)#3     | 83.2(3)     | N(4)#3-Pb(2)-O(4)#4  | 149.2(3)   |
| O(1)-Pb(2)-O(4)#4     | 80.9(3)     | N(4)#3-Pb(2)-C(9)    | 84.9(3)    |

| O(6)-Pb(2)-O(7)      | 78.4(3)    | O(1)-Pb(2)-C(9)      | 25.4(2)    | - |
|----------------------|------------|----------------------|------------|---|
| O(2)-Pb(2)-O(7)      | 137.2(3)   | O(4)#4-Pb(2)-C(9)    | 74.0(3)    |   |
| N(4)#3-Pb(2)-O(7)    | 72.7(3)    | O(7)-Pb(2)-C(9)      | 156.7(3)   |   |
| O(1)-Pb(2)-O(7)      | 154.7(3)   | O(1)#5-Pb(2)-C(9)    | 98.5(3)    |   |
| O(4)#4-Pb(2)-O(7)    | 123.4(3)   | O(6)-Pb(2)-Pb(1)     | 33.02(19)  |   |
| O(6)-Pb(2)-O(1)#5    | 168.5(3)   | O(2)-Pb(2)-Pb(1)     | 42.05(17)  |   |
| O(2)-Pb(2)-O(1)#5    | 122.3(3)   | N(4)#3-Pb(2)-Pb(1)   | 62.84(19)  |   |
| N(4)#3-Pb(2)-O(1)#5  | 97.6(3)    | O(1)-Pb(2)-Pb(1)     | 91.01(17)  |   |
| O(1)-Pb(2)-O(1)#5    | 73.2(3)    | O(4)#4-Pb(2)-Pb(1)   | 87.89(18)  |   |
| O(4)#4-Pb(2)-O(1)#5  | 107.5(2)   | O(7)-Pb(2)-Pb(1)     | 96.6(2)    |   |
| O(7)-Pb(2)-O(1)#5    | 90.9(2)    | O(1)#5-Pb(2)-Pb(1)   | 155.4(2)   |   |
| O(6)-Pb(2)-C(9)      | 93.0(3)    | C(9)-Pb(2)-Pb(1)     | 66.6(2)    |   |
| O(2)-Pb(2)-C(9)      | 24.8(3)    | O(6)-Pb(2)-Pb(1)#1   | 36.38(19)  |   |
| O(2)-Pb(2)-Pb(1)#1   | 73.7(2)    | O(7)-Pb(2)-Pb(1)#1   | 96.2(2)    |   |
| N(4)#3-Pb(2)-Pb(1)#1 | 118.87(19) | O(1)#5-Pb(2)-Pb(1)#1 | 143.33(19) |   |
| O(1)-Pb(2)-Pb(1)#1   | 108.43(17) | C(9)-Pb(2)-Pb(1)#1   | 88.98(19)  |   |
| O(4)#4-Pb(2)-Pb(1)#1 | 40.44(16)  | Pb(1)-Pb(2)-Pb(1)#1  | 59.140(11) |   |
|                      |            | 2                    |            |   |
| Pb(1)-O(2)           | 2.519(2)   | Pb(1)-O(4)#2         | 2.834(2)   |   |
| Pb(1)-O(4)#1         | 2.536(2)   | Pb(1)-C(1)           | 2.977(3)   |   |
| Pb(1)-N(2)           | 2.561(3)   | Pb(1)-C(6)#1         | 2.999(3)   |   |
