Electronic Supplementary Information

Polymorphism in nanoparticle-based crystals depending upon their single or polycrystalline character

Nicolas Goubet*, Pierre-Antoine Albouy, Andrew Thompson and Marie-Paule Pileni

Figure S1. Bright (a) and dark (b) field TEM pictures of the as-synthesized gold nanocrystals with their size distribution (c).

Figure S2. Optical micrograph of a capillary used to grow polyhedral superlattices.

Figure S3. Typical polyhedral NC superlattice made of polycrystalline gold nanocrystals that are selected for the X-ray diffraction experiments.

Figure S4. Typical polyhedral NC superlattice made of gold single crystals that are selected for the X-ray diffraction experiments.

Figure S5. Reconstruction of reciprocal space planes of equation l=0 at small q value ($q_{max}=7$ nm⁻¹) of one polyhedral nanocrystal superlattice made of gold single crystals.

Figure S6. Reconstruction of reciprocal space planes of equation h+k=0 at small q value $(q_{max}=7 \text{ nm}^{-1})$ of one polyhedral nanocrystal superlattice made of gold single crystals.

Figure S7. Reconstruction of reciprocal space planes of equation h+k+l=0 at small q value $(q_{max}=7 \text{ nm}^{-1})$ of one polyhedral nanocrystal superlattice made of gold single crystals.

Figure S8. Reconstruction of reciprocal space planes of equation l=0 at small q value ($q_{max}=7$ nm⁻¹) of one polyhedral nanocrystal superlattice made of gold polycrystals.

Figure S9. Reconstruction of reciprocal space planes of equation h+k=0 at small q value $(q_{max}=7 \text{ nm}^{-1})$ of one polyhedral nanocrystal superlattice made of gold polycrystals.

Figure S10. Reconstruction of reciprocal space planes of equation h+k+l=0 at small q value $(q_{max}=7 \text{ nm}^{-1})$ of one polyhedral nanocrystal superlattice made of gold polycrystals.

Figure S11. SAXS powder profiles for gold single (a-b) and polycrystals (c-d) with different size.

Figure S12. Reconstruction of reciprocal space planes of one polyhedral nanocrystal superlattice made of gold single crystals at 110K (a) and 290K (b).

Figure S13. The 4 possible reconstructions of reciprocal space planes of equation h+k+l=0 of one polyhedral nanocrystal superlattice made of gold polycrystals.

Calculation of the inorganic core density in the colloidal crystal

In the case of BCC superlattice:

$$\Phi_{bcc} = \frac{2 \times \frac{4}{3} \times \pi \times \left(\frac{D_{TEM}}{2}\right)^3}{a_{bcc}^3} = 29.5\%$$

where d_{inor} is the metallic NC diameter determined by TEM and a_{bcc} is the *bcc* unit cell.

In the case of FCC superlattice:

$$\Phi_{fcc} = \frac{4 \times \frac{4}{3} \times \pi \times \left(\frac{D_{TEM}}{2}\right)^3}{a_{fcc}^3} = 29.5\%$$

where d_{inor} is the metallic NC diameter determined by TEM and a_{fcc} is the *fcc* unit cell.