Centric and Acentric Networks Using Low-Symmetry Heterotopic Carboxylate/Pyridyl Ligands

Gregory S. Hall,^a Melissa J. Angeles,^a Jamie Hicks ^a and David R. Turner^{a*}

^a School of Chemistry, Monash University, Clayton, VIC 3800, Australia. <u>david.turner@monash.edu</u>

Supporting Information

Hydrogen Bonding Parameters in Structures of Neutral Ligands

D-H···A	D-H (Å)	H…A (Å) ª	D…A (Å)	D-H…A (°) ª	Sym. Op. A
3py3bzH					
01-H10…N1	0.8401(10)	1.739(3)	2.5776(15)	175(2)	-x, 1-y, 1-z
N3-H3N…O2	0.8800(10)	2.113(8)	2.9441(15)	157.3(17)	1/2+х, 3/2-у, z-1/2
3py4bzH					
O1A-H14A…N1A	0.8401(15)	1.794(18)	2.580(3)	155(4)	х, у, z-1
O1B-H14B…N1B	0.8400(15)	1.756(7)	2.590(3)	172(4)	х, у, 1+z
O1C-H14C…N1C	0.8401(15)	1.732(5)	2.569(3)	174(4)	х, у, 1+z
O1D-H14D…N1D	0.8402(15)	1.749(5)	2.587(3)	175(4)	x, 1+y, z
O1E-H14E…N1E	0.8400(15)	1.773(10)	2.599(3)	167(4)	x, 1+y, z
O1F-H14F…N1F	0.8401(15)	1.805(12)	2.621(3)	163(4)	x, y-1, z
N3A-H11A…O2D	0.8802(15)	2.119(9)	2.979(3)	165(3)	х, ү, z
N3B-H11B…O1D	0.8800(15)	2.275(11)	3.127(3)	163(3)	1+x, y, z
N3C-H11C…O2F	0.8801(15)	2.110(11)	2.966(3)	164(3)	1+x, y, z
N3D-H11D…O2C	0.8800(15)	2.085(14)	2.910(3)	156(3)	х, у, z-1
N3E-H11E…O2B	0.8800(15)	2.065(10)	2.922(3)	165(3)	х, y, z
N3F-H11F…O2A	0.8800(15)	2.073(8)	2.942(3)	169(3)	x-1, y, 1+z
4py3bzH·DMF					
01-H10…N1	0.8403(10)	1.719(3)	2.5541(13)	172.6(18)	x-1, 1+y, z
N3-H3N…O3	0.8801(10)	2.112(3)	2.9788(13)	168.0(14)	х, y, z
4py4bzH					
01-H10…N1	0.8400(14)	1.753(8)	2.578(2)	167(4)	1/2-x, 3/2+y, 1/2+z
N3-H3N…O2	0.8800(14)	2.033(7)	2.899(2)	168(3)	1/2+х, 3/2-у, z

(a) All O-H and N-H hydrogen atoms were located from the Fourier difference map and distances were refined with distance retraints of 0.84 and 0.88 Å, respectively.

1H-NMR Spectra

Figure S1: 1H NMR spectrum of 3py3bzH.

Figure S2: 1H NMR spectrum of 3py4bzH.

Figure S3: 1H NMR spectrum of 4py3bzH.

Figure S4: 1H NMR spectrum of 4py4bzH.

Powder X-Ray Diffraction Data

Power X-ray diffraction (PXRD) measurements were collected using a Bruker X8 diffractometer equipped with Cu-K α radiation. Data were collected at room temperature and are compared with calculated PXRD traces from low temperature single crystal datasets.

Figure S5: Comparison of experimental PXRD of bulk $1Zn \cdot 2DMF$ with the calculated patterns for $1Zn \cdot 2DMF$ and $1Zn \cdot 2H_2O$.

Figure S6: Comparison of experimental PXRD of bulk $1Zn \cdot 2H_2O$ with the calculated patterns for $1Zn \cdot 2H_2O$ and $1Zn \cdot 2DMF$.

Figure S7: Comparison of experimental PXRD of bulk **1Cd** with the calculated pattern for **1Cd**·2DMF.

Figure S8: Comparison of experimental PXRD of bulk **1Cu** with the calculated pattern for **1Cu**·DMF.

Figure S9: Comparison of experimental PXRD of bulk **2** with the calculated pattern for **2**. The sample experiences rapid collapse of crystallinity upon standing in air and possible impurities in the bulk.

Figure S10: Comparison of experimental PXRD of bulk **3Zn** and **3Cd** with the calculated pattern for **3Zn**·1.5H₂O.

Figure S11: Comparison of experimental PXRD of bulk **4Ni** and **4Co** with the calculated pattern for 4Ni·7 H_2O .

Additional Crystallographic Refinement Details

1Cu-DMF: The DMF molecule in the lattice is disordered over a symmetry site. The molecule was therefore refined as fixed at ½ occupancy using an anisotropic model.

1Zn·H2O: The hydrogen atoms of the lattice water molecule were located from the Fourier difference map and refined using DFIX restraints with riding displacement parameters (d = 0.88 Å; μ_{H} = 1.5 x μ_{O}). The H…H distance (and thus H-O-H angle) was not restrained.

2: One of the ligands is partially disordered (except for the pyridyl ring and the carboxylate group). These two positions were refined with fixed 50:50 occupancy using an anisotropic model. One DMF molecule in the lattice is disordered over two over-lapping positions whose occupancies were freely refined (52:48) using an isotropic model. One further DMF was located at 50% occupancy and refined using an isotropic model with no restraints. SQUEEZE was applied locating a total void volume of 500 Å³ per cell (154 e⁻). This equates to one DMF per formula unit and was incorporated into the UNIT card prior to final refinement. Microanalysis suggests a hydrated material, with rapid loss of crystallinity observed upon standing in air.

3Zn: SQUEEZE was applied locating a total void volume of 275 Å³ per cell (57 e⁻). This equates to 1.5 water molecules per formula unit and was incorporated into the UNIT card prior to final refinement. Microanalysis suggests a similarly hydrated formula.

3Cd: SQUEEZE was applied locating a total void volume of 275 Å³ per cell (64 e⁻). This equates to 1.5 water molecules per formula unit and was incorporated into the UNIT card prior to final refinement. Microanalysis suggests a similarly hydrated formula.

4Ni: SQUEEZE was applied locating a total void volume of 1977 Å³ per cell (208 e⁻). This equates to 7 per formula unit and was incorporated into the UNIT card prior to final refinement. Microanalysis suggests a less hydrated material, likely due to solvent loss in transfer.

4Co: SQUEEZE was applied locating a total void volume of 2014 Å³ per cell (501 e⁻). This equates to 16 per formula unit and was incorporated into the UNIT card prior to final refinement. Microanalysis suggests a less hydrated material, likely due to solvent loss in transfer.

Additional Diagrams

Figure S8: One 3D hydrogen-bonded network in the structure of *4py4bzH* (left) and the interpenetration of three such networks to form the overall structure with pi-stacking between the molecules (right).