| Pb(1)-N(1)           | 2.663(3)   | Pb(1)-O(5)           | 3.075(4)   |   |
| Pb(1)-O(1)           | 2.709(3)   | Pb(1)-Pb(1)#3        | 4.376(5)   |   |
| Pb(1)-O(3)#1         | 2.769(3)   | O(2)-Pb(1)-O(4)#1    | 82.68(8)   |   |
| O(2)-Pb(1)-N(2)      | 80.15(9)   | O(4)#1-Pb(1)-O(3)#1  | 49.05(8)   |   |
| O(4)#1-Pb(1)-N(2)    | 79.27(9)   | N(2)-Pb(1)-O(3)#1    | 123.15(8)  |   |
| O(2)-Pb(1)-N(1)      | 93.03(9)   | N(1)-Pb(1)-O(3)#1    | 161.51(9)  |   |
| O(4)#1-Pb(1)-N(1)    | 142.29(9)  | O(1)-Pb(1)-O(3)#1    | 90.19(9)   |   |
| N(2)-Pb(1)-N(1)      | 63.13(9)   | O(2)-Pb(1)-O(4)#2    | 144.07(7)  |   |
| O(2)-Pb(1)-O(1)      | 49.67(7)   | O(4)#1-Pb(1)-O(4)#2  | 70.98(7)   |   |
| O(4)#1-Pb(1)-O(1)    | 127.13(7)  | N(2)-Pb(1)-O(4)#2    | 71.44(8)   |   |
| N(2)-Pb(1)-O(1)      | 108.38(9)  | N(1)-Pb(1)-O(4)#2    | 93.30(8)   |   |
| N(1)-Pb(1)-O(1)      | 71.49(9)   | O(1)-Pb(1)-O(4)#2    | 161.86(7)  |   |
| O(2)-Pb(1)-O(3)#1    | 72.43(9)   | O(3)#1-Pb(1)-O(4)#2  | 105.18(8)  |   |
| O(2)-Pb(1)-C(1)      | 25.03(8)   | N(1)-Pb(1)-C(6)#1    | 161.73(9)  |   |
| O(4)#1-Pb(1)-C(1)    | 104.64(8)  | O(1)-Pb(1)-C(6)#1    | 108.07(9)  |   |
| N(2)-Pb(1)-C(1)      | 95.97(9)   | O(3)#1-Pb(1)-C(6)#1  | 24.25(9)   |   |
| N(1)-Pb(1)-C(1)      | 83.01(9)   | O(4)#2-Pb(1)-C(6)#1  | 89.50(8)   |   |
| O(1)-Pb(1)-C(1)      | 24.74(8)   | C(1)-Pb(1)-C(6)#1    | 90.29(9)   |   |
| O(3)#1-Pb(1)-C(1)    | 79.08(9)   | O(2)-Pb(1)-O(5)      | 130.79(9)  |   |
| O(4)#2-Pb(1)-C(1)    | 167.11(9)  | O(4)#1-Pb(1)-O(5)    | 126.86(10) |   |
| O(2)-Pb(1)-C(6)#1    | 74.52(9)   | N(2)-Pb(1)-O(5)      | 137.03(9)  |   |
| O(4)#1-Pb(1)-C(6)#1  | 24.92(9)   | N(1)-Pb(1)-O(5)      | 83.60(9)   |   |
| N(2)-Pb(1)-C(6)#1    | 100.95(9)  | O(1)-Pb(1)-O(5)      | 83.47(9)   |   |

