Supplementary Information

Enlarging {110} Exposed Facets of Anatase TiO₂ by the Synergistic Action of Capping Agents

Qiaoying Li,^{‡a} Taoyun Li,^{‡a} Shunzhou Chang,^b Qingsong Tao,^a Baozhu Tian^{*a} and Jinlong Zhang^a

^a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China. Fax: (+86)21-64252062; Tel: (+86)21-64252062; Corresponding author: Baozhu Tian. E-mail: baozhutian@ecust.edu.cn.
^b Research institute of physical and chemical engineering of nuclear industry, 168 JinTang Highroad, Tianjin, 300180, P.R. China
[‡] These authors contributed equally to this work.

Fig. S1. XRD patterns of TiO_2 samples prepared in different concentrations of H_2O_2 solutions: (a) 0 M; (b) 0.6 M; (c) 0.9 M; (d) 1.5 M; (d) 2.4 M; (e) 3.0 M.

Fig. S2. Schematic diagram of the anatase TiO₂ single crystal.

Calculated θ angle

 $\theta = 180^{\circ} - \arccos \frac{DC}{AC}$

Here we set O'C = 2a, O'G = 2b, OO' = 2c, a = b = 3.785, c = 9.514, A is the midpoint of

line OE.

$$AC^{2} = AA'^{2} + A'C^{2} = (\frac{OO'}{2})^{2} + (A'D^{2} + DC^{2}) = c^{2} + (a^{2} + b^{2}) = 119.168,$$

AC = 10.916,
DC = b = 3.785

 $\theta = 180^{\circ} - \arccos \frac{DC}{AC} = 180^{\circ} - \arccos \frac{3.785}{10.916} = 110^{\circ}.$

Fig. S3. SEM image of TiO_2 prepared by using $TiCl_4$ as Ti source in presence of H_2O_2 (2.4 M) and HF (0.1 M).

Fig. S4. SEM images of anatase TiO_2 single crystals prepared using $Ti (OC_3H_7-i)_4$ as titanium source in the presence of H_2O_2 (2.4 M) and HF (0.1 M).

	Composition of reaction solution				
	Titanium source	$\overline{H_2O_2}$	HF	HCl	Exposed facets
Aª	TiCl ₃	Yes	No	No	Irregular particles
Ba	TiCl ₃	Yes	No	Yes	$\{101\}$ and $\{001\}$
Ca	TiCl ₃	No	Yes	No	{101}, {001}, and minor {110}
Da	TiCl ₃	Yes	Yes	No	{101}, {001}, and bigger {110}
Ea	Ti(OC ₃ H ₇ -i) ₄	Yes	Yes	No	$\{101\}, \{001\}, and minor \{110\}$
F^{b}	TiF ₄	No	Yes	No	$\{101\}$ and $\{001\}$
Gc	Ti powder	Yes	Yes	No	{101}, {001}, and minor {110}
H^{d}	TiCl ₃	No	Yes	No	$\{101\}, \{001\}, and minor \{110\}$
Ie	TiCl ₃	Yes	No	No	$\{101\}$ and $\{001\}$

Table S1. The dependence of exposed facets on titanium source, $\mathrm{H_2O_2},\,\mathrm{HCl},\,\mathrm{and}\,\mathrm{HF}$

^a This work.

^b Nature, Nature 2008, 453, 638.

^c Chem. Commun., 2010, 46, 1664.

^d J. Phys. Chem. Lett. 2013, 4, 3910.

^e Ind. Eng. Chem. Res. 2013, 52, 6704.

Fig. S5. XRD patterns of the $\{110\}$ facet exposed TiO₂ single crystals calcined at different conditions: (a) Without calcination treatment; (b) Calcination at 600 °C for 2 h; (c) Calcination at 800 °C for 2 h.