| O(3)#1-Pb(1)-O(5)     | 97.14(9)   | N(2)-Pb(1)-Pb(1)#3   | 71.70(7)   |
|-----------------------|------------|----------------------|------------|
| O(4)#2-Pb(1)-O(5)     | 85.08(8)   | N(1)-Pb(1)-Pb(1)#3   | 119.73(6)  |
| C(1)-Pb(1)-O(5)       | 106.67(10) | O(1)-Pb(1)-Pb(1)#3   | 164.86(5)  |
| C(6)#1-Pb(1)-O(5)     | 114.64(10) | O(3)#1-Pb(1)-Pb(1)#3 | 77.85(6)   |
| O(2)-Pb(1)-Pb(1)#3    | 116.78(5)  | O(4)#2-Pb(1)-Pb(1)#3 | 33.23(4)   |
| O(4)#1-Pb(1)-Pb(1)#3  | 37.75(5)   | C(1)-Pb(1)-Pb(1)#3   | 141.06(6)  |
| C(6)#1-Pb(1)-Pb(1)#3  | 57.89(7)   | O(5)-Pb(1)-Pb(1)#3   | 106.99(8)  |
|                       | 3          |                      |            |
| Zn(1)- O(4)           | 2.226(5)   | Zn(1)-O(3)           | 2.053(3)   |
| Zn(1)-O(1)#1          | 2.076(3)   | Zn(1)-O(7)           | 2.130(4)   |
| Zn(1)-N(2)            | 2.133(4)   | Zn(1)-O(1)           | 2.164(3)   |
| Zn(1)-Zn(1)#1         | 3.1579(15) | Zn(1)-Zn(2)#1        | 3.3537(14) |
| Zn(1)- $Zn(2)$        | 3.3795(13) | Zn(2)-O(1)           | 1.966(3)   |
| Zn(2)-O(2)#1          | 1.991(3)   | Zn(2)-N(1)           | 2.051(4)   |
| Zn(2)-O(6)#2          | 2.062(4)   | Zn(2)-O(5)#2         | 2.336(5)   |
| O(3)-Zn(1)-O(1)#1     | 95.07(14)  | O(3)-Zn(1)-O(4)      | 81.37(19)  |
| O(3)-Zn(1)-O(7)       | 88.55(15)  | O(1)#1-Zn(1)-O(4)    | 171.24(19) |
| O(1)#1-Zn(1)-O(7)     | 95.77(17)  | O(7)-Zn(1)-O(4)      | 92.2(2)    |
| O(3)-Zn(1)-N(2)       | 165.78(16) | N(2)-Zn(1)-O(4)      | 85.6(2)    |
| O(1)#1-Zn(1)-N(2)     | 98.59(14)  | O(1)-Zn(1)-O(4)      | 88.53(17)  |
| O(7)-Zn(1)-N(2)       | 86.19(16)  | O(3)-Zn(1)-Zn(1)#1   | 96.25(11)  |
| O(3)-Zn(1)-O(1)       | 94.24(13)  | O(1)#1-Zn(1)-Zn(1)#1 | 42.94(9)   |
| O(1)#1-Zn(1)-O(1)     | 83.74(13)  | O(7)-Zn(1)-Zn(1)#1   | 138.64(14) |
| O(7)-Zn(1)-O(1)       | 177.19(14) | N(2)-Zn(1)-Zn(1)#1   | 96.43(11)  |
| N(2)-Zn(1)-O(1)       | 91.15(13)  | O(1)-Zn(1)-Zn(1)#1   | 40.80(8)   |
| O(4)-Zn(1)-Zn(1)#1    | 129.20(15) | Zn(2)#1-Zn(1)-Zn(2)  | 124.06(3)  |
| O(3)-Zn(1)-Zn(2)#1    | 64.38(11)  | O(1)-Zn(2)-O(2)#1    | 111.06(14) |
| O(1)#1-Zn(1)-Zn(2)#1  | 32.89(8)   | O(1)-Zn(2)-N(1)      | 97.48(14)  |
| O(7)-Zn(1)-Zn(2)#1    | 83.48(13)  | O(2)#1-Zn(2)-N(1)    | 97.21(15)  |
| N(2)-Zn(1)-Zn(2)#1    | 127.89(11) | O(1)-Zn(2)-O(6)#2    | 134.43(14) |
| O(1)-Zn(1)-Zn(2)#1    | 97.49(9)   | O(2)#1-Zn(2)-O(6)#2  | 93.07(15)  |
| O(4)-Zn(1)-Zn(2)#1    | 145.51(15) | N(1)-Zn(2)-O(6)#2    | 117.84(15) |
| Zn(1)#1-Zn(1)-Zn(2)#1 | 62.44(3)   | O(1)-Zn(2)-O(5)#2    | 90.60(15)  |
| O(3)-Zn(1)-Zn(2)      | 122.05(10) | O(2)#1-Zn(2)-O(5)#2  | 151.15(15) |
| O(1)#1-Zn(1)-Zn(2)    | 98.58(9)   | N(1)-Zn(2)-O(5)#2    | 98.62(18)  |
| O(7)-Zn(1)-Zn(2)      | 144.49(11) | O(6)#2-Zn(2)-O(5)#2  | 58.17(15)  |
| N(2)-Zn(1)-Zn(2)      | 59.68(11)  | O(1)-Zn(2)-C(8)#2    | 113.20(15) |
| O(1)-Zn(1)-Zn(2)      | 33.21(8)   | O(2)#1-Zn(2)-C(8)#2  | 122.26(15) |
| O(4)-Zn(1)-Zn(2)      | 76.86(13)  | N(1)-Zn(2)-C(8)#2    | 111.55(16) |
| Zn(1)#1-Zn(1)-Zn(2)   | 61.62(3)   | O(6)#2-Zn(2)-C(8)#2  | 29.29(16)  |
| O(5)#2-Zn(2)-C(8)#2   | 28.91(16)  | O(1)-Zn(2)-Zn(1)#1   | 34.98(9)   |
| O(2)#1-Zn(2)-Zn(1)#1  | 76.39(10)  | O(6)#2-Zn(2)-Zn(1)   | 146.00(11) |
| N(1)-Zn(2)-Zn(1)#1    | 97.62(11)  | O(5)#2-Zn(2)-Zn(1)   | 87.87(11)  |
| O(6)#2-Zn(2)-Zn(1)#1  | 144.15(11) | C(8)#2-Zn(2)-Zn(1)   | 116.79(12) |

| O(5)#2-Zn(2)-Zn(1)#1 | 124.79(13) | Zn(1)#1-Zn(2)-Zn(1) | 55.94(3)   |
|----------------------|------------|---------------------|------------|
| C(8)#2-Zn(2)-Zn(1)#1 | 141.20(11) | Zn(2)-O(1)-Zn(1)#1  | 112.12(14) |
| O(1)-Zn(2)-Zn(1)     | 37.08(9)   | Zn(2)-O(1)-Zn(1)    | 109.72(14) |
| O(2)#1-Zn(2)-Zn(1)   | 120.93(10) | Zn(1)#1-O(1)-Zn(1)  | 96.26(13)  |
| N(1)-Zn(2)-Zn(1)     | 61.42(10)  | O(6)#2-Zn(2)-Zn(1)  | 146.00(11) |

Symmetry transformations used to generate equivalent atoms for **1**: #1 -x+1, -y+1, -z+1; #2 x, y-1, z-1; #3 x, y-1, z; #4 -x+1, -y+2, -z+2; #5 -x+1, -y+1, -z+2, for **2**:#1 -x+1, y-1/2, -z+1/2; #2 x-1, -y+1/2, z-1/2; #3 -x, -y, -z, for **3**: #1 -x+2, -y, -z+1; #2 -x+2, -y+1, -z.

Table S3. ICP analysis for Ln(III)-encapsulated 1. The ratio of Ln<sup>3+</sup>: Pb<sup>2+</sup> Sample Elemental contents (%)  $Ln^{3+}$  $Pb^{2+}$ Eu<sup>3+</sup>@1 3.02 33.90 1:11.22 Tb<sup>3+</sup>@1 2.94 35.02 1:11.91 Dy<sup>3+</sup>@1 2.86 34.27 1:11.98 Sm<sup>3+</sup>@1 2.85 34.58 1:12.13

| Ratio of $Eu^{3+}/Tb^{3+}$ added to 1 | Ratio of Eu <sup>3+</sup> /Tb <sup>3+</sup> determined by ICP in |
|---------------------------------------|------------------------------------------------------------------|
|                                       | Ln(III)-encapsulated 1                                           |
| 0.8:0.2                               | 0.8:0.21                                                         |
| 0.7:0.3                               | 0.7:0.33                                                         |
| 0.6:0.4                               | 0.6:0.44                                                         |
| 0.5:0.5                               | 0.5:0.56                                                         |
| 0.4:0.6                               | 0.4:0.66                                                         |
| 0.3:0.7                               | 0.3:0.75                                                         |
| 0.2:0.8                               | 0.2:0.84                                                         |

**Table S4.** Ratios of  $Eu^{3+}/Tb^{3+}$  added to 1 and determined by ICP in Ln(III)-encapsulated 1.

| Sample                                  |                  | Elemental conter | nts (Wt %)       |
|-----------------------------------------|------------------|------------------|------------------|
|                                         | L                | n <sup>3+</sup>  | Pb <sup>2+</sup> |
| Eu <sup>3+</sup> @1                     | 24               | .83              | 28.01            |
| Tb <sup>3+</sup> @1                     | 21               | .10              | 46.58            |
| Dy <sup>3+</sup> @1                     | 21               | .14              | 33.66            |
| Sm <sup>3+</sup> @1                     | 21               | .51              | 29.57            |
|                                         | Eu <sup>3+</sup> | Tb <sup>3+</sup> | Pb <sup>2+</sup> |
| Eu <sub>0.8</sub> /Tb <sub>0.2</sub> @1 | 20.88            | 5.51             | 22.42            |
| Eu <sub>0.7</sub> /Tb <sub>0.3</sub> @1 | 21.85            | 8.60             | 21.03            |
| $Eu_{0.6}/Tb_{0.4}@1$                   | 19.04            | 13.52            | 23.08            |
| Eu <sub>0.5</sub> /Tb <sub>0.5</sub> @1 | 14.55            | 14.65            | 48.95            |
| $Eu_{0.4}/Tb_{0.6}@1$                   | 11.38            | 16.09            | 37.64            |
| Eu <sub>0.3</sub> /Tb <sub>0.7</sub> @1 | 7.93             | 15.94            | 40.72            |
| Eu <sub>0.2</sub> /Tb <sub>0.8</sub> @1 | 4.74             | 17.92            | 33.04            |

 Table S5. EDX analysis for Ln(III)-encapsulated 1.

| Table So. Che chiomaterty coordinates (x, y) for Eu (a). |                     |
|----------------------------------------------------------|---------------------|
| $\lambda_{ex}$ / nm                                      | Eu <sup>3+</sup> @l |
| 310                                                      | (0.614, 0.354)      |
| 320                                                      | (0.589, 0.358)      |
| 330                                                      | (0.546, 0.355)      |
| 340                                                      | (0.436, 0.356)      |
| 350                                                      | (0.320, 0.346)      |
| 360                                                      | (0.301, 0.373)      |
| 370                                                      | (0.289, 0.372)      |
| 380                                                      | (0.300, 0.362)      |
| 390                                                      | (0.280, 0.351)      |
| 394                                                      | (0.345, 0.324)      |

**Table S6.** CIE chromaticity coordinates (x, y) for Eu<sup>3+</sup>@1.

**Table S7.** CIE chromaticity coordinates (x, y) for  $Eu^{3+}@1$ ,  $Tb^{3+}@1$  and  $Eu^{3+}/Tb^{3+}$ -loaded samples under excitation wavelengths at 312 nm.

| Compounds                              | Coordinations  |
|----------------------------------------|----------------|
| Eu <sup>3+</sup> @1                    | (0.640, 0.345) |
| Tb <sup>3+</sup> @1                    | (0.274, 0.611) |
| Eu <sub>0.8</sub> Tb <sub>0.2</sub> @l | (0.594, 0.372) |
| Eu <sub>0.7</sub> Tb <sub>0.3</sub> @l | (0.569, 0.394) |
| $Eu_{0.6}Tb_{0.4}$                     | (0.560, 0.400) |
| $Eu_{0.5}Tb_{0.5}@l$                   | (0.540, 0.424) |
| $Eu_{0.4}Tb_{0.6}@l$                   | (0.503, 0.447) |
| $Eu_{0.3}Tb_{0.7}@l$                   | (0.484, 0.470) |
| $Eu_{0.2}Tb_{0.8}@l$                   | (0.441, 0.510) |

**Table S8.** CIE chromaticity coordinates (x, y) for Eu<sub>0.5</sub>Tb<sub>0.5</sub>@l.

|                     | 0.00                                   |
|---------------------|----------------------------------------|
| $\lambda_{ex}$ / nm | Eu <sub>0.5</sub> Tb <sub>0.5</sub> @l |
| 320                 | (0.457, 0.463)                         |
| 330                 | (0.371, 0.466)                         |
| 340                 | (0.325, 0.435)                         |
| 350                 | (0.301, 0.414)                         |
| 360                 | (0.301, 0.398)                         |
| 370                 | (0.302, 0.393)                         |
| 380                 | (0.310, 0.374)                         |
| 390                 | (0.283, 0.360)                         |
| 394                 | (0.384, 0.325)                         |

| Compounds                              | luminescence lifetimes      | luminescence lifetimes     |
|----------------------------------------|-----------------------------|----------------------------|
|                                        | $(\tau_{Tb3+})$             | $(	au_{\mathrm{Eu3+}})$    |
| Eu <sub>0.8</sub> Tb <sub>0.2</sub> @l | $\tau_1 = 0.39 \text{ ms}$  | $\tau_1 = 0.19 \text{ ms}$ |
|                                        | $\tau_2 = 3.46 \text{ ms}$  | $\tau_2 = 1.76 \text{ ms}$ |
| Eu <sub>0.7</sub> Tb <sub>0.3</sub> @l | $\tau_1 = 0.36 \text{ ms}$  | $\tau_1 = 0.19 \text{ ms}$ |
|                                        | $\tau_2 = 3.17 \text{ ms}$  | $\tau_2 = 1.62 \text{ ms}$ |
| Eu <sub>0.6</sub> Tb <sub>0.4</sub> @l | $\tau_1 = 0.39 \text{ ms}$  | $\tau_1 = 0.21 \text{ ms}$ |
|                                        | $\tau_2 = 3.20 \text{ ms}$  | $\tau_2 = 1.81 \text{ ms}$ |
| Eu <sub>0.5</sub> Tb <sub>0.5</sub> @l | $\tau_1 = 0.41 \text{ ms}$  | $\tau_1 = 0.21 \text{ ms}$ |
|                                        | $\tau_2 = 3.10 \text{ ms}$  | $\tau_2 = 1.35 \text{ ms}$ |
| Eu <sub>0.4</sub> Tb <sub>0.6</sub> @l | $\tau_1 = 0.42 \text{ ms}$  | $\tau_1 = 0.25 \text{ ms}$ |
|                                        | $\tau_2 = 3.13 \mathrm{ms}$ | $\tau_2 = 2.14 \text{ ms}$ |
| Eu <sub>0.3</sub> Tb <sub>0.7</sub> @l | $\tau_1 = 0.47 \text{ ms}$  | $\tau_1 = 0.23 \text{ ms}$ |
|                                        | $\tau_2 = 3.25 \text{ ms}$  | $\tau_2 = 1.69 \text{ ms}$ |
| Eu <sub>0.2</sub> Tb <sub>0.8</sub> @l | $\tau_1 = 0.47 \text{ ms}$  | $\tau_1 = 0.21 \text{ ms}$ |
|                                        | $\tau_2 = 2.79 \text{ ms}$  | $\tau_2 = 1.35 \text{ ms}$ |

**Table S9.** Luminescence lifetimes of the Eu<sup>3+</sup>/Tb<sup>3+</sup>-loaded samples.